text
stringlengths 56
1.16k
|
---|
[2023-09-02 03:18:47,177::train::INFO] [train] Iter 05390 | loss 2.5570 | loss(rot) 2.3744 | loss(pos) 0.1819 | loss(seq) 0.0007 | grad 3.8131 | lr 0.0010 | time_forward 3.6380 | time_backward 4.8440 |
[2023-09-02 03:18:57,695::train::INFO] [train] Iter 05391 | loss 2.1130 | loss(rot) 1.3835 | loss(pos) 0.2017 | loss(seq) 0.5278 | grad 4.1371 | lr 0.0010 | time_forward 4.1580 | time_backward 6.3570 |
[2023-09-02 03:19:08,816::train::INFO] [train] Iter 05392 | loss 2.2763 | loss(rot) 2.1215 | loss(pos) 0.1270 | loss(seq) 0.0278 | grad 4.5939 | lr 0.0010 | time_forward 4.6080 | time_backward 6.5090 |
[2023-09-02 03:19:11,729::train::INFO] [train] Iter 05393 | loss 0.9620 | loss(rot) 0.3163 | loss(pos) 0.4089 | loss(seq) 0.2369 | grad 2.8165 | lr 0.0010 | time_forward 1.3410 | time_backward 1.5470 |
[2023-09-02 03:19:21,224::train::INFO] [train] Iter 05394 | loss 1.6344 | loss(rot) 1.0154 | loss(pos) 0.1910 | loss(seq) 0.4280 | grad 3.5047 | lr 0.0010 | time_forward 3.9630 | time_backward 5.4970 |
[2023-09-02 03:19:29,680::train::INFO] [train] Iter 05395 | loss 2.7376 | loss(rot) 2.5992 | loss(pos) 0.1205 | loss(seq) 0.0179 | grad 4.0447 | lr 0.0010 | time_forward 3.6390 | time_backward 4.8140 |
[2023-09-02 03:19:37,329::train::INFO] [train] Iter 05396 | loss 3.1420 | loss(rot) 2.4801 | loss(pos) 0.1730 | loss(seq) 0.4888 | grad 4.6667 | lr 0.0010 | time_forward 3.2550 | time_backward 4.3910 |
[2023-09-02 03:19:48,408::train::INFO] [train] Iter 05397 | loss 2.5733 | loss(rot) 2.4591 | loss(pos) 0.0669 | loss(seq) 0.0473 | grad 3.2340 | lr 0.0010 | time_forward 4.3610 | time_backward 6.7140 |
[2023-09-02 03:19:59,066::train::INFO] [train] Iter 05398 | loss 2.2856 | loss(rot) 1.4292 | loss(pos) 0.3134 | loss(seq) 0.5430 | grad 3.2596 | lr 0.0010 | time_forward 4.7410 | time_backward 5.9140 |
[2023-09-02 03:20:07,805::train::INFO] [train] Iter 05399 | loss 3.7134 | loss(rot) 0.0145 | loss(pos) 3.6988 | loss(seq) 0.0000 | grad 13.7514 | lr 0.0010 | time_forward 3.7220 | time_backward 5.0140 |
[2023-09-02 03:20:17,989::train::INFO] [train] Iter 05400 | loss 1.3526 | loss(rot) 0.0170 | loss(pos) 1.3339 | loss(seq) 0.0016 | grad 5.5150 | lr 0.0010 | time_forward 4.2710 | time_backward 5.9100 |
[2023-09-02 03:20:26,503::train::INFO] [train] Iter 05401 | loss 1.7255 | loss(rot) 0.9756 | loss(pos) 0.2511 | loss(seq) 0.4988 | grad 4.2893 | lr 0.0010 | time_forward 3.6500 | time_backward 4.8600 |
[2023-09-02 03:20:28,872::train::INFO] [train] Iter 05402 | loss 1.1041 | loss(rot) 0.5761 | loss(pos) 0.4467 | loss(seq) 0.0813 | grad 5.3500 | lr 0.0010 | time_forward 1.0670 | time_backward 1.2990 |
[2023-09-02 03:20:38,406::train::INFO] [train] Iter 05403 | loss 2.7977 | loss(rot) 1.3623 | loss(pos) 0.8143 | loss(seq) 0.6210 | grad 4.5511 | lr 0.0010 | time_forward 3.8740 | time_backward 5.6560 |
