text
stringlengths
56
1.16k
[2023-09-02 02:05:44,834::train::INFO] [train] Iter 04791 | loss 2.3767 | loss(rot) 1.2919 | loss(pos) 0.6279 | loss(seq) 0.4569 | grad 5.1141 | lr 0.0010 | time_forward 3.5070 | time_backward 4.9090
[2023-09-02 02:05:47,656::train::INFO] [train] Iter 04792 | loss 0.7345 | loss(rot) 0.2171 | loss(pos) 0.4639 | loss(seq) 0.0536 | grad 4.1704 | lr 0.0010 | time_forward 1.3350 | time_backward 1.4830
[2023-09-02 02:05:57,794::train::INFO] [train] Iter 04793 | loss 1.7497 | loss(rot) 0.8413 | loss(pos) 0.3901 | loss(seq) 0.5184 | grad 3.8332 | lr 0.0010 | time_forward 4.1940 | time_backward 5.9410
[2023-09-02 02:06:06,510::train::INFO] [train] Iter 04794 | loss 2.4136 | loss(rot) 1.5431 | loss(pos) 0.3779 | loss(seq) 0.4926 | grad 6.0852 | lr 0.0010 | time_forward 3.7320 | time_backward 4.9810
[2023-09-02 02:06:16,121::train::INFO] [train] Iter 04795 | loss 2.3391 | loss(rot) 2.2394 | loss(pos) 0.0947 | loss(seq) 0.0049 | grad 2.7496 | lr 0.0010 | time_forward 3.9070 | time_backward 5.7000
[2023-09-02 02:06:24,658::train::INFO] [train] Iter 04796 | loss 2.3300 | loss(rot) 0.0401 | loss(pos) 2.2837 | loss(seq) 0.0062 | grad 9.9386 | lr 0.0010 | time_forward 3.5760 | time_backward 4.9570
[2023-09-02 02:06:31,613::train::INFO] [train] Iter 04797 | loss 2.0353 | loss(rot) 1.4498 | loss(pos) 0.1955 | loss(seq) 0.3900 | grad 4.5458 | lr 0.0010 | time_forward 2.9850 | time_backward 3.9670
[2023-09-02 02:06:41,347::train::INFO] [train] Iter 04798 | loss 0.7720 | loss(rot) 0.1662 | loss(pos) 0.5861 | loss(seq) 0.0197 | grad 3.2473 | lr 0.0010 | time_forward 4.0490 | time_backward 5.6820
[2023-09-02 02:06:44,105::train::INFO] [train] Iter 04799 | loss 1.8169 | loss(rot) 0.7999 | loss(pos) 0.5604 | loss(seq) 0.4566 | grad 6.0315 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4720
[2023-09-02 02:06:53,649::train::INFO] [train] Iter 04800 | loss 1.8137 | loss(rot) 0.9397 | loss(pos) 0.2750 | loss(seq) 0.5991 | grad 3.8958 | lr 0.0010 | time_forward 3.9600 | time_backward 5.5810
[2023-09-02 02:07:02,414::train::INFO] [train] Iter 04801 | loss 2.5389 | loss(rot) 2.3541 | loss(pos) 0.1349 | loss(seq) 0.0499 | grad 4.8474 | lr 0.0010 | time_forward 3.8810 | time_backward 4.8800
[2023-09-02 02:07:12,143::train::INFO] [train] Iter 04802 | loss 2.0719 | loss(rot) 0.4895 | loss(pos) 1.0484 | loss(seq) 0.5340 | grad 7.9982 | lr 0.0010 | time_forward 3.9190 | time_backward 5.8070
[2023-09-02 02:07:21,970::train::INFO] [train] Iter 04803 | loss 2.1836 | loss(rot) 1.9399 | loss(pos) 0.0947 | loss(seq) 0.1491 | grad 3.7150 | lr 0.0010 | time_forward 3.9260 | time_backward 5.8870
[2023-09-02 02:07:31,450::train::INFO] [train] Iter 04804 | loss 1.9379 | loss(rot) 0.8141 | loss(pos) 0.6271 | loss(seq) 0.4967 | grad 5.7595 | lr 0.0010 | time_forward 3.6160 | time_backward 5.8620
