text
stringlengths 56
1.16k
|
---|
[2023-09-02 02:41:31,508::train::INFO] [train] Iter 05090 | loss 1.3738 | loss(rot) 0.6417 | loss(pos) 0.2876 | loss(seq) 0.4445 | grad 4.9783 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4710 |
[2023-09-02 02:41:39,784::train::INFO] [train] Iter 05091 | loss 1.3394 | loss(rot) 0.3144 | loss(pos) 0.7443 | loss(seq) 0.2807 | grad 3.4647 | lr 0.0010 | time_forward 3.5380 | time_backward 4.7350 |
[2023-09-02 02:41:48,211::train::INFO] [train] Iter 05092 | loss 3.1422 | loss(rot) 3.0416 | loss(pos) 0.0999 | loss(seq) 0.0007 | grad 4.2566 | lr 0.0010 | time_forward 3.5830 | time_backward 4.8410 |
[2023-09-02 02:41:58,564::train::INFO] [train] Iter 05093 | loss 2.8171 | loss(rot) 2.6811 | loss(pos) 0.1360 | loss(seq) 0.0000 | grad 5.1003 | lr 0.0010 | time_forward 4.6290 | time_backward 5.7210 |
[2023-09-02 02:42:01,345::train::INFO] [train] Iter 05094 | loss 1.0886 | loss(rot) 0.5641 | loss(pos) 0.2457 | loss(seq) 0.2788 | grad 3.0740 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4930 |
[2023-09-02 02:42:04,156::train::INFO] [train] Iter 05095 | loss 1.3906 | loss(rot) 0.7694 | loss(pos) 0.2298 | loss(seq) 0.3913 | grad 4.4144 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4960 |
[2023-09-02 02:42:14,377::train::INFO] [train] Iter 05096 | loss 2.8893 | loss(rot) 2.6703 | loss(pos) 0.1964 | loss(seq) 0.0227 | grad 4.0119 | lr 0.0010 | time_forward 3.9290 | time_backward 6.2740 |
[2023-09-02 02:42:17,180::train::INFO] [train] Iter 05097 | loss 1.6968 | loss(rot) 1.2977 | loss(pos) 0.2348 | loss(seq) 0.1643 | grad 6.5980 | lr 0.0010 | time_forward 1.3390 | time_backward 1.4590 |
[2023-09-02 02:42:25,969::train::INFO] [train] Iter 05098 | loss 2.5434 | loss(rot) 2.0545 | loss(pos) 0.4370 | loss(seq) 0.0518 | grad 7.2798 | lr 0.0010 | time_forward 3.6990 | time_backward 5.0870 |
[2023-09-02 02:42:29,809::train::INFO] [train] Iter 05099 | loss 1.1909 | loss(rot) 0.2464 | loss(pos) 0.6958 | loss(seq) 0.2487 | grad 4.2724 | lr 0.0010 | time_forward 1.7900 | time_backward 2.0460 |
[2023-09-02 02:42:33,023::train::INFO] [train] Iter 05100 | loss 2.8806 | loss(rot) 2.2203 | loss(pos) 0.2533 | loss(seq) 0.4071 | grad 6.6603 | lr 0.0010 | time_forward 1.5910 | time_backward 1.6190 |
[2023-09-02 02:42:42,883::train::INFO] [train] Iter 05101 | loss 2.4322 | loss(rot) 2.1361 | loss(pos) 0.1630 | loss(seq) 0.1331 | grad 3.1109 | lr 0.0010 | time_forward 4.3400 | time_backward 5.5160 |
[2023-09-02 02:42:53,750::train::INFO] [train] Iter 05102 | loss 2.8036 | loss(rot) 2.1021 | loss(pos) 0.2210 | loss(seq) 0.4805 | grad 6.1149 | lr 0.0010 | time_forward 5.3740 | time_backward 5.4890 |
[2023-09-02 02:43:02,472::train::INFO] [train] Iter 05103 | loss 1.6369 | loss(rot) 0.1703 | loss(pos) 1.4387 | loss(seq) 0.0279 | grad 6.2745 | lr 0.0010 | time_forward 3.6710 | time_backward 5.0490 |