[2023-09-02 03:20:48,983::train::INFO] [train] Iter 05404 | loss 2.7851 | loss(rot) 1.8294 | loss(pos) 0.3805 | loss(seq) 0.5752 | grad 3.6725 | lr 0.0010 | time_forward 4.2350 | time_backward 6.3380 |
[2023-09-02 03:20:58,106::train::INFO] [train] Iter 05405 | loss 1.4620 | loss(rot) 0.9229 | loss(pos) 0.1692 | loss(seq) 0.3700 | grad 3.8432 | lr 0.0010 | time_forward 3.8210 | time_backward 5.2990 |
[2023-09-02 03:21:08,834::train::INFO] [train] Iter 05406 | loss 2.9351 | loss(rot) 2.7799 | loss(pos) 0.1022 | loss(seq) 0.0530 | grad 3.3000 | lr 0.0010 | time_forward 4.4230 | time_backward 6.3010 |
[2023-09-02 03:21:16,161::train::INFO] [train] Iter 05407 | loss 2.3930 | loss(rot) 1.9356 | loss(pos) 0.0727 | loss(seq) 0.3847 | grad 4.4941 | lr 0.0010 | time_forward 3.0380 | time_backward 4.2860 |
[2023-09-02 03:21:26,646::train::INFO] [train] Iter 05408 | loss 2.4878 | loss(rot) 2.0462 | loss(pos) 0.1329 | loss(seq) 0.3087 | grad 3.1414 | lr 0.0010 | time_forward 4.1510 | time_backward 6.3300 |
[2023-09-02 03:21:37,476::train::INFO] [train] Iter 05409 | loss 1.9074 | loss(rot) 1.1189 | loss(pos) 0.2589 | loss(seq) 0.5296 | grad 3.8983 | lr 0.0010 | time_forward 4.6180 | time_backward 6.2070 |
[2023-09-02 03:21:40,277::train::INFO] [train] Iter 05410 | loss 1.7212 | loss(rot) 1.4414 | loss(pos) 0.1151 | loss(seq) 0.1647 | grad 3.9508 | lr 0.0010 | time_forward 1.3200 | time_backward 1.4770 |
[2023-09-02 03:21:49,670::train::INFO] [train] Iter 05411 | loss 1.5408 | loss(rot) 1.0449 | loss(pos) 0.1125 | loss(seq) 0.3834 | grad 4.0747 | lr 0.0010 | time_forward 3.6600 | time_backward 5.7290 |
[2023-09-02 03:21:58,992::train::INFO] [train] Iter 05412 | loss 2.5588 | loss(rot) 1.5834 | loss(pos) 0.4393 | loss(seq) 0.5360 | grad 3.4634 | lr 0.0010 | time_forward 3.9980 | time_backward 5.3210 |
[2023-09-02 03:22:10,401::train::INFO] [train] Iter 05413 | loss 3.9130 | loss(rot) 0.0346 | loss(pos) 3.8784 | loss(seq) 0.0000 | grad 7.6180 | lr 0.0010 | time_forward 4.8050 | time_backward 6.6000 |
[2023-09-02 03:22:13,501::train::INFO] [train] Iter 05414 | loss 3.2241 | loss(rot) 0.0545 | loss(pos) 3.1696 | loss(seq) 0.0000 | grad 5.2167 | lr 0.0010 | time_forward 1.4370 | time_backward 1.6590 |
[2023-09-02 03:22:23,439::train::INFO] [train] Iter 05415 | loss 2.0372 | loss(rot) 1.5133 | loss(pos) 0.1871 | loss(seq) 0.3368 | grad 4.0359 | lr 0.0010 | time_forward 4.3380 | time_backward 5.5780 |
[2023-09-02 03:22:33,964::train::INFO] [train] Iter 05416 | loss 2.6271 | loss(rot) 1.9009 | loss(pos) 0.2244 | loss(seq) 0.5018 | grad 4.3352 | lr 0.0010 | time_forward 4.1750 | time_backward 6.3470 |
[2023-09-02 03:22:36,860::train::INFO] [train] Iter 05417 | loss 0.8986 | loss(rot) 0.4716 | loss(pos) 0.3232 | loss(seq) 0.1039 | grad 3.2696 | lr 0.0010 | time_forward 1.4180 | time_backward 1.4740 |
[2023-09-02 03:22:39,780::train::INFO] [train] Iter 05418 | loss 1.1074 | loss(rot) 0.0782 | loss(pos) 1.0153 | loss(seq) 0.0139 | grad 4.6775 | lr 0.0010 | time_forward 1.3010 | time_backward 1.6160 |
