text
stringlengths 56
1.16k
|
---|
[2023-09-02 02:29:29,428::train::INFO] [train] Iter 04991 | loss 1.4235 | loss(rot) 0.5379 | loss(pos) 0.4099 | loss(seq) 0.4758 | grad 4.1962 | lr 0.0010 | time_forward 3.6840 | time_backward 5.2170 |
[2023-09-02 02:29:39,459::train::INFO] [train] Iter 04992 | loss 2.6523 | loss(rot) 2.4492 | loss(pos) 0.1909 | loss(seq) 0.0122 | grad 3.8795 | lr 0.0010 | time_forward 4.1140 | time_backward 5.9140 |
[2023-09-02 02:29:46,567::train::INFO] [train] Iter 04993 | loss 1.8171 | loss(rot) 0.9107 | loss(pos) 0.6334 | loss(seq) 0.2730 | grad 4.1240 | lr 0.0010 | time_forward 3.0120 | time_backward 4.0920 |
[2023-09-02 02:29:49,861::train::INFO] [train] Iter 04994 | loss 0.9387 | loss(rot) 0.1504 | loss(pos) 0.7671 | loss(seq) 0.0211 | grad 3.1946 | lr 0.0010 | time_forward 1.4080 | time_backward 1.8820 |
[2023-09-02 02:29:58,646::train::INFO] [train] Iter 04995 | loss 1.5388 | loss(rot) 0.9875 | loss(pos) 0.0972 | loss(seq) 0.4540 | grad 5.0142 | lr 0.0010 | time_forward 3.7240 | time_backward 5.0470 |
[2023-09-02 02:30:08,198::train::INFO] [train] Iter 04996 | loss 1.9796 | loss(rot) 1.2823 | loss(pos) 0.3342 | loss(seq) 0.3631 | grad 6.4508 | lr 0.0010 | time_forward 4.1180 | time_backward 5.4310 |
[2023-09-02 02:30:17,538::train::INFO] [train] Iter 04997 | loss 1.5601 | loss(rot) 0.7618 | loss(pos) 0.3007 | loss(seq) 0.4975 | grad 5.4218 | lr 0.0010 | time_forward 3.8840 | time_backward 5.4520 |
[2023-09-02 02:30:20,263::train::INFO] [train] Iter 04998 | loss 2.4424 | loss(rot) 1.9235 | loss(pos) 0.2802 | loss(seq) 0.2387 | grad 4.6375 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4490 |
[2023-09-02 02:30:22,967::train::INFO] [train] Iter 04999 | loss 2.1289 | loss(rot) 1.2927 | loss(pos) 0.2655 | loss(seq) 0.5706 | grad 5.1931 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4330 |
[2023-09-02 02:30:28,912::train::INFO] [train] Iter 05000 | loss 1.5740 | loss(rot) 0.6530 | loss(pos) 0.2546 | loss(seq) 0.6664 | grad 4.4918 | lr 0.0010 | time_forward 2.5590 | time_backward 3.3820 |
[2023-09-02 02:31:06,430::train::INFO] [val] Iter 05000 | loss 2.1483 | loss(rot) 1.0752 | loss(pos) 0.7755 | loss(seq) 0.2976 |
[2023-09-02 02:31:14,835::train::INFO] [train] Iter 05001 | loss 2.8757 | loss(rot) 2.6208 | loss(pos) 0.1523 | loss(seq) 0.1026 | grad 3.5415 | lr 0.0010 | time_forward 3.3840 | time_backward 4.7350 |
[2023-09-02 02:31:23,168::train::INFO] [train] Iter 05002 | loss 0.8289 | loss(rot) 0.0675 | loss(pos) 0.7347 | loss(seq) 0.0268 | grad 3.7850 | lr 0.0010 | time_forward 3.5000 | time_backward 4.8290 |
[2023-09-02 02:31:33,542::train::INFO] [train] Iter 05003 | loss 1.8838 | loss(rot) 1.1414 | loss(pos) 0.2409 | loss(seq) 0.5016 | grad 3.0479 | lr 0.0010 | time_forward 4.0900 | time_backward 6.2800 |
