text
stringlengths 56
1.16k
|
---|
[2023-09-02 03:05:48,375::train::INFO] [train] Iter 05290 | loss 1.5877 | loss(rot) 0.1958 | loss(pos) 1.3884 | loss(seq) 0.0034 | grad 5.3095 | lr 0.0010 | time_forward 4.1310 | time_backward 5.8980 |
[2023-09-02 03:05:51,038::train::INFO] [train] Iter 05291 | loss 2.2218 | loss(rot) 1.6909 | loss(pos) 0.2111 | loss(seq) 0.3198 | grad 3.5431 | lr 0.0010 | time_forward 1.2690 | time_backward 1.3900 |
[2023-09-02 03:05:58,746::train::INFO] [train] Iter 05292 | loss 2.3393 | loss(rot) 1.4075 | loss(pos) 0.3493 | loss(seq) 0.5825 | grad 2.6471 | lr 0.0010 | time_forward 3.2310 | time_backward 4.4730 |
[2023-09-02 03:06:08,956::train::INFO] [train] Iter 05293 | loss 2.3668 | loss(rot) 2.0192 | loss(pos) 0.3476 | loss(seq) 0.0000 | grad 4.2622 | lr 0.0010 | time_forward 4.0490 | time_backward 6.1570 |
[2023-09-02 03:06:11,704::train::INFO] [train] Iter 05294 | loss 3.1163 | loss(rot) 2.6243 | loss(pos) 0.4340 | loss(seq) 0.0580 | grad 4.9421 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4680 |
[2023-09-02 03:06:14,458::train::INFO] [train] Iter 05295 | loss 1.1137 | loss(rot) 0.4030 | loss(pos) 0.4791 | loss(seq) 0.2315 | grad 3.7152 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4790 |
[2023-09-02 03:06:17,355::train::INFO] [train] Iter 05296 | loss 1.4196 | loss(rot) 0.8961 | loss(pos) 0.3984 | loss(seq) 0.1251 | grad 3.2240 | lr 0.0010 | time_forward 1.4080 | time_backward 1.4850 |
[2023-09-02 03:06:27,269::train::INFO] [train] Iter 05297 | loss 3.1726 | loss(rot) 2.2062 | loss(pos) 0.4106 | loss(seq) 0.5558 | grad 4.5567 | lr 0.0010 | time_forward 4.1540 | time_backward 5.7570 |
[2023-09-02 03:06:35,787::train::INFO] [train] Iter 05298 | loss 2.1940 | loss(rot) 1.5903 | loss(pos) 0.2733 | loss(seq) 0.3304 | grad 5.2111 | lr 0.0010 | time_forward 3.5580 | time_backward 4.9390 |
[2023-09-02 03:06:38,506::train::INFO] [train] Iter 05299 | loss 3.3507 | loss(rot) 2.8846 | loss(pos) 0.4661 | loss(seq) 0.0000 | grad 4.6811 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4560 |
[2023-09-02 03:06:46,045::train::INFO] [train] Iter 05300 | loss 2.0098 | loss(rot) 1.8712 | loss(pos) 0.1352 | loss(seq) 0.0034 | grad 5.2520 | lr 0.0010 | time_forward 3.2340 | time_backward 4.3010 |
[2023-09-02 03:06:48,860::train::INFO] [train] Iter 05301 | loss 2.3353 | loss(rot) 2.1414 | loss(pos) 0.1766 | loss(seq) 0.0174 | grad 4.3584 | lr 0.0010 | time_forward 1.3730 | time_backward 1.4380 |
[2023-09-02 03:06:58,645::train::INFO] [train] Iter 05302 | loss 2.9702 | loss(rot) 2.5142 | loss(pos) 0.1638 | loss(seq) 0.2922 | grad 2.5366 | lr 0.0010 | time_forward 4.0300 | time_backward 5.7520 |
[2023-09-02 03:07:08,149::train::INFO] [train] Iter 05303 | loss 2.1213 | loss(rot) 1.7471 | loss(pos) 0.0896 | loss(seq) 0.2846 | grad 7.2414 | lr 0.0010 | time_forward 3.9650 | time_backward 5.5150 |