[2023-09-02 02:07:41,005::train::INFO] [train] Iter 04805 | loss 0.7709 | loss(rot) 0.1464 | loss(pos) 0.3513 | loss(seq) 0.2731 | grad 2.5229 | lr 0.0010 | time_forward 3.8850 | time_backward 5.6670
[2023-09-02 02:07:48,854::train::INFO] [train] Iter 04806 | loss 2.2630 | loss(rot) 1.7974 | loss(pos) 0.1815 | loss(seq) 0.2840 | grad 4.4612 | lr 0.0010 | time_forward 3.3010 | time_backward 4.5440
[2023-09-02 02:07:57,880::train::INFO] [train] Iter 04807 | loss 0.5256 | loss(rot) 0.1562 | loss(pos) 0.3280 | loss(seq) 0.0414 | grad 2.7030 | lr 0.0010 | time_forward 3.8180 | time_backward 5.2060
[2023-09-02 02:08:07,237::train::INFO] [train] Iter 04808 | loss 1.6703 | loss(rot) 0.6955 | loss(pos) 0.6978 | loss(seq) 0.2771 | grad 3.8046 | lr 0.0010 | time_forward 3.9610 | time_backward 5.3910
[2023-09-02 02:08:09,959::train::INFO] [train] Iter 04809 | loss 1.8342 | loss(rot) 1.1590 | loss(pos) 0.1534 | loss(seq) 0.5218 | grad 3.0554 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4320
[2023-09-02 02:08:18,785::train::INFO] [train] Iter 04810 | loss 3.0578 | loss(rot) 2.7717 | loss(pos) 0.1164 | loss(seq) 0.1696 | grad 4.7010 | lr 0.0010 | time_forward 3.8090 | time_backward 5.0130
[2023-09-02 02:08:28,747::train::INFO] [train] Iter 04811 | loss 1.9100 | loss(rot) 0.6793 | loss(pos) 1.0172 | loss(seq) 0.2136 | grad 3.6363 | lr 0.0010 | time_forward 4.1250 | time_backward 5.8340
[2023-09-02 02:08:36,610::train::INFO] [train] Iter 04812 | loss 2.5224 | loss(rot) 1.8625 | loss(pos) 0.3655 | loss(seq) 0.2945 | grad 4.5575 | lr 0.0010 | time_forward 3.3540 | time_backward 4.5050
[2023-09-02 02:08:39,348::train::INFO] [train] Iter 04813 | loss 1.7977 | loss(rot) 0.9064 | loss(pos) 0.3168 | loss(seq) 0.5746 | grad 2.6514 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4560
[2023-09-02 02:08:48,864::train::INFO] [train] Iter 04814 | loss 1.2722 | loss(rot) 0.3599 | loss(pos) 0.5237 | loss(seq) 0.3885 | grad 3.3252 | lr 0.0010 | time_forward 4.0140 | time_backward 5.4980
[2023-09-02 02:08:57,431::train::INFO] [train] Iter 04815 | loss 2.4047 | loss(rot) 2.2383 | loss(pos) 0.1029 | loss(seq) 0.0635 | grad 9.0478 | lr 0.0010 | time_forward 3.6510 | time_backward 4.9130
[2023-09-02 02:09:00,701::train::INFO] [train] Iter 04816 | loss 2.4797 | loss(rot) 1.1180 | loss(pos) 0.8192 | loss(seq) 0.5426 | grad 5.0382 | lr 0.0010 | time_forward 1.4150 | time_backward 1.8520
[2023-09-02 02:09:09,695::train::INFO] [train] Iter 04817 | loss 1.3024 | loss(rot) 0.7859 | loss(pos) 0.2205 | loss(seq) 0.2960 | grad 5.6480 | lr 0.0010 | time_forward 3.6870 | time_backward 5.3040
[2023-09-02 02:09:12,451::train::INFO] [train] Iter 04818 | loss 2.2368 | loss(rot) 1.4413 | loss(pos) 0.2253 | loss(seq) 0.5703 | grad 4.8164 | lr 0.0010 | time_forward 1.2990 | time_backward 1.4540