[2023-09-02 02:31:43,668::train::INFO] [train] Iter 05004 | loss 2.4490 | loss(rot) 1.1921 | loss(pos) 0.6494 | loss(seq) 0.6076 | grad 4.7904 | lr 0.0010 | time_forward 4.2370 | time_backward 5.8860 |
[2023-09-02 02:31:53,766::train::INFO] [train] Iter 05005 | loss 2.0678 | loss(rot) 1.3883 | loss(pos) 0.2815 | loss(seq) 0.3980 | grad 3.7353 | lr 0.0010 | time_forward 4.2470 | time_backward 5.8470 |
[2023-09-02 02:32:02,367::train::INFO] [train] Iter 05006 | loss 1.4605 | loss(rot) 0.7191 | loss(pos) 0.5271 | loss(seq) 0.2143 | grad 3.9529 | lr 0.0010 | time_forward 3.6770 | time_backward 4.9210 |
[2023-09-02 02:32:04,576::train::INFO] [train] Iter 05007 | loss 2.7145 | loss(rot) 2.3386 | loss(pos) 0.3217 | loss(seq) 0.0543 | grad 6.2711 | lr 0.0010 | time_forward 1.0350 | time_backward 1.1700 |
[2023-09-02 02:32:14,856::train::INFO] [train] Iter 05008 | loss 2.0028 | loss(rot) 1.6536 | loss(pos) 0.3079 | loss(seq) 0.0413 | grad 5.4272 | lr 0.0010 | time_forward 4.0540 | time_backward 6.2220 |
[2023-09-02 02:32:24,508::train::INFO] [train] Iter 05009 | loss 2.5856 | loss(rot) 2.0953 | loss(pos) 0.2249 | loss(seq) 0.2654 | grad 3.8770 | lr 0.0010 | time_forward 3.7940 | time_backward 5.8550 |
[2023-09-02 02:32:32,581::train::INFO] [train] Iter 05010 | loss 1.6461 | loss(rot) 0.8824 | loss(pos) 0.2844 | loss(seq) 0.4792 | grad 4.5635 | lr 0.0010 | time_forward 3.2970 | time_backward 4.7720 |
[2023-09-02 02:32:42,192::train::INFO] [train] Iter 05011 | loss 1.6780 | loss(rot) 0.0474 | loss(pos) 1.6198 | loss(seq) 0.0108 | grad 6.9503 | lr 0.0010 | time_forward 3.9170 | time_backward 5.6910 |
[2023-09-02 02:32:51,306::train::INFO] [train] Iter 05012 | loss 2.1144 | loss(rot) 1.9594 | loss(pos) 0.1204 | loss(seq) 0.0346 | grad 4.4964 | lr 0.0010 | time_forward 3.6650 | time_backward 5.4450 |
[2023-09-02 02:33:00,294::train::INFO] [train] Iter 05013 | loss 2.0393 | loss(rot) 0.1123 | loss(pos) 1.8991 | loss(seq) 0.0279 | grad 4.8273 | lr 0.0010 | time_forward 3.6420 | time_backward 5.3410 |
[2023-09-02 02:33:08,385::train::INFO] [train] Iter 05014 | loss 0.5959 | loss(rot) 0.1292 | loss(pos) 0.4233 | loss(seq) 0.0435 | grad 2.8686 | lr 0.0010 | time_forward 3.4160 | time_backward 4.6710 |
[2023-09-02 02:33:11,017::train::INFO] [train] Iter 05015 | loss 2.4578 | loss(rot) 1.9625 | loss(pos) 0.1070 | loss(seq) 0.3883 | grad 2.9584 | lr 0.0010 | time_forward 1.2310 | time_backward 1.3990 |
[2023-09-02 02:33:13,789::train::INFO] [train] Iter 05016 | loss 2.3241 | loss(rot) 2.0098 | loss(pos) 0.0989 | loss(seq) 0.2154 | grad 2.7936 | lr 0.0010 | time_forward 1.3450 | time_backward 1.3940 |
[2023-09-02 02:33:22,195::train::INFO] [train] Iter 05017 | loss 1.4909 | loss(rot) 0.6812 | loss(pos) 0.1992 | loss(seq) 0.6104 | grad 3.4229 | lr 0.0010 | time_forward 3.5260 | time_backward 4.8490 |
[2023-09-02 02:33:25,541::train::INFO] [train] Iter 05018 | loss 1.4326 | loss(rot) 0.3052 | loss(pos) 0.7943 | loss(seq) 0.3330 | grad 4.1669 | lr 0.0010 | time_forward 1.4410 | time_backward 1.9020 |