[2023-09-02 03:07:16,822::train::INFO] [train] Iter 05304 | loss 2.2693 | loss(rot) 1.9661 | loss(pos) 0.0676 | loss(seq) 0.2356 | grad 6.9965 | lr 0.0010 | time_forward 3.5860 | time_backward 5.0840 |
[2023-09-02 03:07:24,653::train::INFO] [train] Iter 05305 | loss 1.1701 | loss(rot) 0.1390 | loss(pos) 0.6084 | loss(seq) 0.4227 | grad 3.5346 | lr 0.0010 | time_forward 3.2630 | time_backward 4.5640 |
[2023-09-02 03:07:27,399::train::INFO] [train] Iter 05306 | loss 0.9841 | loss(rot) 0.3651 | loss(pos) 0.3143 | loss(seq) 0.3047 | grad 3.4797 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4950 |
[2023-09-02 03:07:38,236::train::INFO] [train] Iter 05307 | loss 1.1337 | loss(rot) 0.1636 | loss(pos) 0.5145 | loss(seq) 0.4557 | grad 3.9438 | lr 0.0010 | time_forward 4.6770 | time_backward 6.1570 |
[2023-09-02 03:07:41,046::train::INFO] [train] Iter 05308 | loss 2.1689 | loss(rot) 1.6800 | loss(pos) 0.1162 | loss(seq) 0.3727 | grad 3.7073 | lr 0.0010 | time_forward 1.3060 | time_backward 1.5010 |
[2023-09-02 03:07:51,604::train::INFO] [train] Iter 05309 | loss 1.6060 | loss(rot) 0.8156 | loss(pos) 0.3504 | loss(seq) 0.4400 | grad 3.6144 | lr 0.0010 | time_forward 4.2490 | time_backward 6.3050 |
[2023-09-02 03:07:53,916::train::INFO] [train] Iter 05310 | loss 2.1772 | loss(rot) 1.4653 | loss(pos) 0.2187 | loss(seq) 0.4933 | grad 8.5444 | lr 0.0010 | time_forward 1.0890 | time_backward 1.2190 |
[2023-09-02 03:08:02,526::train::INFO] [train] Iter 05311 | loss 1.7250 | loss(rot) 1.2929 | loss(pos) 0.1062 | loss(seq) 0.3259 | grad 3.9474 | lr 0.0010 | time_forward 3.6290 | time_backward 4.9790 |
[2023-09-02 03:08:12,827::train::INFO] [train] Iter 05312 | loss 1.1383 | loss(rot) 0.3955 | loss(pos) 0.3285 | loss(seq) 0.4144 | grad 4.0475 | lr 0.0010 | time_forward 3.9990 | time_backward 6.2980 |
[2023-09-02 03:08:22,689::train::INFO] [train] Iter 05313 | loss 2.5140 | loss(rot) 1.6735 | loss(pos) 0.3900 | loss(seq) 0.4506 | grad 4.4982 | lr 0.0010 | time_forward 4.0060 | time_backward 5.8520 |
[2023-09-02 03:08:32,847::train::INFO] [train] Iter 05314 | loss 2.1374 | loss(rot) 1.1339 | loss(pos) 0.4638 | loss(seq) 0.5396 | grad 3.8507 | lr 0.0010 | time_forward 4.0430 | time_backward 6.1110 |
[2023-09-02 03:08:41,624::train::INFO] [train] Iter 05315 | loss 0.9131 | loss(rot) 0.3344 | loss(pos) 0.5145 | loss(seq) 0.0643 | grad 5.2706 | lr 0.0010 | time_forward 3.6770 | time_backward 5.0960 |
[2023-09-02 03:08:44,055::train::INFO] [train] Iter 05316 | loss 2.3320 | loss(rot) 1.5635 | loss(pos) 0.3225 | loss(seq) 0.4460 | grad 7.2908 | lr 0.0010 | time_forward 1.1250 | time_backward 1.3030 |
[2023-09-02 03:08:46,536::train::INFO] [train] Iter 05317 | loss 0.8141 | loss(rot) 0.3596 | loss(pos) 0.1307 | loss(seq) 0.3238 | grad 3.2579 | lr 0.0010 | time_forward 1.1700 | time_backward 1.3070 |
[2023-09-02 03:08:56,383::train::INFO] [train] Iter 05318 | loss 0.9845 | loss(rot) 0.2167 | loss(pos) 0.3759 | loss(seq) 0.3919 | grad 3.3537 | lr 0.0010 | time_forward 4.0100 | time_backward 5.8120 |