[2023-09-02 03:22:42,564::train::INFO] [train] Iter 05419 | loss 2.2499 | loss(rot) 2.0615 | loss(pos) 0.1756 | loss(seq) 0.0128 | grad 3.6600 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4680 |
[2023-09-02 03:22:50,258::train::INFO] [train] Iter 05420 | loss 0.7011 | loss(rot) 0.2871 | loss(pos) 0.3328 | loss(seq) 0.0812 | grad 2.8608 | lr 0.0010 | time_forward 3.3060 | time_backward 4.3850 |
[2023-09-02 03:22:59,542::train::INFO] [train] Iter 05421 | loss 1.5102 | loss(rot) 0.7412 | loss(pos) 0.6979 | loss(seq) 0.0712 | grad 5.1628 | lr 0.0010 | time_forward 3.9090 | time_backward 5.3530 |
[2023-09-02 03:23:10,694::train::INFO] [train] Iter 05422 | loss 2.1857 | loss(rot) 1.9788 | loss(pos) 0.1702 | loss(seq) 0.0367 | grad 3.8494 | lr 0.0010 | time_forward 4.4890 | time_backward 6.6590 |
[2023-09-02 03:23:20,878::train::INFO] [train] Iter 05423 | loss 1.2801 | loss(rot) 0.5566 | loss(pos) 0.4177 | loss(seq) 0.3057 | grad 4.2140 | lr 0.0010 | time_forward 4.4040 | time_backward 5.7770 |
[2023-09-02 03:23:24,425::train::INFO] [train] Iter 05424 | loss 1.9785 | loss(rot) 0.9097 | loss(pos) 0.7099 | loss(seq) 0.3590 | grad 3.6972 | lr 0.0010 | time_forward 1.5520 | time_backward 1.9910 |
[2023-09-02 03:23:34,931::train::INFO] [train] Iter 05425 | loss 2.1738 | loss(rot) 1.3580 | loss(pos) 0.2331 | loss(seq) 0.5827 | grad 4.5876 | lr 0.0010 | time_forward 4.3180 | time_backward 6.1840 |
[2023-09-02 03:23:45,046::train::INFO] [train] Iter 05426 | loss 2.1133 | loss(rot) 1.7204 | loss(pos) 0.2849 | loss(seq) 0.1080 | grad 4.6085 | lr 0.0010 | time_forward 4.1070 | time_backward 6.0050 |
[2023-09-02 03:23:54,963::train::INFO] [train] Iter 05427 | loss 1.4124 | loss(rot) 1.1303 | loss(pos) 0.0940 | loss(seq) 0.1881 | grad 3.2251 | lr 0.0010 | time_forward 4.1600 | time_backward 5.7530 |
[2023-09-02 03:23:57,786::train::INFO] [train] Iter 05428 | loss 2.3238 | loss(rot) 1.4054 | loss(pos) 0.4161 | loss(seq) 0.5023 | grad 4.7454 | lr 0.0010 | time_forward 1.3380 | time_backward 1.4810 |
[2023-09-02 03:24:00,671::train::INFO] [train] Iter 05429 | loss 1.6598 | loss(rot) 0.1626 | loss(pos) 1.4809 | loss(seq) 0.0163 | grad 6.7920 | lr 0.0010 | time_forward 1.3830 | time_backward 1.4980 |
[2023-09-02 03:24:11,135::train::INFO] [train] Iter 05430 | loss 1.7553 | loss(rot) 0.9991 | loss(pos) 0.3619 | loss(seq) 0.3943 | grad 2.8121 | lr 0.0010 | time_forward 4.0730 | time_backward 6.3880 |
[2023-09-02 03:24:21,972::train::INFO] [train] Iter 05431 | loss 1.1847 | loss(rot) 0.4355 | loss(pos) 0.3447 | loss(seq) 0.4044 | grad 3.6417 | lr 0.0010 | time_forward 4.4800 | time_backward 6.3540 |
[2023-09-02 03:24:31,776::train::INFO] [train] Iter 05432 | loss 2.0484 | loss(rot) 1.8137 | loss(pos) 0.1051 | loss(seq) 0.1296 | grad 4.0392 | lr 0.0010 | time_forward 4.0660 | time_backward 5.7190 |