[2023-09-02 02:33:34,010::train::INFO] [train] Iter 05019 | loss 2.9230 | loss(rot) 2.6647 | loss(pos) 0.2326 | loss(seq) 0.0257 | grad 2.5480 | lr 0.0010 | time_forward 3.4850 | time_backward 4.9800 |
[2023-09-02 02:33:44,062::train::INFO] [train] Iter 05020 | loss 3.2516 | loss(rot) 2.9787 | loss(pos) 0.2729 | loss(seq) 0.0000 | grad 8.1410 | lr 0.0010 | time_forward 4.0540 | time_backward 5.9950 |
[2023-09-02 02:33:47,340::train::INFO] [train] Iter 05021 | loss 2.0493 | loss(rot) 0.9105 | loss(pos) 0.7473 | loss(seq) 0.3915 | grad 3.4440 | lr 0.0010 | time_forward 1.4890 | time_backward 1.7850 |
[2023-09-02 02:33:56,394::train::INFO] [train] Iter 05022 | loss 2.5301 | loss(rot) 0.0276 | loss(pos) 2.5006 | loss(seq) 0.0019 | grad 8.9225 | lr 0.0010 | time_forward 4.0220 | time_backward 5.0280 |
[2023-09-02 02:34:05,817::train::INFO] [train] Iter 05023 | loss 2.2410 | loss(rot) 1.5080 | loss(pos) 0.2409 | loss(seq) 0.4921 | grad 3.7495 | lr 0.0010 | time_forward 4.0910 | time_backward 5.3280 |
[2023-09-02 02:34:08,563::train::INFO] [train] Iter 05024 | loss 0.7871 | loss(rot) 0.2782 | loss(pos) 0.4633 | loss(seq) 0.0456 | grad 4.7535 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4540 |
[2023-09-02 02:34:18,393::train::INFO] [train] Iter 05025 | loss 1.9356 | loss(rot) 1.5742 | loss(pos) 0.0986 | loss(seq) 0.2627 | grad 3.8639 | lr 0.0010 | time_forward 4.0370 | time_backward 5.7720 |
[2023-09-02 02:34:27,513::train::INFO] [train] Iter 05026 | loss 1.8319 | loss(rot) 0.9774 | loss(pos) 0.4606 | loss(seq) 0.3939 | grad 6.2880 | lr 0.0010 | time_forward 3.7630 | time_backward 5.3540 |
[2023-09-02 02:34:37,500::train::INFO] [train] Iter 05027 | loss 1.0462 | loss(rot) 0.2152 | loss(pos) 0.7306 | loss(seq) 0.1004 | grad 7.4194 | lr 0.0010 | time_forward 4.0690 | time_backward 5.9140 |
[2023-09-02 02:34:39,153::train::INFO] [train] Iter 05028 | loss 2.3404 | loss(rot) 1.0117 | loss(pos) 0.8278 | loss(seq) 0.5010 | grad 6.0554 | lr 0.0010 | time_forward 0.7340 | time_backward 0.9160 |
[2023-09-02 02:34:47,805::train::INFO] [train] Iter 05029 | loss 1.0997 | loss(rot) 0.5311 | loss(pos) 0.2129 | loss(seq) 0.3557 | grad 3.9943 | lr 0.0010 | time_forward 3.5910 | time_backward 5.0570 |
[2023-09-02 02:34:56,109::train::INFO] [train] Iter 05030 | loss 1.8538 | loss(rot) 1.7026 | loss(pos) 0.1512 | loss(seq) 0.0000 | grad 4.5169 | lr 0.0010 | time_forward 3.3340 | time_backward 4.9660 |
[2023-09-02 02:35:04,339::train::INFO] [train] Iter 05031 | loss 2.3503 | loss(rot) 1.7795 | loss(pos) 0.2052 | loss(seq) 0.3656 | grad 5.6363 | lr 0.0010 | time_forward 3.3110 | time_backward 4.9150 |
[2023-09-02 02:35:13,253::train::INFO] [train] Iter 05032 | loss 2.0179 | loss(rot) 1.7319 | loss(pos) 0.1214 | loss(seq) 0.1647 | grad 3.3862 | lr 0.0010 | time_forward 3.5650 | time_backward 5.3450 |