[2023-09-02 03:08:59,058::train::INFO] [train] Iter 05319 | loss 2.4051 | loss(rot) 2.2585 | loss(pos) 0.1463 | loss(seq) 0.0003 | grad 4.9780 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4230 |
[2023-09-02 03:09:07,554::train::INFO] [train] Iter 05320 | loss 2.8838 | loss(rot) 2.5457 | loss(pos) 0.3381 | loss(seq) 0.0000 | grad 4.6492 | lr 0.0010 | time_forward 3.5630 | time_backward 4.9300 |
[2023-09-02 03:09:16,454::train::INFO] [train] Iter 05321 | loss 1.5382 | loss(rot) 1.1298 | loss(pos) 0.2680 | loss(seq) 0.1403 | grad 6.2380 | lr 0.0010 | time_forward 3.7220 | time_backward 5.1740 |
[2023-09-02 03:09:19,852::train::INFO] [train] Iter 05322 | loss 1.6999 | loss(rot) 0.9366 | loss(pos) 0.2678 | loss(seq) 0.4955 | grad 3.3112 | lr 0.0010 | time_forward 1.4880 | time_backward 1.9060 |
[2023-09-02 03:09:28,357::train::INFO] [train] Iter 05323 | loss 2.2829 | loss(rot) 1.2055 | loss(pos) 0.8717 | loss(seq) 0.2057 | grad 7.6146 | lr 0.0010 | time_forward 3.6290 | time_backward 4.8740 |
[2023-09-02 03:09:38,622::train::INFO] [train] Iter 05324 | loss 1.3642 | loss(rot) 0.1107 | loss(pos) 1.2398 | loss(seq) 0.0138 | grad 5.3993 | lr 0.0010 | time_forward 4.2980 | time_backward 5.9630 |
[2023-09-02 03:09:45,900::train::INFO] [train] Iter 05325 | loss 1.3322 | loss(rot) 0.0884 | loss(pos) 1.2383 | loss(seq) 0.0055 | grad 8.7943 | lr 0.0010 | time_forward 3.0280 | time_backward 4.2470 |
[2023-09-02 03:09:56,725::train::INFO] [train] Iter 05326 | loss 1.1492 | loss(rot) 0.2685 | loss(pos) 0.8129 | loss(seq) 0.0679 | grad 5.0354 | lr 0.0010 | time_forward 4.3040 | time_backward 6.5180 |
[2023-09-02 03:09:59,482::train::INFO] [train] Iter 05327 | loss 1.2419 | loss(rot) 0.4649 | loss(pos) 0.3872 | loss(seq) 0.3898 | grad 4.6201 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4730 |
[2023-09-02 03:10:09,687::train::INFO] [train] Iter 05328 | loss 2.6450 | loss(rot) 2.2064 | loss(pos) 0.2938 | loss(seq) 0.1447 | grad 6.1053 | lr 0.0010 | time_forward 4.1920 | time_backward 6.0090 |
[2023-09-02 03:10:20,350::train::INFO] [train] Iter 05329 | loss 0.6753 | loss(rot) 0.3073 | loss(pos) 0.2341 | loss(seq) 0.1339 | grad 3.1864 | lr 0.0010 | time_forward 4.2630 | time_backward 6.3960 |
[2023-09-02 03:10:28,344::train::INFO] [train] Iter 05330 | loss 1.6797 | loss(rot) 1.4472 | loss(pos) 0.1470 | loss(seq) 0.0855 | grad 4.7747 | lr 0.0010 | time_forward 3.3690 | time_backward 4.6210 |
[2023-09-02 03:10:38,628::train::INFO] [train] Iter 05331 | loss 2.5207 | loss(rot) 1.8024 | loss(pos) 0.2200 | loss(seq) 0.4983 | grad 2.6455 | lr 0.0010 | time_forward 4.2930 | time_backward 5.9880 |
[2023-09-02 03:10:49,372::train::INFO] [train] Iter 05332 | loss 1.9368 | loss(rot) 0.7190 | loss(pos) 0.8193 | loss(seq) 0.3985 | grad 4.9838 | lr 0.0010 | time_forward 4.0620 | time_backward 6.6790 |