[2023-09-02 03:24:41,308::train::INFO] [train] Iter 05433 | loss 2.6263 | loss(rot) 2.4142 | loss(pos) 0.1557 | loss(seq) 0.0564 | grad 5.2527 | lr 0.0010 | time_forward 3.9840 | time_backward 5.5440 |
[2023-09-02 03:24:43,388::train::INFO] [train] Iter 05434 | loss 3.4644 | loss(rot) 0.2183 | loss(pos) 3.2440 | loss(seq) 0.0021 | grad 10.7444 | lr 0.0010 | time_forward 1.0110 | time_backward 1.0660 |
[2023-09-02 03:24:51,885::train::INFO] [train] Iter 05435 | loss 1.0975 | loss(rot) 0.1490 | loss(pos) 0.9137 | loss(seq) 0.0348 | grad 6.5484 | lr 0.0010 | time_forward 3.7010 | time_backward 4.7930 |
[2023-09-02 03:25:01,412::train::INFO] [train] Iter 05436 | loss 1.1467 | loss(rot) 0.4655 | loss(pos) 0.5995 | loss(seq) 0.0817 | grad 7.1343 | lr 0.0010 | time_forward 3.8450 | time_backward 5.6780 |
[2023-09-02 03:25:04,019::train::INFO] [train] Iter 05437 | loss 1.3570 | loss(rot) 0.1249 | loss(pos) 1.0058 | loss(seq) 0.2264 | grad 5.6006 | lr 0.0010 | time_forward 1.3890 | time_backward 1.2140 |
[2023-09-02 03:25:14,158::train::INFO] [train] Iter 05438 | loss 2.3487 | loss(rot) 2.1606 | loss(pos) 0.1881 | loss(seq) 0.0000 | grad 7.5832 | lr 0.0010 | time_forward 4.3750 | time_backward 5.7600 |
[2023-09-02 03:25:22,883::train::INFO] [train] Iter 05439 | loss 3.3271 | loss(rot) 2.7857 | loss(pos) 0.4965 | loss(seq) 0.0449 | grad 6.1064 | lr 0.0010 | time_forward 3.6040 | time_backward 5.1180 |
[2023-09-02 03:25:31,980::train::INFO] [train] Iter 05440 | loss 1.0780 | loss(rot) 0.5690 | loss(pos) 0.2676 | loss(seq) 0.2414 | grad 4.2203 | lr 0.0010 | time_forward 3.7600 | time_backward 5.3340 |
[2023-09-02 03:25:42,602::train::INFO] [train] Iter 05441 | loss 2.3026 | loss(rot) 2.0002 | loss(pos) 0.2505 | loss(seq) 0.0519 | grad 5.8516 | lr 0.0010 | time_forward 4.3610 | time_backward 6.2570 |
[2023-09-02 03:25:45,440::train::INFO] [train] Iter 05442 | loss 1.3142 | loss(rot) 0.0695 | loss(pos) 0.8651 | loss(seq) 0.3797 | grad 6.0339 | lr 0.0010 | time_forward 1.3960 | time_backward 1.4390 |
[2023-09-02 03:25:55,959::train::INFO] [train] Iter 05443 | loss 2.5142 | loss(rot) 1.7361 | loss(pos) 0.2849 | loss(seq) 0.4932 | grad 3.2805 | lr 0.0010 | time_forward 4.2990 | time_backward 6.2170 |
[2023-09-02 03:26:05,993::train::INFO] [train] Iter 05444 | loss 1.4133 | loss(rot) 0.6393 | loss(pos) 0.6022 | loss(seq) 0.1718 | grad 3.6449 | lr 0.0010 | time_forward 4.2110 | time_backward 5.8170 |
[2023-09-02 03:26:09,682::train::INFO] [train] Iter 05445 | loss 2.6149 | loss(rot) 2.4253 | loss(pos) 0.1802 | loss(seq) 0.0094 | grad 3.5150 | lr 0.0010 | time_forward 1.5590 | time_backward 2.1270 |
[2023-09-02 03:26:20,157::train::INFO] [train] Iter 05446 | loss 2.1394 | loss(rot) 1.1184 | loss(pos) 0.4439 | loss(seq) 0.5771 | grad 4.7822 | lr 0.0010 | time_forward 4.4020 | time_backward 6.0690 |