[2023-09-02 02:43:05,242::train::INFO] [train] Iter 05104 | loss 2.4737 | loss(rot) 1.4862 | loss(pos) 0.4743 | loss(seq) 0.5132 | grad 4.1406 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4400 |
[2023-09-02 02:43:08,671::train::INFO] [train] Iter 05105 | loss 3.1992 | loss(rot) 0.1651 | loss(pos) 3.0324 | loss(seq) 0.0018 | grad 6.9796 | lr 0.0010 | time_forward 1.5170 | time_backward 1.9080 |
[2023-09-02 02:43:16,798::train::INFO] [train] Iter 05106 | loss 2.8773 | loss(rot) 1.9184 | loss(pos) 0.5204 | loss(seq) 0.4385 | grad 5.4251 | lr 0.0010 | time_forward 3.4400 | time_backward 4.6830 |
[2023-09-02 02:43:26,904::train::INFO] [train] Iter 05107 | loss 2.6373 | loss(rot) 2.3962 | loss(pos) 0.2399 | loss(seq) 0.0012 | grad 3.2860 | lr 0.0010 | time_forward 4.4250 | time_backward 5.6780 |
[2023-09-02 02:43:30,438::train::INFO] [train] Iter 05108 | loss 1.7522 | loss(rot) 0.7975 | loss(pos) 0.7921 | loss(seq) 0.1626 | grad 4.7399 | lr 0.0010 | time_forward 1.6360 | time_backward 1.8940 |
[2023-09-02 02:43:39,038::train::INFO] [train] Iter 05109 | loss 2.0428 | loss(rot) 1.1062 | loss(pos) 0.4392 | loss(seq) 0.4973 | grad 2.8582 | lr 0.0010 | time_forward 3.5030 | time_backward 5.0820 |
[2023-09-02 02:43:49,347::train::INFO] [train] Iter 05110 | loss 2.8235 | loss(rot) 1.4418 | loss(pos) 0.8326 | loss(seq) 0.5492 | grad 4.1336 | lr 0.0010 | time_forward 4.2530 | time_backward 6.0520 |
[2023-09-02 02:43:57,501::train::INFO] [train] Iter 05111 | loss 0.9659 | loss(rot) 0.2895 | loss(pos) 0.4297 | loss(seq) 0.2468 | grad 3.2912 | lr 0.0010 | time_forward 3.5490 | time_backward 4.6010 |
[2023-09-02 02:44:00,310::train::INFO] [train] Iter 05112 | loss 1.3882 | loss(rot) 1.2265 | loss(pos) 0.1306 | loss(seq) 0.0310 | grad 4.2232 | lr 0.0010 | time_forward 1.3490 | time_backward 1.4580 |
[2023-09-02 02:44:09,026::train::INFO] [train] Iter 05113 | loss 2.5308 | loss(rot) 2.0167 | loss(pos) 0.2274 | loss(seq) 0.2867 | grad 3.6657 | lr 0.0010 | time_forward 3.7210 | time_backward 4.9920 |
[2023-09-02 02:44:18,587::train::INFO] [train] Iter 05114 | loss 1.1078 | loss(rot) 0.0708 | loss(pos) 1.0196 | loss(seq) 0.0173 | grad 4.8533 | lr 0.0010 | time_forward 4.0830 | time_backward 5.4740 |
[2023-09-02 02:44:28,635::train::INFO] [train] Iter 05115 | loss 1.4288 | loss(rot) 0.3052 | loss(pos) 0.9041 | loss(seq) 0.2195 | grad 5.3762 | lr 0.0010 | time_forward 4.0180 | time_backward 6.0260 |
[2023-09-02 02:44:35,607::train::INFO] [train] Iter 05116 | loss 1.3694 | loss(rot) 1.2266 | loss(pos) 0.0878 | loss(seq) 0.0550 | grad 5.0380 | lr 0.0010 | time_forward 3.1440 | time_backward 3.8250 |
[2023-09-02 02:44:44,329::train::INFO] [train] Iter 05117 | loss 1.2833 | loss(rot) 0.0550 | loss(pos) 1.2186 | loss(seq) 0.0098 | grad 4.6472 | lr 0.0010 | time_forward 3.7380 | time_backward 4.9810 |
[2023-09-02 02:44:46,867::train::INFO] [train] Iter 05118 | loss 2.6887 | loss(rot) 2.4426 | loss(pos) 0.1783 | loss(seq) 0.0678 | grad 4.9761 | lr 0.0010 | time_forward 1.2500 | time_backward 1.2840 |