[2023-09-02 02:09:15,336::train::INFO] [train] Iter 04819 | loss 2.0990 | loss(rot) 1.8519 | loss(pos) 0.1383 | loss(seq) 0.1089 | grad 4.1962 | lr 0.0010 | time_forward 1.3510 | time_backward 1.5010
[2023-09-02 02:09:24,616::train::INFO] [train] Iter 04820 | loss 1.2486 | loss(rot) 0.5172 | loss(pos) 0.1591 | loss(seq) 0.5723 | grad 3.8719 | lr 0.0010 | time_forward 3.9290 | time_backward 5.3460
[2023-09-02 02:09:33,045::train::INFO] [train] Iter 04821 | loss 1.5024 | loss(rot) 1.1552 | loss(pos) 0.1104 | loss(seq) 0.2368 | grad 4.1648 | lr 0.0010 | time_forward 3.6450 | time_backward 4.7810
[2023-09-02 02:09:35,358::train::INFO] [train] Iter 04822 | loss 2.2189 | loss(rot) 1.9801 | loss(pos) 0.2387 | loss(seq) 0.0000 | grad 4.1191 | lr 0.0010 | time_forward 1.1170 | time_backward 1.1920
[2023-09-02 02:09:44,767::train::INFO] [train] Iter 04823 | loss 2.6108 | loss(rot) 1.7101 | loss(pos) 0.3235 | loss(seq) 0.5773 | grad 4.3135 | lr 0.0010 | time_forward 3.6750 | time_backward 5.7280
[2023-09-02 02:09:53,530::train::INFO] [train] Iter 04824 | loss 2.2716 | loss(rot) 1.5185 | loss(pos) 0.3185 | loss(seq) 0.4346 | grad 7.1291 | lr 0.0010 | time_forward 3.6260 | time_backward 5.1220
[2023-09-02 02:09:55,813::train::INFO] [train] Iter 04825 | loss 1.7075 | loss(rot) 1.5095 | loss(pos) 0.1516 | loss(seq) 0.0465 | grad 4.7947 | lr 0.0010 | time_forward 1.0720 | time_backward 1.2070
[2023-09-02 02:09:58,162::train::INFO] [train] Iter 04826 | loss 2.1086 | loss(rot) 1.4080 | loss(pos) 0.1895 | loss(seq) 0.5111 | grad 4.8201 | lr 0.0010 | time_forward 1.1140 | time_backward 1.2320
[2023-09-02 02:10:00,867::train::INFO] [train] Iter 04827 | loss 2.3532 | loss(rot) 0.2244 | loss(pos) 2.1248 | loss(seq) 0.0041 | grad 8.5841 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4390
[2023-09-02 02:10:08,194::train::INFO] [train] Iter 04828 | loss 2.2304 | loss(rot) 1.3119 | loss(pos) 0.6141 | loss(seq) 0.3044 | grad 5.6278 | lr 0.0010 | time_forward 2.9970 | time_backward 4.3130
[2023-09-02 02:10:18,042::train::INFO] [train] Iter 04829 | loss 1.7906 | loss(rot) 0.3510 | loss(pos) 1.1905 | loss(seq) 0.2490 | grad 5.6621 | lr 0.0010 | time_forward 4.3230 | time_backward 5.5220
[2023-09-02 02:10:20,738::train::INFO] [train] Iter 04830 | loss 2.3740 | loss(rot) 1.8634 | loss(pos) 0.3330 | loss(seq) 0.1776 | grad 5.2974 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4440
[2023-09-02 02:10:23,403::train::INFO] [train] Iter 04831 | loss 1.8056 | loss(rot) 1.0096 | loss(pos) 0.2595 | loss(seq) 0.5365 | grad 3.8787 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4190
[2023-09-02 02:10:31,101::train::INFO] [train] Iter 04832 | loss 1.3481 | loss(rot) 0.5947 | loss(pos) 0.2075 | loss(seq) 0.5459 | grad 3.4103 | lr 0.0010 | time_forward 3.0710 | time_backward 4.6240
[2023-09-02 02:10:38,837::train::INFO] [train] Iter 04833 | loss 2.1707 | loss(rot) 1.1501 | loss(pos) 0.5302 | loss(seq) 0.4904 | grad 5.9066 | lr 0.0010 | time_forward 3.0220 | time_backward 4.7100