[2023-09-02 03:26:30,198::train::INFO] [train] Iter 05447 | loss 2.7043 | loss(rot) 1.8281 | loss(pos) 0.4104 | loss(seq) 0.4658 | grad 3.7179 | lr 0.0010 | time_forward 4.1230 | time_backward 5.9140 |
[2023-09-02 03:26:40,501::train::INFO] [train] Iter 05448 | loss 1.4975 | loss(rot) 0.6510 | loss(pos) 0.3546 | loss(seq) 0.4919 | grad 3.8415 | lr 0.0010 | time_forward 4.0490 | time_backward 6.2500 |
[2023-09-02 03:26:49,523::train::INFO] [train] Iter 05449 | loss 2.4780 | loss(rot) 2.1400 | loss(pos) 0.1278 | loss(seq) 0.2103 | grad 5.5160 | lr 0.0010 | time_forward 3.9540 | time_backward 5.0560 |
[2023-09-02 03:26:52,310::train::INFO] [train] Iter 05450 | loss 1.6671 | loss(rot) 1.4836 | loss(pos) 0.1747 | loss(seq) 0.0088 | grad 4.1082 | lr 0.0010 | time_forward 1.2810 | time_backward 1.5030 |
[2023-09-02 03:27:02,966::train::INFO] [train] Iter 05451 | loss 2.7076 | loss(rot) 2.2555 | loss(pos) 0.4519 | loss(seq) 0.0001 | grad 4.3490 | lr 0.0010 | time_forward 4.2100 | time_backward 6.4210 |
[2023-09-02 03:27:11,868::train::INFO] [train] Iter 05452 | loss 3.0414 | loss(rot) 2.5754 | loss(pos) 0.3315 | loss(seq) 0.1345 | grad 5.4548 | lr 0.0010 | time_forward 3.8590 | time_backward 5.0400 |
[2023-09-02 03:27:15,185::train::INFO] [train] Iter 05453 | loss 2.8409 | loss(rot) 1.9714 | loss(pos) 0.3272 | loss(seq) 0.5423 | grad 4.0084 | lr 0.0010 | time_forward 1.4320 | time_backward 1.8810 |
[2023-09-02 03:27:24,651::train::INFO] [train] Iter 05454 | loss 2.4786 | loss(rot) 2.0790 | loss(pos) 0.3394 | loss(seq) 0.0603 | grad 4.4731 | lr 0.0010 | time_forward 4.1000 | time_backward 5.3620 |
[2023-09-02 03:27:33,765::train::INFO] [train] Iter 05455 | loss 3.1717 | loss(rot) 2.0207 | loss(pos) 0.5707 | loss(seq) 0.5804 | grad 4.0018 | lr 0.0010 | time_forward 3.8270 | time_backward 5.2830 |
[2023-09-02 03:27:42,169::train::INFO] [train] Iter 05456 | loss 1.6284 | loss(rot) 1.0079 | loss(pos) 0.0890 | loss(seq) 0.5316 | grad 4.2397 | lr 0.0010 | time_forward 3.5690 | time_backward 4.8310 |
[2023-09-02 03:27:54,375::train::INFO] [train] Iter 05457 | loss 2.2170 | loss(rot) 1.5238 | loss(pos) 0.2835 | loss(seq) 0.4097 | grad 4.1298 | lr 0.0010 | time_forward 4.3060 | time_backward 7.8970 |
[2023-09-02 03:28:03,434::train::INFO] [train] Iter 05458 | loss 1.2877 | loss(rot) 0.5768 | loss(pos) 0.4212 | loss(seq) 0.2897 | grad 4.4401 | lr 0.0010 | time_forward 3.8400 | time_backward 5.2140 |
[2023-09-02 03:28:06,159::train::INFO] [train] Iter 05459 | loss 2.4690 | loss(rot) 1.5343 | loss(pos) 0.4187 | loss(seq) 0.5160 | grad 4.8441 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4650 |
[2023-09-02 03:28:15,447::train::INFO] [train] Iter 05460 | loss 1.7444 | loss(rot) 1.4435 | loss(pos) 0.1337 | loss(seq) 0.1671 | grad 4.6225 | lr 0.0010 | time_forward 3.9110 | time_backward 5.3730 |
[2023-09-02 03:28:18,135::train::INFO] [train] Iter 05461 | loss 1.8030 | loss(rot) 1.1612 | loss(pos) 0.1555 | loss(seq) 0.4863 | grad 2.9170 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4060 |