[2023-09-02 02:35:22,695::train::INFO] [train] Iter 05033 | loss 2.4644 | loss(rot) 1.9102 | loss(pos) 0.2051 | loss(seq) 0.3491 | grad 3.5732 | lr 0.0010 | time_forward 3.7980 | time_backward 5.6410 |
[2023-09-02 02:35:25,481::train::INFO] [train] Iter 05034 | loss 1.2101 | loss(rot) 0.3266 | loss(pos) 0.7958 | loss(seq) 0.0877 | grad 5.0722 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4630 |
[2023-09-02 02:35:33,027::train::INFO] [train] Iter 05035 | loss 1.6063 | loss(rot) 0.9374 | loss(pos) 0.2452 | loss(seq) 0.4237 | grad 4.7475 | lr 0.0010 | time_forward 3.1550 | time_backward 4.3880 |
[2023-09-02 02:35:43,012::train::INFO] [train] Iter 05036 | loss 1.0084 | loss(rot) 0.6080 | loss(pos) 0.2133 | loss(seq) 0.1872 | grad 2.9433 | lr 0.0010 | time_forward 4.0610 | time_backward 5.9200 |
[2023-09-02 02:35:51,901::train::INFO] [train] Iter 05037 | loss 1.8210 | loss(rot) 1.2626 | loss(pos) 0.0989 | loss(seq) 0.4595 | grad 3.7354 | lr 0.0010 | time_forward 3.9140 | time_backward 4.9710 |
[2023-09-02 02:36:00,365::train::INFO] [train] Iter 05038 | loss 2.6559 | loss(rot) 2.1074 | loss(pos) 0.1205 | loss(seq) 0.4280 | grad 2.5783 | lr 0.0010 | time_forward 3.6380 | time_backward 4.8220 |
[2023-09-02 02:36:03,031::train::INFO] [train] Iter 05039 | loss 2.1736 | loss(rot) 1.0898 | loss(pos) 0.4576 | loss(seq) 0.6262 | grad 5.0719 | lr 0.0010 | time_forward 1.2660 | time_backward 1.3960 |
[2023-09-02 02:36:05,358::train::INFO] [train] Iter 05040 | loss 2.1654 | loss(rot) 1.6932 | loss(pos) 0.1639 | loss(seq) 0.3083 | grad 3.6082 | lr 0.0010 | time_forward 1.1440 | time_backward 1.1800 |
[2023-09-02 02:36:08,048::train::INFO] [train] Iter 05041 | loss 1.4725 | loss(rot) 0.6885 | loss(pos) 0.3925 | loss(seq) 0.3915 | grad 4.1764 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4090 |
[2023-09-02 02:36:17,482::train::INFO] [train] Iter 05042 | loss 2.8882 | loss(rot) 2.8116 | loss(pos) 0.0700 | loss(seq) 0.0066 | grad 4.1512 | lr 0.0010 | time_forward 4.0100 | time_backward 5.4220 |
[2023-09-02 02:36:27,691::train::INFO] [train] Iter 05043 | loss 2.6383 | loss(rot) 2.3995 | loss(pos) 0.2387 | loss(seq) 0.0000 | grad 5.3446 | lr 0.0010 | time_forward 4.1720 | time_backward 6.0330 |
[2023-09-02 02:36:36,147::train::INFO] [train] Iter 05044 | loss 2.6819 | loss(rot) 1.7755 | loss(pos) 0.3910 | loss(seq) 0.5154 | grad 5.1063 | lr 0.0010 | time_forward 3.6080 | time_backward 4.8450 |
[2023-09-02 02:36:44,238::train::INFO] [train] Iter 05045 | loss 2.1865 | loss(rot) 1.6609 | loss(pos) 0.0937 | loss(seq) 0.4319 | grad 3.6743 | lr 0.0010 | time_forward 3.4130 | time_backward 4.6750 |
[2023-09-02 02:36:50,872::train::INFO] [train] Iter 05046 | loss 0.8014 | loss(rot) 0.1612 | loss(pos) 0.6114 | loss(seq) 0.0288 | grad 5.6553 | lr 0.0010 | time_forward 2.8160 | time_backward 3.8140 |