[2023-09-02 02:10:41,568::train::INFO] [train] Iter 04834 | loss 1.6996 | loss(rot) 1.5560 | loss(pos) 0.0985 | loss(seq) 0.0451 | grad 5.0548 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4490
[2023-09-02 02:10:50,330::train::INFO] [train] Iter 04835 | loss 3.2938 | loss(rot) 2.8362 | loss(pos) 0.3437 | loss(seq) 0.1139 | grad 3.8692 | lr 0.0010 | time_forward 3.6970 | time_backward 5.0350
[2023-09-02 02:11:00,167::train::INFO] [train] Iter 04836 | loss 1.0978 | loss(rot) 0.2959 | loss(pos) 0.7585 | loss(seq) 0.0434 | grad 5.4284 | lr 0.0010 | time_forward 3.8630 | time_backward 5.9720
[2023-09-02 02:11:09,093::train::INFO] [train] Iter 04837 | loss 2.8592 | loss(rot) 2.6036 | loss(pos) 0.2464 | loss(seq) 0.0092 | grad 5.1997 | lr 0.0010 | time_forward 3.6930 | time_backward 5.2180
[2023-09-02 02:11:18,685::train::INFO] [train] Iter 04838 | loss 1.5556 | loss(rot) 0.3746 | loss(pos) 0.8739 | loss(seq) 0.3071 | grad 4.0970 | lr 0.0010 | time_forward 3.8520 | time_backward 5.7370
[2023-09-02 02:11:21,394::train::INFO] [train] Iter 04839 | loss 2.6349 | loss(rot) 2.4585 | loss(pos) 0.1152 | loss(seq) 0.0612 | grad 4.4219 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4400
[2023-09-02 02:11:31,419::train::INFO] [train] Iter 04840 | loss 1.8194 | loss(rot) 0.9472 | loss(pos) 0.4912 | loss(seq) 0.3810 | grad 5.0823 | lr 0.0010 | time_forward 4.0010 | time_backward 6.0200
[2023-09-02 02:11:34,198::train::INFO] [train] Iter 04841 | loss 2.2858 | loss(rot) 2.1544 | loss(pos) 0.1307 | loss(seq) 0.0007 | grad 2.8619 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4610
[2023-09-02 02:11:36,985::train::INFO] [train] Iter 04842 | loss 2.5971 | loss(rot) 2.4642 | loss(pos) 0.1297 | loss(seq) 0.0032 | grad 3.8142 | lr 0.0010 | time_forward 1.3220 | time_backward 1.4630
[2023-09-02 02:11:46,062::train::INFO] [train] Iter 04843 | loss 1.7585 | loss(rot) 1.4424 | loss(pos) 0.1874 | loss(seq) 0.1288 | grad 5.2132 | lr 0.0010 | time_forward 3.7290 | time_backward 5.3450
[2023-09-02 02:11:48,696::train::INFO] [train] Iter 04844 | loss 2.1132 | loss(rot) 1.8647 | loss(pos) 0.2439 | loss(seq) 0.0047 | grad 6.1810 | lr 0.0010 | time_forward 1.2320 | time_backward 1.3990
[2023-09-02 02:11:58,043::train::INFO] [train] Iter 04845 | loss 2.7832 | loss(rot) 2.2905 | loss(pos) 0.2720 | loss(seq) 0.2207 | grad 3.6511 | lr 0.0010 | time_forward 3.8880 | time_backward 5.4290
[2023-09-02 02:12:06,006::train::INFO] [train] Iter 04846 | loss 1.6247 | loss(rot) 1.0533 | loss(pos) 0.2086 | loss(seq) 0.3628 | grad 3.7251 | lr 0.0010 | time_forward 3.3690 | time_backward 4.5920
[2023-09-02 02:12:14,673::train::INFO] [train] Iter 04847 | loss 3.1093 | loss(rot) 2.7811 | loss(pos) 0.1412 | loss(seq) 0.1870 | grad 3.3951 | lr 0.0010 | time_forward 3.6500 | time_backward 5.0120
