text
stringlengths
56
1.16k
[2023-09-02 03:31:47,226::train::INFO] [train] Iter 05490 | loss 2.3846 | loss(rot) 1.3938 | loss(pos) 0.4133 | loss(seq) 0.5774 | grad 5.2851 | lr 0.0010 | time_forward 3.9860 | time_backward 5.9330
[2023-09-02 03:31:57,418::train::INFO] [train] Iter 05491 | loss 0.9829 | loss(rot) 0.2984 | loss(pos) 0.6031 | loss(seq) 0.0814 | grad 6.2960 | lr 0.0010 | time_forward 4.1470 | time_backward 6.0410
[2023-09-02 03:32:07,387::train::INFO] [train] Iter 05492 | loss 1.4833 | loss(rot) 0.7588 | loss(pos) 0.2767 | loss(seq) 0.4478 | grad 4.0493 | lr 0.0010 | time_forward 4.1420 | time_backward 5.8230
[2023-09-02 03:32:17,834::train::INFO] [train] Iter 05493 | loss 2.4357 | loss(rot) 1.7182 | loss(pos) 0.2478 | loss(seq) 0.4697 | grad 3.2941 | lr 0.0010 | time_forward 4.4190 | time_backward 6.0250
[2023-09-02 03:32:28,262::train::INFO] [train] Iter 05494 | loss 1.1934 | loss(rot) 0.1158 | loss(pos) 0.9065 | loss(seq) 0.1710 | grad 6.3769 | lr 0.0010 | time_forward 4.4570 | time_backward 5.9640
[2023-09-02 03:32:30,739::train::INFO] [train] Iter 05495 | loss 3.8725 | loss(rot) 0.1500 | loss(pos) 3.7225 | loss(seq) 0.0000 | grad 9.3794 | lr 0.0010 | time_forward 1.1950 | time_backward 1.2780
[2023-09-02 03:32:40,116::train::INFO] [train] Iter 05496 | loss 1.1866 | loss(rot) 0.6681 | loss(pos) 0.3775 | loss(seq) 0.1409 | grad 5.2064 | lr 0.0010 | time_forward 4.0430 | time_backward 5.3100
[2023-09-02 03:32:42,818::train::INFO] [train] Iter 05497 | loss 2.3461 | loss(rot) 2.1179 | loss(pos) 0.2278 | loss(seq) 0.0003 | grad 4.7072 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4500
[2023-09-02 03:32:45,596::train::INFO] [train] Iter 05498 | loss 2.2153 | loss(rot) 1.5727 | loss(pos) 0.2409 | loss(seq) 0.4018 | grad 4.1646 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4790
[2023-09-02 03:32:48,301::train::INFO] [train] Iter 05499 | loss 2.2445 | loss(rot) 2.0183 | loss(pos) 0.1714 | loss(seq) 0.0547 | grad 6.4189 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4530
[2023-09-02 03:32:58,220::train::INFO] [train] Iter 05500 | loss 2.3209 | loss(rot) 2.1056 | loss(pos) 0.2142 | loss(seq) 0.0011 | grad 5.5418 | lr 0.0010 | time_forward 4.0650 | time_backward 5.8220
[2023-09-02 03:33:08,119::train::INFO] [train] Iter 05501 | loss 1.5045 | loss(rot) 0.4534 | loss(pos) 0.9590 | loss(seq) 0.0921 | grad 5.7939 | lr 0.0010 | time_forward 3.9940 | time_backward 5.9010
[2023-09-02 03:33:16,394::train::INFO] [train] Iter 05502 | loss 2.4052 | loss(rot) 1.6205 | loss(pos) 0.2495 | loss(seq) 0.5353 | grad 4.3579 | lr 0.0010 | time_forward 3.4480 | time_backward 4.8120
[2023-09-02 03:33:19,123::train::INFO] [train] Iter 05503 | loss 2.1567 | loss(rot) 1.9928 | loss(pos) 0.0994 | loss(seq) 0.0645 | grad 3.6843 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4630
[2023-09-02 03:33:21,839::train::INFO] [train] Iter 05504 | loss 2.2421 | loss(rot) 2.1366 | loss(pos) 0.0670 | loss(seq) 0.0385 | grad 4.1610 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4490
[2023-09-02 03:33:31,847::train::INFO] [train] Iter 05505 | loss 2.2060 | loss(rot) 1.5724 | loss(pos) 0.1945 | loss(seq) 0.4391 | grad 3.2155 | lr 0.0010 | time_forward 4.1380 | time_backward 5.8660
[2023-09-02 03:33:40,045::train::INFO] [train] Iter 05506 | loss 2.7098 | loss(rot) 2.5338 | loss(pos) 0.0898 | loss(seq) 0.0863 | grad 2.9845 | lr 0.0010 | time_forward 3.4740 | time_backward 4.7210