[2023-09-02 02:36:59,530::train::INFO] [train] Iter 05047 | loss 3.1182 | loss(rot) 2.4504 | loss(pos) 0.2452 | loss(seq) 0.4226 | grad 4.2500 | lr 0.0010 | time_forward 3.7900 | time_backward 4.8640 |
[2023-09-02 02:37:02,286::train::INFO] [train] Iter 05048 | loss 2.3434 | loss(rot) 1.7405 | loss(pos) 0.2394 | loss(seq) 0.3635 | grad 5.5515 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4670 |
[2023-09-02 02:37:05,089::train::INFO] [train] Iter 05049 | loss 2.6728 | loss(rot) 2.3833 | loss(pos) 0.2555 | loss(seq) 0.0339 | grad 5.4952 | lr 0.0010 | time_forward 1.3630 | time_backward 1.4360 |
[2023-09-02 02:37:07,816::train::INFO] [train] Iter 05050 | loss 2.8537 | loss(rot) 2.5549 | loss(pos) 0.1409 | loss(seq) 0.1579 | grad 5.1576 | lr 0.0010 | time_forward 1.3030 | time_backward 1.4210 |
[2023-09-02 02:37:18,169::train::INFO] [train] Iter 05051 | loss 2.2441 | loss(rot) 1.2592 | loss(pos) 0.3351 | loss(seq) 0.6498 | grad 2.9801 | lr 0.0010 | time_forward 4.2840 | time_backward 6.0660 |
[2023-09-02 02:37:20,907::train::INFO] [train] Iter 05052 | loss 2.9729 | loss(rot) 2.6008 | loss(pos) 0.1413 | loss(seq) 0.2308 | grad 5.5196 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4750 |
[2023-09-02 02:37:28,681::train::INFO] [train] Iter 05053 | loss 1.9485 | loss(rot) 1.7057 | loss(pos) 0.0874 | loss(seq) 0.1554 | grad 4.4398 | lr 0.0010 | time_forward 3.2000 | time_backward 4.5700 |
[2023-09-02 02:37:31,387::train::INFO] [train] Iter 05054 | loss 1.8263 | loss(rot) 0.8466 | loss(pos) 0.5570 | loss(seq) 0.4226 | grad 6.0642 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4250 |
[2023-09-02 02:37:39,849::train::INFO] [train] Iter 05055 | loss 1.7293 | loss(rot) 1.4500 | loss(pos) 0.1578 | loss(seq) 0.1215 | grad 3.7964 | lr 0.0010 | time_forward 3.6200 | time_backward 4.8380 |
[2023-09-02 02:37:49,596::train::INFO] [train] Iter 05056 | loss 2.6706 | loss(rot) 2.5946 | loss(pos) 0.0595 | loss(seq) 0.0166 | grad 5.6875 | lr 0.0010 | time_forward 3.9190 | time_backward 5.8250 |
[2023-09-02 02:37:51,867::train::INFO] [train] Iter 05057 | loss 2.2106 | loss(rot) 2.1132 | loss(pos) 0.0962 | loss(seq) 0.0013 | grad 3.7919 | lr 0.0010 | time_forward 1.0760 | time_backward 1.1930 |
[2023-09-02 02:37:58,280::train::INFO] [train] Iter 05058 | loss 1.1037 | loss(rot) 0.4880 | loss(pos) 0.3847 | loss(seq) 0.2310 | grad 3.6625 | lr 0.0010 | time_forward 2.6590 | time_backward 3.7500 |
[2023-09-02 02:38:00,943::train::INFO] [train] Iter 05059 | loss 2.2626 | loss(rot) 1.7334 | loss(pos) 0.2329 | loss(seq) 0.2962 | grad 3.5060 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4300 |
[2023-09-02 02:38:03,676::train::INFO] [train] Iter 05060 | loss 0.8207 | loss(rot) 0.1474 | loss(pos) 0.6113 | loss(seq) 0.0620 | grad 6.2751 | lr 0.0010 | time_forward 1.3110 | time_backward 1.3920 |
[2023-09-02 02:38:14,319::train::INFO] [train] Iter 05061 | loss 2.0826 | loss(rot) 1.8854 | loss(pos) 0.1839 | loss(seq) 0.0133 | grad 2.9648 | lr 0.0010 | time_forward 4.7910 | time_backward 5.8480 |