[2023-09-02 03:10:58,021::train::INFO] [train] Iter 05333 | loss 1.2134 | loss(rot) 0.4235 | loss(pos) 0.3902 | loss(seq) 0.3996 | grad 3.5047 | lr 0.0010 | time_forward 3.6790 | time_backward 4.9660 |
[2023-09-02 03:11:08,329::train::INFO] [train] Iter 05334 | loss 1.7922 | loss(rot) 0.8642 | loss(pos) 0.6761 | loss(seq) 0.2519 | grad 3.5055 | lr 0.0010 | time_forward 4.3970 | time_backward 5.9070 |
[2023-09-02 03:11:11,461::train::INFO] [train] Iter 05335 | loss 2.4506 | loss(rot) 1.8967 | loss(pos) 0.2780 | loss(seq) 0.2758 | grad 5.6325 | lr 0.0010 | time_forward 1.5550 | time_backward 1.5740 |
[2023-09-02 03:11:21,026::train::INFO] [train] Iter 05336 | loss 1.9719 | loss(rot) 1.5770 | loss(pos) 0.2744 | loss(seq) 0.1206 | grad 7.8943 | lr 0.0010 | time_forward 4.0100 | time_backward 5.5520 |
[2023-09-02 03:11:23,843::train::INFO] [train] Iter 05337 | loss 1.0715 | loss(rot) 0.0638 | loss(pos) 0.9993 | loss(seq) 0.0085 | grad 10.2453 | lr 0.0010 | time_forward 1.3490 | time_backward 1.4630 |
[2023-09-02 03:11:26,865::train::INFO] [train] Iter 05338 | loss 1.6573 | loss(rot) 1.4197 | loss(pos) 0.2171 | loss(seq) 0.0205 | grad 6.2939 | lr 0.0010 | time_forward 1.4120 | time_backward 1.6070 |
[2023-09-02 03:11:38,295::train::INFO] [train] Iter 05339 | loss 2.3538 | loss(rot) 1.7435 | loss(pos) 0.1455 | loss(seq) 0.4648 | grad 2.6841 | lr 0.0010 | time_forward 4.8560 | time_backward 6.5710 |
[2023-09-02 03:11:48,820::train::INFO] [train] Iter 05340 | loss 3.2694 | loss(rot) 2.8053 | loss(pos) 0.1407 | loss(seq) 0.3234 | grad 3.8636 | lr 0.0010 | time_forward 4.6730 | time_backward 5.8480 |
[2023-09-02 03:11:58,928::train::INFO] [train] Iter 05341 | loss 2.5756 | loss(rot) 2.3481 | loss(pos) 0.0614 | loss(seq) 0.1660 | grad 3.1976 | lr 0.0010 | time_forward 4.2810 | time_backward 5.8230 |
[2023-09-02 03:12:09,666::train::INFO] [train] Iter 05342 | loss 2.7026 | loss(rot) 2.4547 | loss(pos) 0.2189 | loss(seq) 0.0290 | grad 5.0727 | lr 0.0010 | time_forward 4.6710 | time_backward 6.0630 |
[2023-09-02 03:12:20,115::train::INFO] [train] Iter 05343 | loss 1.8605 | loss(rot) 1.2783 | loss(pos) 0.1499 | loss(seq) 0.4323 | grad 3.6675 | lr 0.0010 | time_forward 4.2030 | time_backward 6.2410 |
[2023-09-02 03:12:31,206::train::INFO] [train] Iter 05344 | loss 2.8461 | loss(rot) 1.8147 | loss(pos) 0.5312 | loss(seq) 0.5003 | grad 5.2742 | lr 0.0010 | time_forward 4.6750 | time_backward 6.4120 |
[2023-09-02 03:12:40,948::train::INFO] [train] Iter 05345 | loss 2.2094 | loss(rot) 0.8708 | loss(pos) 0.8473 | loss(seq) 0.4913 | grad 4.8849 | lr 0.0010 | time_forward 4.0930 | time_backward 5.6450 |
[2023-09-02 03:12:50,679::train::INFO] [train] Iter 05346 | loss 1.5042 | loss(rot) 0.3094 | loss(pos) 0.5571 | loss(seq) 0.6377 | grad 4.8617 | lr 0.0010 | time_forward 4.1690 | time_backward 5.5580 |