[2023-09-02 03:33:48,489::train::INFO] [train] Iter 05507 | loss 2.0379 | loss(rot) 1.3674 | loss(pos) 0.1687 | loss(seq) 0.5019 | grad 4.3895 | lr 0.0010 | time_forward 3.6000 | time_backward 4.8410
[2023-09-02 03:33:56,758::train::INFO] [train] Iter 05508 | loss 1.1958 | loss(rot) 0.7391 | loss(pos) 0.1199 | loss(seq) 0.3367 | grad 2.8178 | lr 0.0010 | time_forward 3.4140 | time_backward 4.8510
[2023-09-02 03:33:59,043::train::INFO] [train] Iter 05509 | loss 1.7773 | loss(rot) 1.1243 | loss(pos) 0.1618 | loss(seq) 0.4912 | grad 4.7085 | lr 0.0010 | time_forward 1.0580 | time_backward 1.2240
[2023-09-02 03:34:02,356::train::INFO] [train] Iter 05510 | loss 2.1225 | loss(rot) 2.0022 | loss(pos) 0.1069 | loss(seq) 0.0134 | grad 3.0288 | lr 0.0010 | time_forward 1.4260 | time_backward 1.8840
[2023-09-02 03:34:09,895::train::INFO] [train] Iter 05511 | loss 2.0449 | loss(rot) 0.8918 | loss(pos) 0.5561 | loss(seq) 0.5970 | grad 5.5160 | lr 0.0010 | time_forward 3.2280 | time_backward 4.3080
[2023-09-02 03:34:18,609::train::INFO] [train] Iter 05512 | loss 1.8058 | loss(rot) 0.1056 | loss(pos) 1.6919 | loss(seq) 0.0083 | grad 7.1082 | lr 0.0010 | time_forward 3.6880 | time_backward 5.0220
[2023-09-02 03:34:28,695::train::INFO] [train] Iter 05513 | loss 1.5079 | loss(rot) 1.3836 | loss(pos) 0.0679 | loss(seq) 0.0564 | grad 4.0234 | lr 0.0010 | time_forward 4.1050 | time_backward 5.9780
[2023-09-02 03:34:37,149::train::INFO] [train] Iter 05514 | loss 1.2451 | loss(rot) 0.4145 | loss(pos) 0.8053 | loss(seq) 0.0253 | grad 4.2575 | lr 0.0010 | time_forward 3.5430 | time_backward 4.9080
[2023-09-02 03:34:46,897::train::INFO] [train] Iter 05515 | loss 2.8785 | loss(rot) 2.6640 | loss(pos) 0.2095 | loss(seq) 0.0049 | grad 4.6848 | lr 0.0010 | time_forward 3.8690 | time_backward 5.8750
[2023-09-02 03:34:56,072::train::INFO] [train] Iter 05516 | loss 2.6337 | loss(rot) 2.1832 | loss(pos) 0.2539 | loss(seq) 0.1966 | grad 4.8093 | lr 0.0010 | time_forward 3.8420 | time_backward 5.3290
[2023-09-02 03:35:05,247::train::INFO] [train] Iter 05517 | loss 1.1203 | loss(rot) 0.3657 | loss(pos) 0.5235 | loss(seq) 0.2312 | grad 3.9425 | lr 0.0010 | time_forward 3.7900 | time_backward 5.3820
[2023-09-02 03:35:11,766::train::INFO] [train] Iter 05518 | loss 2.3940 | loss(rot) 1.8200 | loss(pos) 0.1240 | loss(seq) 0.4500 | grad 2.6456 | lr 0.0010 | time_forward 2.7270 | time_backward 3.7880
[2023-09-02 03:35:14,535::train::INFO] [train] Iter 05519 | loss 2.3379 | loss(rot) 2.0734 | loss(pos) 0.1349 | loss(seq) 0.1296 | grad 4.2566 | lr 0.0010 | time_forward 1.3300 | time_backward 1.4370
[2023-09-02 03:35:23,995::train::INFO] [train] Iter 05520 | loss 1.8732 | loss(rot) 1.6226 | loss(pos) 0.2503 | loss(seq) 0.0003 | grad 3.9719 | lr 0.0010 | time_forward 3.9030 | time_backward 5.5540
[2023-09-02 03:35:32,967::train::INFO] [train] Iter 05521 | loss 1.9845 | loss(rot) 1.5508 | loss(pos) 0.1329 | loss(seq) 0.3007 | grad 4.4965 | lr 0.0010 | time_forward 3.7660 | time_backward 5.2020
[2023-09-02 03:35:41,666::train::INFO] [train] Iter 05522 | loss 1.1500 | loss(rot) 0.2845 | loss(pos) 0.8298 | loss(seq) 0.0357 | grad 4.2829 | lr 0.0010 | time_forward 3.7040 | time_backward 4.9910