[2023-09-02 02:38:16,970::train::INFO] [train] Iter 05062 | loss 1.2869 | loss(rot) 0.6964 | loss(pos) 0.5152 | loss(seq) 0.0753 | grad 4.4106 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4070 |
[2023-09-02 02:38:19,654::train::INFO] [train] Iter 05063 | loss 0.7066 | loss(rot) 0.3591 | loss(pos) 0.2529 | loss(seq) 0.0946 | grad 3.6517 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4250 |
[2023-09-02 02:38:29,887::train::INFO] [train] Iter 05064 | loss 1.4371 | loss(rot) 0.4652 | loss(pos) 0.4562 | loss(seq) 0.5158 | grad 3.2271 | lr 0.0010 | time_forward 4.0800 | time_backward 6.1490 |
[2023-09-02 02:38:32,670::train::INFO] [train] Iter 05065 | loss 1.4876 | loss(rot) 0.6878 | loss(pos) 0.4709 | loss(seq) 0.3289 | grad 4.5999 | lr 0.0010 | time_forward 1.2710 | time_backward 1.5080 |
[2023-09-02 02:38:43,307::train::INFO] [train] Iter 05066 | loss 2.3148 | loss(rot) 1.9543 | loss(pos) 0.1511 | loss(seq) 0.2095 | grad 5.7510 | lr 0.0010 | time_forward 4.1300 | time_backward 6.5040 |
[2023-09-02 02:38:52,987::train::INFO] [train] Iter 05067 | loss 2.9710 | loss(rot) 2.3069 | loss(pos) 0.4455 | loss(seq) 0.2186 | grad 5.2692 | lr 0.0010 | time_forward 3.8940 | time_backward 5.7800 |
[2023-09-02 02:39:02,112::train::INFO] [train] Iter 05068 | loss 2.8384 | loss(rot) 2.6226 | loss(pos) 0.1928 | loss(seq) 0.0230 | grad 4.7069 | lr 0.0010 | time_forward 3.6550 | time_backward 5.4660 |
[2023-09-02 02:39:12,360::train::INFO] [train] Iter 05069 | loss 2.2157 | loss(rot) 1.4435 | loss(pos) 0.3610 | loss(seq) 0.4112 | grad 4.3287 | lr 0.0010 | time_forward 4.3460 | time_backward 5.8990 |
[2023-09-02 02:39:22,321::train::INFO] [train] Iter 05070 | loss 1.7338 | loss(rot) 0.6825 | loss(pos) 0.4626 | loss(seq) 0.5888 | grad 4.5697 | lr 0.0010 | time_forward 4.0790 | time_backward 5.8790 |
[2023-09-02 02:39:32,415::train::INFO] [train] Iter 05071 | loss 2.7971 | loss(rot) 2.7082 | loss(pos) 0.0889 | loss(seq) 0.0000 | grad 4.8422 | lr 0.0010 | time_forward 3.7210 | time_backward 6.2900 |
[2023-09-02 02:39:42,651::train::INFO] [train] Iter 05072 | loss 2.4892 | loss(rot) 2.3439 | loss(pos) 0.1452 | loss(seq) 0.0000 | grad 4.2483 | lr 0.0010 | time_forward 4.4820 | time_backward 5.7500 |
[2023-09-02 02:39:45,396::train::INFO] [train] Iter 05073 | loss 1.4795 | loss(rot) 0.8337 | loss(pos) 0.4998 | loss(seq) 0.1461 | grad 5.0256 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4500 |
[2023-09-02 02:39:56,004::train::INFO] [train] Iter 05074 | loss 1.4136 | loss(rot) 0.6815 | loss(pos) 0.3283 | loss(seq) 0.4038 | grad 4.1489 | lr 0.0010 | time_forward 4.1040 | time_backward 6.5010 |
[2023-09-02 02:39:58,761::train::INFO] [train] Iter 05075 | loss 2.1779 | loss(rot) 1.5835 | loss(pos) 0.1980 | loss(seq) 0.3963 | grad 2.9779 | lr 0.0010 | time_forward 1.3230 | time_backward 1.4320 |