[2023-09-02 02:12:23,223::train::INFO] [train] Iter 04848 | loss 1.1563 | loss(rot) 0.3104 | loss(pos) 0.4105 | loss(seq) 0.4354 | grad 3.1912 | lr 0.0010 | time_forward 3.6180 | time_backward 4.9260
[2023-09-02 02:12:32,964::train::INFO] [train] Iter 04849 | loss 2.2323 | loss(rot) 1.9244 | loss(pos) 0.1568 | loss(seq) 0.1511 | grad 3.8483 | lr 0.0010 | time_forward 3.7990 | time_backward 5.9390
[2023-09-02 02:12:35,739::train::INFO] [train] Iter 04850 | loss 1.9590 | loss(rot) 1.0393 | loss(pos) 0.3496 | loss(seq) 0.5701 | grad 3.8618 | lr 0.0010 | time_forward 1.3590 | time_backward 1.4130
[2023-09-02 02:12:38,565::train::INFO] [train] Iter 04851 | loss 3.1899 | loss(rot) 2.0830 | loss(pos) 0.6379 | loss(seq) 0.4689 | grad 5.9160 | lr 0.0010 | time_forward 1.3770 | time_backward 1.4460
[2023-09-02 02:12:48,290::train::INFO] [train] Iter 04852 | loss 3.3026 | loss(rot) 3.0349 | loss(pos) 0.2665 | loss(seq) 0.0012 | grad 4.7607 | lr 0.0010 | time_forward 3.9430 | time_backward 5.7780
[2023-09-02 02:12:56,188::train::INFO] [train] Iter 04853 | loss 1.2910 | loss(rot) 0.2200 | loss(pos) 0.5625 | loss(seq) 0.5085 | grad 4.3520 | lr 0.0010 | time_forward 3.3670 | time_backward 4.5190
[2023-09-02 02:13:05,425::train::INFO] [train] Iter 04854 | loss 0.8888 | loss(rot) 0.2149 | loss(pos) 0.6249 | loss(seq) 0.0490 | grad 4.2576 | lr 0.0010 | time_forward 3.9370 | time_backward 5.2970
[2023-09-02 02:13:15,400::train::INFO] [train] Iter 04855 | loss 2.6813 | loss(rot) 2.2433 | loss(pos) 0.1558 | loss(seq) 0.2823 | grad 4.5684 | lr 0.0010 | time_forward 4.0980 | time_backward 5.8740
[2023-09-02 02:13:25,257::train::INFO] [train] Iter 04856 | loss 2.4029 | loss(rot) 2.0511 | loss(pos) 0.3471 | loss(seq) 0.0047 | grad 3.0631 | lr 0.0010 | time_forward 4.0090 | time_backward 5.8350
[2023-09-02 02:13:34,736::train::INFO] [train] Iter 04857 | loss 2.5029 | loss(rot) 1.9080 | loss(pos) 0.2245 | loss(seq) 0.3704 | grad 4.8949 | lr 0.0010 | time_forward 3.7750 | time_backward 5.7000
[2023-09-02 02:13:42,711::train::INFO] [train] Iter 04858 | loss 3.1270 | loss(rot) 2.7104 | loss(pos) 0.1286 | loss(seq) 0.2880 | grad 5.7803 | lr 0.0010 | time_forward 3.4390 | time_backward 4.5330
[2023-09-02 02:13:46,141::train::INFO] [train] Iter 04859 | loss 2.9374 | loss(rot) 1.8959 | loss(pos) 0.5270 | loss(seq) 0.5145 | grad 5.5379 | lr 0.0010 | time_forward 1.5130 | time_backward 1.9140
[2023-09-02 02:13:55,524::train::INFO] [train] Iter 04860 | loss 1.1290 | loss(rot) 0.1527 | loss(pos) 0.9548 | loss(seq) 0.0215 | grad 7.1240 | lr 0.0010 | time_forward 3.6230 | time_backward 5.7570
[2023-09-02 02:14:03,607::train::INFO] [train] Iter 04861 | loss 2.6951 | loss(rot) 1.7720 | loss(pos) 0.3220 | loss(seq) 0.6010 | grad 4.9951 | lr 0.0010 | time_forward 3.2210 | time_backward 4.8590