[2023-09-02 03:28:28,684::train::INFO] [train] Iter 05462 | loss 1.3306 | loss(rot) 0.2782 | loss(pos) 0.7295 | loss(seq) 0.3229 | grad 5.3724 | lr 0.0010 | time_forward 4.4530 | time_backward 6.0930 |
[2023-09-02 03:28:39,311::train::INFO] [train] Iter 05463 | loss 1.5300 | loss(rot) 0.3804 | loss(pos) 1.1036 | loss(seq) 0.0460 | grad 6.8636 | lr 0.0010 | time_forward 4.3120 | time_backward 6.3120 |
[2023-09-02 03:28:46,899::train::INFO] [train] Iter 05464 | loss 1.3915 | loss(rot) 0.4694 | loss(pos) 0.7816 | loss(seq) 0.1405 | grad 5.8432 | lr 0.0010 | time_forward 3.2790 | time_backward 4.3050 |
[2023-09-02 03:28:57,355::train::INFO] [train] Iter 05465 | loss 3.1594 | loss(rot) 2.1189 | loss(pos) 0.5065 | loss(seq) 0.5339 | grad 4.6073 | lr 0.0010 | time_forward 4.3240 | time_backward 6.1280 |
[2023-09-02 03:29:00,028::train::INFO] [train] Iter 05466 | loss 2.2080 | loss(rot) 2.0767 | loss(pos) 0.1310 | loss(seq) 0.0003 | grad 4.1350 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4100 |
[2023-09-02 03:29:10,090::train::INFO] [train] Iter 05467 | loss 1.9513 | loss(rot) 0.6775 | loss(pos) 0.6931 | loss(seq) 0.5807 | grad 5.4107 | lr 0.0010 | time_forward 4.1730 | time_backward 5.8860 |
[2023-09-02 03:29:17,803::train::INFO] [train] Iter 05468 | loss 1.8679 | loss(rot) 1.0990 | loss(pos) 0.3342 | loss(seq) 0.4347 | grad 4.8978 | lr 0.0010 | time_forward 3.2760 | time_backward 4.4340 |
[2023-09-02 03:29:20,500::train::INFO] [train] Iter 05469 | loss 2.3051 | loss(rot) 1.4869 | loss(pos) 0.3147 | loss(seq) 0.5036 | grad 3.8998 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4050 |
[2023-09-02 03:29:29,850::train::INFO] [train] Iter 05470 | loss 1.4632 | loss(rot) 0.6883 | loss(pos) 0.3143 | loss(seq) 0.4607 | grad 3.9785 | lr 0.0010 | time_forward 3.9420 | time_backward 5.4050 |
[2023-09-02 03:29:32,524::train::INFO] [train] Iter 05471 | loss 0.9196 | loss(rot) 0.2876 | loss(pos) 0.5543 | loss(seq) 0.0778 | grad 4.4306 | lr 0.0010 | time_forward 1.2690 | time_backward 1.4020 |
[2023-09-02 03:29:35,973::train::INFO] [train] Iter 05472 | loss 2.5296 | loss(rot) 2.1784 | loss(pos) 0.2575 | loss(seq) 0.0937 | grad 4.8576 | lr 0.0010 | time_forward 1.4520 | time_backward 1.9740 |
[2023-09-02 03:29:44,493::train::INFO] [train] Iter 05473 | loss 2.1862 | loss(rot) 1.5598 | loss(pos) 0.2418 | loss(seq) 0.3846 | grad 4.4533 | lr 0.0010 | time_forward 3.6600 | time_backward 4.8560 |
[2023-09-02 03:29:47,167::train::INFO] [train] Iter 05474 | loss 1.7732 | loss(rot) 0.8703 | loss(pos) 0.3374 | loss(seq) 0.5655 | grad 5.1720 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4160 |
[2023-09-02 03:29:55,238::train::INFO] [train] Iter 05475 | loss 1.8691 | loss(rot) 1.4586 | loss(pos) 0.1011 | loss(seq) 0.3094 | grad 3.5218 | lr 0.0010 | time_forward 3.4520 | time_backward 4.5790 |