[2023-09-02 03:12:53,238::train::INFO] [train] Iter 05347 | loss 3.4233 | loss(rot) 2.5532 | loss(pos) 0.4956 | loss(seq) 0.3745 | grad 8.4258 | lr 0.0010 | time_forward 1.2700 | time_backward 1.2860 |
[2023-09-02 03:13:02,190::train::INFO] [train] Iter 05348 | loss 1.6099 | loss(rot) 0.0681 | loss(pos) 1.5163 | loss(seq) 0.0255 | grad 6.6887 | lr 0.0010 | time_forward 3.8970 | time_backward 5.0510 |
[2023-09-02 03:13:11,578::train::INFO] [train] Iter 05349 | loss 1.0450 | loss(rot) 0.0159 | loss(pos) 1.0279 | loss(seq) 0.0012 | grad 3.4996 | lr 0.0010 | time_forward 4.0190 | time_backward 5.3660 |
[2023-09-02 03:13:20,404::train::INFO] [train] Iter 05350 | loss 0.9481 | loss(rot) 0.1562 | loss(pos) 0.7465 | loss(seq) 0.0454 | grad 5.0913 | lr 0.0010 | time_forward 3.7640 | time_backward 5.0590 |
[2023-09-02 03:13:29,076::train::INFO] [train] Iter 05351 | loss 2.9212 | loss(rot) 2.6263 | loss(pos) 0.2513 | loss(seq) 0.0436 | grad 6.2753 | lr 0.0010 | time_forward 3.6750 | time_backward 4.9780 |
[2023-09-02 03:13:38,368::train::INFO] [train] Iter 05352 | loss 1.8775 | loss(rot) 0.1460 | loss(pos) 1.4181 | loss(seq) 0.3133 | grad 9.1590 | lr 0.0010 | time_forward 3.8470 | time_backward 5.4410 |
[2023-09-02 03:13:49,792::train::INFO] [train] Iter 05353 | loss 2.2134 | loss(rot) 1.8967 | loss(pos) 0.3133 | loss(seq) 0.0035 | grad 5.5859 | lr 0.0010 | time_forward 4.8780 | time_backward 6.5420 |
[2023-09-02 03:13:59,536::train::INFO] [train] Iter 05354 | loss 2.6952 | loss(rot) 0.5963 | loss(pos) 1.3631 | loss(seq) 0.7357 | grad 6.7871 | lr 0.0010 | time_forward 4.0500 | time_backward 5.6900 |
[2023-09-02 03:14:10,098::train::INFO] [train] Iter 05355 | loss 1.3813 | loss(rot) 0.8022 | loss(pos) 0.2571 | loss(seq) 0.3219 | grad 4.9895 | lr 0.0010 | time_forward 5.0850 | time_backward 5.4730 |
[2023-09-02 03:14:20,238::train::INFO] [train] Iter 05356 | loss 2.6710 | loss(rot) 1.9716 | loss(pos) 0.6478 | loss(seq) 0.0516 | grad 9.1626 | lr 0.0010 | time_forward 4.2120 | time_backward 5.9220 |
[2023-09-02 03:14:29,679::train::INFO] [train] Iter 05357 | loss 2.8895 | loss(rot) 2.1729 | loss(pos) 0.7079 | loss(seq) 0.0087 | grad 9.6265 | lr 0.0010 | time_forward 3.9480 | time_backward 5.4900 |
[2023-09-02 03:14:32,628::train::INFO] [train] Iter 05358 | loss 0.9470 | loss(rot) 0.1233 | loss(pos) 0.8028 | loss(seq) 0.0209 | grad 7.6493 | lr 0.0010 | time_forward 1.3680 | time_backward 1.5780 |
[2023-09-02 03:14:42,133::train::INFO] [train] Iter 05359 | loss 1.1296 | loss(rot) 0.6675 | loss(pos) 0.0853 | loss(seq) 0.3768 | grad 3.0696 | lr 0.0010 | time_forward 4.1540 | time_backward 5.3480 |
[2023-09-02 03:14:51,548::train::INFO] [train] Iter 05360 | loss 2.4440 | loss(rot) 1.7503 | loss(pos) 0.2818 | loss(seq) 0.4118 | grad 4.0487 | lr 0.0010 | time_forward 3.9990 | time_backward 5.4110 |
[2023-09-02 03:15:02,087::train::INFO] [train] Iter 05361 | loss 2.0667 | loss(rot) 0.9126 | loss(pos) 0.4564 | loss(seq) 0.6977 | grad 4.6701 | lr 0.0010 | time_forward 4.4060 | time_backward 6.1310 |