[2023-09-02 02:14:11,438::train::INFO] [train] Iter 04862 | loss 3.4672 | loss(rot) 3.1633 | loss(pos) 0.1428 | loss(seq) 0.1611 | grad 7.0318 | lr 0.0010 | time_forward 3.1470 | time_backward 4.6800
[2023-09-02 02:14:14,260::train::INFO] [train] Iter 04863 | loss 2.5926 | loss(rot) 2.4093 | loss(pos) 0.1359 | loss(seq) 0.0474 | grad 4.7485 | lr 0.0010 | time_forward 1.3760 | time_backward 1.4430
[2023-09-02 02:14:21,525::train::INFO] [train] Iter 04864 | loss 2.3167 | loss(rot) 0.0103 | loss(pos) 2.3064 | loss(seq) 0.0000 | grad 10.6910 | lr 0.0010 | time_forward 2.9460 | time_backward 4.3130
[2023-09-02 02:14:24,247::train::INFO] [train] Iter 04865 | loss 1.3578 | loss(rot) 0.2551 | loss(pos) 0.8379 | loss(seq) 0.2648 | grad 4.8372 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4610
[2023-09-02 02:14:31,053::train::INFO] [train] Iter 04866 | loss 2.9022 | loss(rot) 2.2673 | loss(pos) 0.1477 | loss(seq) 0.4871 | grad 3.2750 | lr 0.0010 | time_forward 2.8010 | time_backward 4.0020
[2023-09-02 02:14:40,701::train::INFO] [train] Iter 04867 | loss 2.1635 | loss(rot) 1.1450 | loss(pos) 0.5447 | loss(seq) 0.4738 | grad 4.3404 | lr 0.0010 | time_forward 3.9020 | time_backward 5.7420
[2023-09-02 02:14:50,310::train::INFO] [train] Iter 04868 | loss 1.9701 | loss(rot) 1.1220 | loss(pos) 0.3742 | loss(seq) 0.4739 | grad 4.7358 | lr 0.0010 | time_forward 3.6490 | time_backward 5.9570
[2023-09-02 02:14:53,042::train::INFO] [train] Iter 04869 | loss 4.1379 | loss(rot) 0.0584 | loss(pos) 4.0795 | loss(seq) 0.0000 | grad 9.6247 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4360
[2023-09-02 02:15:01,181::train::INFO] [train] Iter 04870 | loss 3.0299 | loss(rot) 2.4178 | loss(pos) 0.3142 | loss(seq) 0.2979 | grad 6.1151 | lr 0.0010 | time_forward 3.2210 | time_backward 4.9140
[2023-09-02 02:15:04,504::train::INFO] [train] Iter 04871 | loss 1.0905 | loss(rot) 0.1769 | loss(pos) 0.8835 | loss(seq) 0.0300 | grad 3.9105 | lr 0.0010 | time_forward 1.3920 | time_backward 1.9270
[2023-09-02 02:15:12,588::train::INFO] [train] Iter 04872 | loss 3.1069 | loss(rot) 0.0698 | loss(pos) 3.0366 | loss(seq) 0.0004 | grad 5.3743 | lr 0.0010 | time_forward 3.3220 | time_backward 4.7590
[2023-09-02 02:15:20,656::train::INFO] [train] Iter 04873 | loss 1.8546 | loss(rot) 0.7788 | loss(pos) 0.4466 | loss(seq) 0.6293 | grad 6.9272 | lr 0.0010 | time_forward 3.2170 | time_backward 4.8480
[2023-09-02 02:15:30,378::train::INFO] [train] Iter 04874 | loss 1.7288 | loss(rot) 0.9482 | loss(pos) 0.3189 | loss(seq) 0.4617 | grad 3.6525 | lr 0.0010 | time_forward 4.1600 | time_backward 5.5580
[2023-09-02 02:15:33,105::train::INFO] [train] Iter 04875 | loss 1.1738 | loss(rot) 0.5460 | loss(pos) 0.4975 | loss(seq) 0.1302 | grad 4.8773 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4900
[2023-09-02 02:15:41,457::train::INFO] [train] Iter 04876 | loss 1.9146 | loss(rot) 1.0648 | loss(pos) 0.4145 | loss(seq) 0.4352 | grad 5.3304 | lr 0.0010 | time_forward 3.2600 | time_backward 5.0880