[2023-09-02 03:29:57,554::train::INFO] [train] Iter 05476 | loss 2.7793 | loss(rot) 2.1977 | loss(pos) 0.1474 | loss(seq) 0.4342 | grad 5.9783 | lr 0.0010 | time_forward 1.1150 | time_backward 1.1960 |
[2023-09-02 03:30:06,916::train::INFO] [train] Iter 05477 | loss 2.0735 | loss(rot) 1.4082 | loss(pos) 0.1987 | loss(seq) 0.4666 | grad 3.8239 | lr 0.0010 | time_forward 3.9610 | time_backward 5.3990 |
[2023-09-02 03:30:15,434::train::INFO] [train] Iter 05478 | loss 2.4429 | loss(rot) 2.2209 | loss(pos) 0.2096 | loss(seq) 0.0124 | grad 3.6575 | lr 0.0010 | time_forward 3.6080 | time_backward 4.9060 |
[2023-09-02 03:30:25,476::train::INFO] [train] Iter 05479 | loss 2.5251 | loss(rot) 2.3843 | loss(pos) 0.1334 | loss(seq) 0.0074 | grad 3.2045 | lr 0.0010 | time_forward 4.1450 | time_backward 5.8940 |
[2023-09-02 03:30:35,447::train::INFO] [train] Iter 05480 | loss 2.5572 | loss(rot) 1.9268 | loss(pos) 0.2728 | loss(seq) 0.3577 | grad 3.5447 | lr 0.0010 | time_forward 4.0910 | time_backward 5.8620 |
[2023-09-02 03:30:42,974::train::INFO] [train] Iter 05481 | loss 1.5945 | loss(rot) 1.0275 | loss(pos) 0.2188 | loss(seq) 0.3482 | grad 4.7048 | lr 0.0010 | time_forward 3.1770 | time_backward 4.3480 |
[2023-09-02 03:30:52,226::train::INFO] [train] Iter 05482 | loss 2.3908 | loss(rot) 1.6336 | loss(pos) 0.2787 | loss(seq) 0.4785 | grad 6.2032 | lr 0.0010 | time_forward 3.9000 | time_backward 5.3490 |
[2023-09-02 03:30:59,707::train::INFO] [train] Iter 05483 | loss 1.8997 | loss(rot) 0.5990 | loss(pos) 0.5252 | loss(seq) 0.7755 | grad 4.5344 | lr 0.0010 | time_forward 3.1440 | time_backward 4.3340 |
[2023-09-02 03:31:09,031::train::INFO] [train] Iter 05484 | loss 1.8506 | loss(rot) 0.9065 | loss(pos) 0.6012 | loss(seq) 0.3428 | grad 5.0523 | lr 0.0010 | time_forward 3.9060 | time_backward 5.4130 |
[2023-09-02 03:31:18,141::train::INFO] [train] Iter 05485 | loss 2.0751 | loss(rot) 0.0397 | loss(pos) 2.0322 | loss(seq) 0.0032 | grad 8.4216 | lr 0.0010 | time_forward 3.7970 | time_backward 5.3100 |
[2023-09-02 03:31:28,160::train::INFO] [train] Iter 05486 | loss 1.6021 | loss(rot) 0.7139 | loss(pos) 0.6115 | loss(seq) 0.2767 | grad 6.0828 | lr 0.0010 | time_forward 4.0570 | time_backward 5.9590 |
[2023-09-02 03:31:31,002::train::INFO] [train] Iter 05487 | loss 2.1495 | loss(rot) 1.3181 | loss(pos) 0.4115 | loss(seq) 0.4199 | grad 4.5415 | lr 0.0010 | time_forward 1.3300 | time_backward 1.5090 |
[2023-09-02 03:31:33,900::train::INFO] [train] Iter 05488 | loss 0.9107 | loss(rot) 0.2274 | loss(pos) 0.6347 | loss(seq) 0.0486 | grad 4.9661 | lr 0.0010 | time_forward 1.3490 | time_backward 1.5450 |
[2023-09-02 03:31:37,303::train::INFO] [train] Iter 05489 | loss 2.5508 | loss(rot) 2.2604 | loss(pos) 0.2792 | loss(seq) 0.0112 | grad 5.3373 | lr 0.0010 | time_forward 1.4510 | time_backward 1.9500 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.