[2023-09-02 03:15:11,122::train::INFO] [train] Iter 05362 | loss 2.4742 | loss(rot) 1.7949 | loss(pos) 0.1252 | loss(seq) 0.5541 | grad 6.3225 | lr 0.0010 | time_forward 3.7650 | time_backward 5.2670 |
[2023-09-02 03:15:13,977::train::INFO] [train] Iter 05363 | loss 2.2995 | loss(rot) 1.7869 | loss(pos) 0.0766 | loss(seq) 0.4359 | grad 6.7810 | lr 0.0010 | time_forward 1.3370 | time_backward 1.5140 |
[2023-09-02 03:15:23,805::train::INFO] [train] Iter 05364 | loss 2.9629 | loss(rot) 1.7874 | loss(pos) 0.4941 | loss(seq) 0.6815 | grad 3.8521 | lr 0.0010 | time_forward 4.2640 | time_backward 5.5600 |
[2023-09-02 03:15:31,430::train::INFO] [train] Iter 05365 | loss 2.7492 | loss(rot) 2.4820 | loss(pos) 0.2670 | loss(seq) 0.0001 | grad 3.7790 | lr 0.0010 | time_forward 3.2470 | time_backward 4.3750 |
[2023-09-02 03:15:40,838::train::INFO] [train] Iter 05366 | loss 2.3345 | loss(rot) 1.5322 | loss(pos) 0.2998 | loss(seq) 0.5025 | grad 4.2315 | lr 0.0010 | time_forward 3.8890 | time_backward 5.5160 |
[2023-09-02 03:15:52,518::train::INFO] [train] Iter 05367 | loss 4.2953 | loss(rot) 0.0409 | loss(pos) 4.2537 | loss(seq) 0.0008 | grad 6.7764 | lr 0.0010 | time_forward 5.5730 | time_backward 6.1030 |
[2023-09-02 03:16:01,579::train::INFO] [train] Iter 05368 | loss 3.1039 | loss(rot) 2.7983 | loss(pos) 0.1616 | loss(seq) 0.1440 | grad 1.7978 | lr 0.0010 | time_forward 3.7270 | time_backward 5.3300 |
[2023-09-02 03:16:04,465::train::INFO] [train] Iter 05369 | loss 1.7040 | loss(rot) 0.3748 | loss(pos) 0.9123 | loss(seq) 0.4169 | grad 3.2529 | lr 0.0010 | time_forward 1.3770 | time_backward 1.5060 |
[2023-09-02 03:16:07,396::train::INFO] [train] Iter 05370 | loss 1.3845 | loss(rot) 0.0546 | loss(pos) 1.3161 | loss(seq) 0.0138 | grad 5.4030 | lr 0.0010 | time_forward 1.3100 | time_backward 1.5950 |
[2023-09-02 03:16:16,319::train::INFO] [train] Iter 05371 | loss 1.7213 | loss(rot) 0.9918 | loss(pos) 0.3014 | loss(seq) 0.4282 | grad 4.8855 | lr 0.0010 | time_forward 3.8000 | time_backward 5.1200 |
[2023-09-02 03:16:26,217::train::INFO] [train] Iter 05372 | loss 2.0482 | loss(rot) 1.1199 | loss(pos) 0.4241 | loss(seq) 0.5041 | grad 4.5310 | lr 0.0010 | time_forward 4.1490 | time_backward 5.7460 |
[2023-09-02 03:16:36,035::train::INFO] [train] Iter 05373 | loss 3.2921 | loss(rot) 2.8943 | loss(pos) 0.3813 | loss(seq) 0.0166 | grad 6.5740 | lr 0.0010 | time_forward 3.9500 | time_backward 5.8640 |
[2023-09-02 03:16:46,084::train::INFO] [train] Iter 05374 | loss 1.3967 | loss(rot) 0.7274 | loss(pos) 0.2643 | loss(seq) 0.4050 | grad 4.0301 | lr 0.0010 | time_forward 4.2930 | time_backward 5.7510 |
[2023-09-02 03:16:56,633::train::INFO] [train] Iter 05375 | loss 1.6285 | loss(rot) 0.9669 | loss(pos) 0.1541 | loss(seq) 0.5076 | grad 3.3198 | lr 0.0010 | time_forward 4.3460 | time_backward 6.2000 |