[2023-09-02 02:15:49,673::train::INFO] [train] Iter 04877 | loss 2.9938 | loss(rot) 2.0899 | loss(pos) 0.4845 | loss(seq) 0.4194 | grad 4.3500 | lr 0.0010 | time_forward 3.2610 | time_backward 4.9520
[2023-09-02 02:15:59,215::train::INFO] [train] Iter 04878 | loss 1.5496 | loss(rot) 0.4774 | loss(pos) 0.6033 | loss(seq) 0.4689 | grad 3.7748 | lr 0.0010 | time_forward 3.7830 | time_backward 5.7560
[2023-09-02 02:16:01,609::train::INFO] [train] Iter 04879 | loss 2.6913 | loss(rot) 2.5099 | loss(pos) 0.1807 | loss(seq) 0.0007 | grad 4.3892 | lr 0.0010 | time_forward 1.1400 | time_backward 1.2380
[2023-09-02 02:16:10,612::train::INFO] [train] Iter 04880 | loss 2.0364 | loss(rot) 1.5132 | loss(pos) 0.1603 | loss(seq) 0.3628 | grad 5.0217 | lr 0.0010 | time_forward 4.0080 | time_backward 4.9790
[2023-09-02 02:16:19,916::train::INFO] [train] Iter 04881 | loss 2.3415 | loss(rot) 2.1932 | loss(pos) 0.1367 | loss(seq) 0.0116 | grad 2.7755 | lr 0.0010 | time_forward 3.8940 | time_backward 5.4060
[2023-09-02 02:16:22,668::train::INFO] [train] Iter 04882 | loss 1.5127 | loss(rot) 1.3981 | loss(pos) 0.1143 | loss(seq) 0.0003 | grad 3.9505 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4820
[2023-09-02 02:16:30,427::train::INFO] [train] Iter 04883 | loss 2.4826 | loss(rot) 0.0240 | loss(pos) 2.4586 | loss(seq) 0.0000 | grad 7.5238 | lr 0.0010 | time_forward 3.2590 | time_backward 4.4980
[2023-09-02 02:16:37,628::train::INFO] [train] Iter 04884 | loss 2.1953 | loss(rot) 1.6788 | loss(pos) 0.1616 | loss(seq) 0.3549 | grad 4.5572 | lr 0.0010 | time_forward 3.0390 | time_backward 4.1560
[2023-09-02 02:16:47,433::train::INFO] [train] Iter 04885 | loss 2.7441 | loss(rot) 2.3617 | loss(pos) 0.3824 | loss(seq) 0.0000 | grad 6.2904 | lr 0.0010 | time_forward 3.9030 | time_backward 5.8990
[2023-09-02 02:16:49,955::train::INFO] [train] Iter 04886 | loss 1.8737 | loss(rot) 1.6189 | loss(pos) 0.2502 | loss(seq) 0.0046 | grad 7.3716 | lr 0.0010 | time_forward 1.2370 | time_backward 1.2800
[2023-09-02 02:16:58,609::train::INFO] [train] Iter 04887 | loss 0.8384 | loss(rot) 0.1780 | loss(pos) 0.6479 | loss(seq) 0.0126 | grad 4.9730 | lr 0.0010 | time_forward 3.8510 | time_backward 4.7800
[2023-09-02 02:17:08,244::train::INFO] [train] Iter 04888 | loss 1.1930 | loss(rot) 0.1831 | loss(pos) 0.7739 | loss(seq) 0.2361 | grad 5.5863 | lr 0.0010 | time_forward 4.1400 | time_backward 5.4910
[2023-09-02 02:17:17,003::train::INFO] [train] Iter 04889 | loss 1.2049 | loss(rot) 0.3655 | loss(pos) 0.5431 | loss(seq) 0.2962 | grad 4.1324 | lr 0.0010 | time_forward 3.5870 | time_backward 5.1690
[2023-09-02 02:17:27,587::train::INFO] [train] Iter 04890 | loss 2.4119 | loss(rot) 1.6404 | loss(pos) 0.3277 | loss(seq) 0.4439 | grad 3.9916 | lr 0.0010 | time_forward 4.3400 | time_backward 6.2400