[2023-09-02 02:44:56,641::train::INFO] [train] Iter 05119 | loss 0.8505 | loss(rot) 0.1867 | loss(pos) 0.5822 | loss(seq) 0.0816 | grad 6.4895 | lr 0.0010 | time_forward 4.0350 | time_backward 5.7190 |
[2023-09-02 02:44:59,911::train::INFO] [train] Iter 05120 | loss 0.9685 | loss(rot) 0.2637 | loss(pos) 0.6453 | loss(seq) 0.0596 | grad 3.6104 | lr 0.0010 | time_forward 1.4160 | time_backward 1.8510 |
[2023-09-02 02:45:08,549::train::INFO] [train] Iter 05121 | loss 2.1897 | loss(rot) 1.7750 | loss(pos) 0.2137 | loss(seq) 0.2010 | grad 4.4651 | lr 0.0010 | time_forward 3.4910 | time_backward 5.1330 |
[2023-09-02 02:45:17,105::train::INFO] [train] Iter 05122 | loss 2.2438 | loss(rot) 1.7243 | loss(pos) 0.0796 | loss(seq) 0.4398 | grad 5.7793 | lr 0.0010 | time_forward 3.5380 | time_backward 5.0140 |
[2023-09-02 02:45:25,243::train::INFO] [train] Iter 05123 | loss 2.0535 | loss(rot) 1.5568 | loss(pos) 0.1848 | loss(seq) 0.3119 | grad 4.0119 | lr 0.0010 | time_forward 3.2750 | time_backward 4.8600 |
[2023-09-02 02:45:35,172::train::INFO] [train] Iter 05124 | loss 1.4738 | loss(rot) 0.4804 | loss(pos) 0.4534 | loss(seq) 0.5400 | grad 2.7716 | lr 0.0010 | time_forward 3.9860 | time_backward 5.9400 |
[2023-09-02 02:45:42,357::train::INFO] [train] Iter 05125 | loss 1.8419 | loss(rot) 1.2814 | loss(pos) 0.3229 | loss(seq) 0.2377 | grad 4.5514 | lr 0.0010 | time_forward 3.0380 | time_backward 4.1430 |
[2023-09-02 02:45:45,063::train::INFO] [train] Iter 05126 | loss 2.8029 | loss(rot) 2.5679 | loss(pos) 0.2350 | loss(seq) 0.0000 | grad 3.1577 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4050 |
[2023-09-02 02:45:47,808::train::INFO] [train] Iter 05127 | loss 2.6009 | loss(rot) 2.1197 | loss(pos) 0.1808 | loss(seq) 0.3004 | grad 4.4396 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4340 |
[2023-09-02 02:45:56,530::train::INFO] [train] Iter 05128 | loss 2.4605 | loss(rot) 1.4613 | loss(pos) 0.5883 | loss(seq) 0.4109 | grad 5.8162 | lr 0.0010 | time_forward 3.8390 | time_backward 4.8790 |
[2023-09-02 02:45:59,240::train::INFO] [train] Iter 05129 | loss 2.2835 | loss(rot) 1.9818 | loss(pos) 0.3017 | loss(seq) 0.0000 | grad 3.3471 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4120 |
[2023-09-02 02:46:01,939::train::INFO] [train] Iter 05130 | loss 1.1356 | loss(rot) 0.2288 | loss(pos) 0.4928 | loss(seq) 0.4141 | grad 4.3630 | lr 0.0010 | time_forward 1.3010 | time_backward 1.3940 |
[2023-09-02 02:46:04,896::train::INFO] [train] Iter 05131 | loss 1.9269 | loss(rot) 0.7998 | loss(pos) 0.9146 | loss(seq) 0.2124 | grad 5.7475 | lr 0.0010 | time_forward 1.5210 | time_backward 1.4320 |
[2023-09-02 02:46:07,633::train::INFO] [train] Iter 05132 | loss 2.7318 | loss(rot) 0.0731 | loss(pos) 2.6557 | loss(seq) 0.0030 | grad 9.4294 | lr 0.0010 | time_forward 1.3280 | time_backward 1.4060 |