[2023-09-02 02:40:07,865::train::INFO] [train] Iter 05076 | loss 2.2457 | loss(rot) 2.0798 | loss(pos) 0.1391 | loss(seq) 0.0268 | grad 4.9438 | lr 0.0010 | time_forward 3.8890 | time_backward 5.2110 |
[2023-09-02 02:40:17,191::train::INFO] [train] Iter 05077 | loss 1.4585 | loss(rot) 0.6614 | loss(pos) 0.4396 | loss(seq) 0.3575 | grad 3.2613 | lr 0.0010 | time_forward 3.8820 | time_backward 5.4400 |
[2023-09-02 02:40:26,758::train::INFO] [train] Iter 05078 | loss 2.8010 | loss(rot) 2.2482 | loss(pos) 0.2500 | loss(seq) 0.3028 | grad 4.4305 | lr 0.0010 | time_forward 4.0190 | time_backward 5.5450 |
[2023-09-02 02:40:29,540::train::INFO] [train] Iter 05079 | loss 3.1254 | loss(rot) 2.9565 | loss(pos) 0.1591 | loss(seq) 0.0097 | grad 3.3249 | lr 0.0010 | time_forward 1.3240 | time_backward 1.4540 |
[2023-09-02 02:40:32,290::train::INFO] [train] Iter 05080 | loss 1.8340 | loss(rot) 1.7081 | loss(pos) 0.0906 | loss(seq) 0.0352 | grad 3.7774 | lr 0.0010 | time_forward 1.3270 | time_backward 1.4190 |
[2023-09-02 02:40:42,211::train::INFO] [train] Iter 05081 | loss 2.1728 | loss(rot) 0.0294 | loss(pos) 2.1401 | loss(seq) 0.0033 | grad 6.7092 | lr 0.0010 | time_forward 3.9630 | time_backward 5.9540 |
[2023-09-02 02:40:44,909::train::INFO] [train] Iter 05082 | loss 1.8482 | loss(rot) 1.6948 | loss(pos) 0.1528 | loss(seq) 0.0007 | grad 4.2387 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4410 |
[2023-09-02 02:40:53,779::train::INFO] [train] Iter 05083 | loss 3.4522 | loss(rot) 3.1738 | loss(pos) 0.1151 | loss(seq) 0.1633 | grad 3.5603 | lr 0.0010 | time_forward 3.8080 | time_backward 5.0430 |
[2023-09-02 02:41:03,314::train::INFO] [train] Iter 05084 | loss 2.1018 | loss(rot) 0.6928 | loss(pos) 0.7398 | loss(seq) 0.6692 | grad 6.1948 | lr 0.0010 | time_forward 3.9410 | time_backward 5.5910 |
[2023-09-02 02:41:10,099::train::INFO] [train] Iter 05085 | loss 2.2839 | loss(rot) 1.9636 | loss(pos) 0.3199 | loss(seq) 0.0003 | grad 4.1297 | lr 0.0010 | time_forward 2.9210 | time_backward 3.8610 |
[2023-09-02 02:41:12,935::train::INFO] [train] Iter 05086 | loss 1.8743 | loss(rot) 0.1323 | loss(pos) 1.7291 | loss(seq) 0.0129 | grad 8.1645 | lr 0.0010 | time_forward 1.3140 | time_backward 1.5180 |
[2023-09-02 02:41:15,789::train::INFO] [train] Iter 05087 | loss 1.7228 | loss(rot) 0.4308 | loss(pos) 1.2727 | loss(seq) 0.0192 | grad 5.2458 | lr 0.0010 | time_forward 1.3580 | time_backward 1.4920 |
[2023-09-02 02:41:25,755::train::INFO] [train] Iter 05088 | loss 2.0488 | loss(rot) 0.9950 | loss(pos) 0.1856 | loss(seq) 0.8682 | grad 3.9562 | lr 0.0010 | time_forward 3.9410 | time_backward 6.0220 |
[2023-09-02 02:41:28,722::train::INFO] [train] Iter 05089 | loss 1.7805 | loss(rot) 0.7721 | loss(pos) 0.4762 | loss(seq) 0.5323 | grad 4.2740 | lr 0.0010 | time_forward 1.4300 | time_backward 1.5330 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.