[2023-09-02 03:16:59,499::train::INFO] [train] Iter 05376 | loss 1.4587 | loss(rot) 0.3916 | loss(pos) 0.5306 | loss(seq) 0.5366 | grad 3.0172 | lr 0.0010 | time_forward 1.3230 | time_backward 1.5390 |
[2023-09-02 03:17:02,307::train::INFO] [train] Iter 05377 | loss 1.2974 | loss(rot) 0.4478 | loss(pos) 0.5616 | loss(seq) 0.2880 | grad 4.0005 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4870 |
[2023-09-02 03:17:05,078::train::INFO] [train] Iter 05378 | loss 1.2727 | loss(rot) 0.0401 | loss(pos) 1.2277 | loss(seq) 0.0049 | grad 4.5628 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4860 |
[2023-09-02 03:17:13,690::train::INFO] [train] Iter 05379 | loss 0.7486 | loss(rot) 0.0925 | loss(pos) 0.6271 | loss(seq) 0.0290 | grad 4.8244 | lr 0.0010 | time_forward 3.6160 | time_backward 4.9920 |
[2023-09-02 03:17:16,539::train::INFO] [train] Iter 05380 | loss 3.2989 | loss(rot) 3.0735 | loss(pos) 0.1529 | loss(seq) 0.0726 | grad 3.8278 | lr 0.0010 | time_forward 1.3620 | time_backward 1.4830 |
[2023-09-02 03:17:25,280::train::INFO] [train] Iter 05381 | loss 3.3301 | loss(rot) 2.6894 | loss(pos) 0.2928 | loss(seq) 0.3478 | grad 3.0599 | lr 0.0010 | time_forward 3.8280 | time_backward 4.9090 |
[2023-09-02 03:17:34,616::train::INFO] [train] Iter 05382 | loss 1.6937 | loss(rot) 0.7640 | loss(pos) 0.5640 | loss(seq) 0.3657 | grad 4.4364 | lr 0.0010 | time_forward 3.9770 | time_backward 5.3550 |
[2023-09-02 03:17:45,356::train::INFO] [train] Iter 05383 | loss 0.9573 | loss(rot) 0.3323 | loss(pos) 0.5622 | loss(seq) 0.0628 | grad 4.2281 | lr 0.0010 | time_forward 4.3040 | time_backward 6.4330 |
[2023-09-02 03:17:55,766::train::INFO] [train] Iter 05384 | loss 0.8297 | loss(rot) 0.0507 | loss(pos) 0.7670 | loss(seq) 0.0120 | grad 7.7491 | lr 0.0010 | time_forward 4.1270 | time_backward 6.2790 |
[2023-09-02 03:17:58,156::train::INFO] [train] Iter 05385 | loss 1.4443 | loss(rot) 0.5732 | loss(pos) 0.5116 | loss(seq) 0.3594 | grad 4.3522 | lr 0.0010 | time_forward 1.0840 | time_backward 1.3020 |
[2023-09-02 03:18:07,225::train::INFO] [train] Iter 05386 | loss 1.2840 | loss(rot) 0.5828 | loss(pos) 0.6321 | loss(seq) 0.0691 | grad 4.9782 | lr 0.0010 | time_forward 3.8070 | time_backward 5.2590 |
[2023-09-02 03:18:17,705::train::INFO] [train] Iter 05387 | loss 0.8278 | loss(rot) 0.5015 | loss(pos) 0.2082 | loss(seq) 0.1181 | grad 3.4941 | lr 0.0010 | time_forward 4.2190 | time_backward 6.2570 |
[2023-09-02 03:18:28,279::train::INFO] [train] Iter 05388 | loss 2.4724 | loss(rot) 2.1202 | loss(pos) 0.3522 | loss(seq) 0.0000 | grad 4.1706 | lr 0.0010 | time_forward 4.1360 | time_backward 6.4330 |
[2023-09-02 03:18:38,690::train::INFO] [train] Iter 05389 | loss 2.0398 | loss(rot) 0.9611 | loss(pos) 0.5459 | loss(seq) 0.5327 | grad 6.2365 | lr 0.0010 | time_forward 4.2060 | time_backward 6.2010 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.