[2023-09-02 02:46:14,352::train::INFO] [train] Iter 05133 | loss 1.7160 | loss(rot) 1.0668 | loss(pos) 0.1517 | loss(seq) 0.4974 | grad 3.5016 | lr 0.0010 | time_forward 2.9280 | time_backward 3.7870 |
[2023-09-02 02:46:24,651::train::INFO] [train] Iter 05134 | loss 2.4774 | loss(rot) 2.1420 | loss(pos) 0.2547 | loss(seq) 0.0807 | grad 3.8778 | lr 0.0010 | time_forward 4.5200 | time_backward 5.7750 |
[2023-09-02 02:46:33,943::train::INFO] [train] Iter 05135 | loss 1.9887 | loss(rot) 1.2950 | loss(pos) 0.1677 | loss(seq) 0.5260 | grad 2.9302 | lr 0.0010 | time_forward 3.8970 | time_backward 5.3910 |
[2023-09-02 02:46:37,315::train::INFO] [train] Iter 05136 | loss 2.6390 | loss(rot) 0.0103 | loss(pos) 2.6279 | loss(seq) 0.0007 | grad 6.8003 | lr 0.0010 | time_forward 1.4470 | time_backward 1.9220 |
[2023-09-02 02:46:40,269::train::INFO] [train] Iter 05137 | loss 3.0923 | loss(rot) 2.2833 | loss(pos) 0.4068 | loss(seq) 0.4022 | grad 3.3610 | lr 0.0010 | time_forward 1.4800 | time_backward 1.4690 |
[2023-09-02 02:46:48,196::train::INFO] [train] Iter 05138 | loss 1.4624 | loss(rot) 0.5390 | loss(pos) 0.6008 | loss(seq) 0.3227 | grad 4.5579 | lr 0.0010 | time_forward 3.3740 | time_backward 4.5490 |
[2023-09-02 02:46:56,325::train::INFO] [train] Iter 05139 | loss 3.3454 | loss(rot) 0.0210 | loss(pos) 3.3244 | loss(seq) 0.0000 | grad 6.9711 | lr 0.0010 | time_forward 3.4150 | time_backward 4.7110 |
[2023-09-02 02:47:04,421::train::INFO] [train] Iter 05140 | loss 1.8180 | loss(rot) 0.0674 | loss(pos) 1.7469 | loss(seq) 0.0037 | grad 4.9072 | lr 0.0010 | time_forward 3.5200 | time_backward 4.5730 |
[2023-09-02 02:47:13,201::train::INFO] [train] Iter 05141 | loss 3.0678 | loss(rot) 2.8936 | loss(pos) 0.1413 | loss(seq) 0.0328 | grad 3.8201 | lr 0.0010 | time_forward 3.7470 | time_backward 5.0300 |
[2023-09-02 02:47:22,473::train::INFO] [train] Iter 05142 | loss 1.7450 | loss(rot) 1.6585 | loss(pos) 0.0817 | loss(seq) 0.0048 | grad 4.0379 | lr 0.0010 | time_forward 4.0160 | time_backward 5.2530 |
[2023-09-02 02:47:25,115::train::INFO] [train] Iter 05143 | loss 2.1513 | loss(rot) 1.9459 | loss(pos) 0.1902 | loss(seq) 0.0153 | grad 4.6685 | lr 0.0010 | time_forward 1.2240 | time_backward 1.4130 |
[2023-09-02 02:47:33,220::train::INFO] [train] Iter 05144 | loss 3.2118 | loss(rot) 2.7899 | loss(pos) 0.4199 | loss(seq) 0.0019 | grad 4.1421 | lr 0.0010 | time_forward 3.3980 | time_backward 4.7030 |
[2023-09-02 02:47:35,967::train::INFO] [train] Iter 05145 | loss 2.7452 | loss(rot) 2.1727 | loss(pos) 0.2333 | loss(seq) 0.3391 | grad 5.0671 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4600 |
[2023-09-02 02:47:45,400::train::INFO] [train] Iter 05146 | loss 1.3601 | loss(rot) 0.9453 | loss(pos) 0.1144 | loss(seq) 0.3004 | grad 4.0951 | lr 0.0010 | time_forward 3.9910 | time_backward 5.4390 |
[2023-09-02 02:47:55,260::train::INFO] [train] Iter 05147 | loss 1.6368 | loss(rot) 0.8086 | loss(pos) 0.4224 | loss(seq) 0.4058 | grad 3.6181 | lr 0.0010 | time_forward 4.2450 | time_backward 5.6100 |
[2023-09-02 02:48:05,035::train::INFO] [train] Iter 05148 | loss 1.6654 | loss(rot) 0.9391 | loss(pos) 0.1796 | loss(seq) 0.5466 | grad 3.9100 | lr 0.0010 | time_forward 4.1060 | time_backward 5.6660 |
[2023-09-02 02:48:13,721::train::INFO] [train] Iter 05149 | loss 1.2842 | loss(rot) 0.4659 | loss(pos) 0.5270 | loss(seq) 0.2913 | grad 4.0058 | lr 0.0010 | time_forward 3.7010 | time_backward 4.9810 |
[2023-09-02 02:48:15,929::train::INFO] [train] Iter 05150 | loss 2.1741 | loss(rot) 1.4948 | loss(pos) 0.2103 | loss(seq) 0.4690 | grad 2.8594 | lr 0.0010 | time_forward 1.0520 | time_backward 1.1520 |
[2023-09-02 02:48:26,122::train::INFO] [train] Iter 05151 | loss 2.6394 | loss(rot) 2.0746 | loss(pos) 0.1688 | loss(seq) 0.3960 | grad 4.6780 | lr 0.0010 | time_forward 4.1380 | time_backward 6.0510 |
[2023-09-02 02:48:34,161::train::INFO] [train] Iter 05152 | loss 1.0002 | loss(rot) 0.3872 | loss(pos) 0.5012 | loss(seq) 0.1118 | grad 4.6952 | lr 0.0010 | time_forward 3.3190 | time_backward 4.7170 |
[2023-09-02 02:48:36,833::train::INFO] [train] Iter 05153 | loss 2.3922 | loss(rot) 1.5172 | loss(pos) 0.3322 | loss(seq) 0.5428 | grad 4.6263 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4050 |
[2023-09-02 02:48:44,843::train::INFO] [train] Iter 05154 | loss 1.7562 | loss(rot) 1.4217 | loss(pos) 0.1159 | loss(seq) 0.2185 | grad 2.9688 | lr 0.0010 | time_forward 3.3000 | time_backward 4.7060 |
[2023-09-02 02:48:53,228::train::INFO] [train] Iter 05155 | loss 3.0571 | loss(rot) 2.6925 | loss(pos) 0.0899 | loss(seq) 0.2747 | grad 3.6444 | lr 0.0010 | time_forward 3.4990 | time_backward 4.8840 |
[2023-09-02 02:49:02,043::train::INFO] [train] Iter 05156 | loss 1.5255 | loss(rot) 1.2422 | loss(pos) 0.0869 | loss(seq) 0.1964 | grad 2.5072 | lr 0.0010 | time_forward 3.7060 | time_backward 5.1050 |
[2023-09-02 02:49:11,071::train::INFO] [train] Iter 05157 | loss 1.8722 | loss(rot) 0.0549 | loss(pos) 1.8166 | loss(seq) 0.0007 | grad 6.8850 | lr 0.0010 | time_forward 3.8950 | time_backward 5.1300 |
[2023-09-02 02:49:21,388::train::INFO] [train] Iter 05158 | loss 2.6773 | loss(rot) 2.3708 | loss(pos) 0.1413 | loss(seq) 0.1652 | grad 2.7937 | lr 0.0010 | time_forward 4.3160 | time_backward 5.9960 |
[2023-09-02 02:49:23,830::train::INFO] [train] Iter 05159 | loss 2.9851 | loss(rot) 2.4936 | loss(pos) 0.1584 | loss(seq) 0.3331 | grad 2.9066 | lr 0.0010 | time_forward 1.1570 | time_backward 1.2810 |
[2023-09-02 02:49:33,260::train::INFO] [train] Iter 05160 | loss 2.1317 | loss(rot) 1.6823 | loss(pos) 0.0910 | loss(seq) 0.3584 | grad 5.4968 | lr 0.0010 | time_forward 4.0010 | time_backward 5.4080 |
[2023-09-02 02:49:43,186::train::INFO] [train] Iter 05161 | loss 1.7498 | loss(rot) 0.8851 | loss(pos) 0.2750 | loss(seq) 0.5897 | grad 4.8291 | lr 0.0010 | time_forward 3.9770 | time_backward 5.9470 |
[2023-09-02 02:49:46,457::train::INFO] [train] Iter 05162 | loss 0.7493 | loss(rot) 0.3279 | loss(pos) 0.3384 | loss(seq) 0.0830 | grad 3.6404 | lr 0.0010 | time_forward 1.3970 | time_backward 1.8700 |
[2023-09-02 02:49:55,340::train::INFO] [train] Iter 05163 | loss 2.1170 | loss(rot) 1.8288 | loss(pos) 0.2014 | loss(seq) 0.0867 | grad 4.2494 | lr 0.0010 | time_forward 3.7160 | time_backward 5.1640 |
[2023-09-02 02:49:57,647::train::INFO] [train] Iter 05164 | loss 1.7216 | loss(rot) 0.9931 | loss(pos) 0.2503 | loss(seq) 0.4783 | grad 4.9000 | lr 0.0010 | time_forward 1.1040 | time_backward 1.1990 |
[2023-09-02 02:50:07,048::train::INFO] [train] Iter 05165 | loss 2.0821 | loss(rot) 1.2567 | loss(pos) 0.1975 | loss(seq) 0.6280 | grad 5.6534 | lr 0.0010 | time_forward 3.7610 | time_backward 5.6220 |
[2023-09-02 02:50:14,714::train::INFO] [train] Iter 05166 | loss 0.8974 | loss(rot) 0.1118 | loss(pos) 0.7764 | loss(seq) 0.0092 | grad 3.8725 | lr 0.0010 | time_forward 3.0770 | time_backward 4.5700 |
[2023-09-02 02:50:17,542::train::INFO] [train] Iter 05167 | loss 1.3143 | loss(rot) 0.5657 | loss(pos) 0.5229 | loss(seq) 0.2257 | grad 3.4247 | lr 0.0010 | time_forward 1.2590 | time_backward 1.5650 |
[2023-09-02 02:50:26,117::train::INFO] [train] Iter 05168 | loss 1.6076 | loss(rot) 1.1373 | loss(pos) 0.1886 | loss(seq) 0.2817 | grad 5.3173 | lr 0.0010 | time_forward 3.6890 | time_backward 4.8830 |
[2023-09-02 02:50:28,327::train::INFO] [train] Iter 05169 | loss 1.1676 | loss(rot) 0.3356 | loss(pos) 0.3872 | loss(seq) 0.4449 | grad 3.2177 | lr 0.0010 | time_forward 1.0310 | time_backward 1.1760 |
[2023-09-02 02:50:36,165::train::INFO] [train] Iter 05170 | loss 2.5442 | loss(rot) 1.8902 | loss(pos) 0.2065 | loss(seq) 0.4475 | grad 5.9976 | lr 0.0010 | time_forward 3.4570 | time_backward 4.3760 |
[2023-09-02 02:50:44,346::train::INFO] [train] Iter 05171 | loss 2.1176 | loss(rot) 1.2647 | loss(pos) 0.4850 | loss(seq) 0.3680 | grad 7.3220 | lr 0.0010 | time_forward 3.3540 | time_backward 4.8250 |
[2023-09-02 02:50:56,324::train::INFO] [train] Iter 05172 | loss 1.7009 | loss(rot) 0.0113 | loss(pos) 1.6888 | loss(seq) 0.0008 | grad 4.1896 | lr 0.0010 | time_forward 5.6370 | time_backward 6.3380 |
[2023-09-02 02:51:06,806::train::INFO] [train] Iter 05173 | loss 2.3622 | loss(rot) 1.4195 | loss(pos) 0.3004 | loss(seq) 0.6423 | grad 3.8711 | lr 0.0010 | time_forward 4.1230 | time_backward 6.3550 |
[2023-09-02 02:51:15,595::train::INFO] [train] Iter 05174 | loss 2.6369 | loss(rot) 2.2272 | loss(pos) 0.2595 | loss(seq) 0.1501 | grad 7.0855 | lr 0.0010 | time_forward 3.6820 | time_backward 5.1030 |
[2023-09-02 02:51:18,255::train::INFO] [train] Iter 05175 | loss 1.5971 | loss(rot) 1.0352 | loss(pos) 0.1660 | loss(seq) 0.3959 | grad 4.2545 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4080 |
[2023-09-02 02:51:20,920::train::INFO] [train] Iter 05176 | loss 1.2687 | loss(rot) 0.7682 | loss(pos) 0.4333 | loss(seq) 0.0672 | grad 4.9080 | lr 0.0010 | time_forward 1.2470 | time_backward 1.3980 |
[2023-09-02 02:51:30,021::train::INFO] [train] Iter 05177 | loss 2.8480 | loss(rot) 2.6410 | loss(pos) 0.1980 | loss(seq) 0.0090 | grad 5.3657 | lr 0.0010 | time_forward 3.9210 | time_backward 5.1770 |
[2023-09-02 02:51:37,864::train::INFO] [train] Iter 05178 | loss 2.3244 | loss(rot) 2.1722 | loss(pos) 0.0868 | loss(seq) 0.0654 | grad 5.2870 | lr 0.0010 | time_forward 3.3630 | time_backward 4.4650 |
[2023-09-02 02:51:45,303::train::INFO] [train] Iter 05179 | loss 1.0269 | loss(rot) 0.4358 | loss(pos) 0.3002 | loss(seq) 0.2910 | grad 3.5615 | lr 0.0010 | time_forward 3.1130 | time_backward 4.3220 |
[2023-09-02 02:51:54,907::train::INFO] [train] Iter 05180 | loss 2.0891 | loss(rot) 0.8993 | loss(pos) 0.6903 | loss(seq) 0.4994 | grad 5.7231 | lr 0.0010 | time_forward 3.9010 | time_backward 5.6990 |
[2023-09-02 02:51:57,360::train::INFO] [train] Iter 05181 | loss 2.2032 | loss(rot) 1.6626 | loss(pos) 0.1694 | loss(seq) 0.3711 | grad 4.0645 | lr 0.0010 | time_forward 1.1600 | time_backward 1.2900 |
[2023-09-02 02:52:07,230::train::INFO] [train] Iter 05182 | loss 2.9951 | loss(rot) 2.8443 | loss(pos) 0.1496 | loss(seq) 0.0012 | grad 3.4254 | lr 0.0010 | time_forward 4.0590 | time_backward 5.8080 |
[2023-09-02 02:52:17,753::train::INFO] [train] Iter 05183 | loss 2.4338 | loss(rot) 2.1453 | loss(pos) 0.2334 | loss(seq) 0.0552 | grad 4.8532 | lr 0.0010 | time_forward 4.2540 | time_backward 6.2660 |
[2023-09-02 02:52:27,775::train::INFO] [train] Iter 05184 | loss 2.0189 | loss(rot) 1.7990 | loss(pos) 0.2187 | loss(seq) 0.0012 | grad 5.6433 | lr 0.0010 | time_forward 4.1680 | time_backward 5.8400 |
[2023-09-02 02:52:38,079::train::INFO] [train] Iter 05185 | loss 2.2591 | loss(rot) 2.0947 | loss(pos) 0.1295 | loss(seq) 0.0350 | grad 4.2584 | lr 0.0010 | time_forward 4.2400 | time_backward 6.0600 |
[2023-09-02 02:52:47,686::train::INFO] [train] Iter 05186 | loss 2.6774 | loss(rot) 1.7696 | loss(pos) 0.3189 | loss(seq) 0.5890 | grad 4.2333 | lr 0.0010 | time_forward 4.0170 | time_backward 5.5870 |
[2023-09-02 02:52:55,328::train::INFO] [train] Iter 05187 | loss 2.0609 | loss(rot) 1.9152 | loss(pos) 0.1437 | loss(seq) 0.0020 | grad 3.4342 | lr 0.0010 | time_forward 3.2250 | time_backward 4.4130 |
[2023-09-02 02:53:00,944::train::INFO] [train] Iter 05188 | loss 4.3634 | loss(rot) 0.0130 | loss(pos) 4.3505 | loss(seq) 0.0000 | grad 7.5392 | lr 0.0010 | time_forward 2.3410 | time_backward 3.2720 |
[2023-09-02 02:53:10,297::train::INFO] [train] Iter 05189 | loss 2.0037 | loss(rot) 1.3244 | loss(pos) 0.1765 | loss(seq) 0.5028 | grad 3.3437 | lr 0.0010 | time_forward 3.9890 | time_backward 5.3600 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.