[2023-09-02 03:35:51,023::train::INFO] [train] Iter 05523 | loss 1.4316 | loss(rot) 0.5746 | loss(pos) 0.2191 | loss(seq) 0.6379 | grad 3.6789 | lr 0.0010 | time_forward 3.9080 | time_backward 5.4410
[2023-09-02 03:36:01,427::train::INFO] [train] Iter 05524 | loss 0.9884 | loss(rot) 0.2724 | loss(pos) 0.6259 | loss(seq) 0.0900 | grad 3.3522 | lr 0.0010 | time_forward 4.3550 | time_backward 6.0460
[2023-09-02 03:36:11,727::train::INFO] [train] Iter 05525 | loss 2.0710 | loss(rot) 0.2708 | loss(pos) 1.7902 | loss(seq) 0.0100 | grad 5.7697 | lr 0.0010 | time_forward 4.1870 | time_backward 6.1090
[2023-09-02 03:36:20,461::train::INFO] [train] Iter 05526 | loss 3.1810 | loss(rot) 0.0086 | loss(pos) 3.1717 | loss(seq) 0.0007 | grad 7.5511 | lr 0.0010 | time_forward 3.7200 | time_backward 5.0110
[2023-09-02 03:36:23,858::train::INFO] [train] Iter 05527 | loss 2.9477 | loss(rot) 2.3754 | loss(pos) 0.2715 | loss(seq) 0.3007 | grad 2.8576 | lr 0.0010 | time_forward 1.4210 | time_backward 1.9730
[2023-09-02 03:36:32,345::train::INFO] [train] Iter 05528 | loss 1.4781 | loss(rot) 0.4303 | loss(pos) 0.7677 | loss(seq) 0.2801 | grad 4.5120 | lr 0.0010 | time_forward 3.6430 | time_backward 4.8420
[2023-09-02 03:36:35,118::train::INFO] [train] Iter 05529 | loss 1.2134 | loss(rot) 0.2339 | loss(pos) 0.6475 | loss(seq) 0.3319 | grad 3.2487 | lr 0.0010 | time_forward 1.3500 | time_backward 1.4190
[2023-09-02 03:36:41,718::train::INFO] [train] Iter 05530 | loss 1.9636 | loss(rot) 0.9581 | loss(pos) 0.5657 | loss(seq) 0.4398 | grad 6.6849 | lr 0.0010 | time_forward 2.7940 | time_backward 3.8020
[2023-09-02 03:36:44,404::train::INFO] [train] Iter 05531 | loss 2.0730 | loss(rot) 1.8939 | loss(pos) 0.1191 | loss(seq) 0.0600 | grad 3.4841 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4080
[2023-09-02 03:36:46,122::train::INFO] [train] Iter 05532 | loss 2.3959 | loss(rot) 1.2706 | loss(pos) 0.5455 | loss(seq) 0.5798 | grad 3.4176 | lr 0.0010 | time_forward 0.7880 | time_backward 0.9260
[2023-09-02 03:36:56,899::train::INFO] [train] Iter 05533 | loss 2.9830 | loss(rot) 2.7809 | loss(pos) 0.1486 | loss(seq) 0.0536 | grad 2.9190 | lr 0.0010 | time_forward 4.4260 | time_backward 6.3480
[2023-09-02 03:37:05,463::train::INFO] [train] Iter 05534 | loss 1.0733 | loss(rot) 0.2019 | loss(pos) 0.3291 | loss(seq) 0.5423 | grad 3.8150 | lr 0.0010 | time_forward 3.6540 | time_backward 4.9070
[2023-09-02 03:37:15,566::train::INFO] [train] Iter 05535 | loss 1.9742 | loss(rot) 1.7739 | loss(pos) 0.1955 | loss(seq) 0.0048 | grad 3.5376 | lr 0.0010 | time_forward 4.0790 | time_backward 6.0200
[2023-09-02 03:37:23,702::train::INFO] [train] Iter 05536 | loss 2.5754 | loss(rot) 1.8652 | loss(pos) 0.3139 | loss(seq) 0.3963 | grad 4.6166 | lr 0.0010 | time_forward 3.4330 | time_backward 4.7010
[2023-09-02 03:37:27,112::train::INFO] [train] Iter 05537 | loss 2.4114 | loss(rot) 2.1092 | loss(pos) 0.1704 | loss(seq) 0.1317 | grad 4.2845 | lr 0.0010 | time_forward 1.4200 | time_backward 1.9860
[2023-09-02 03:37:35,935::train::INFO] [train] Iter 05538 | loss 1.6118 | loss(rot) 0.4362 | loss(pos) 0.5042 | loss(seq) 0.6713 | grad 3.5970 | lr 0.0010 | time_forward 3.6510 | time_backward 5.1680
[2023-09-02 03:37:44,182::train::INFO] [train] Iter 05539 | loss 2.0383 | loss(rot) 1.8508 | loss(pos) 0.0854 | loss(seq) 0.1021 | grad 3.8731 | lr 0.0010 | time_forward 3.4420 | time_backward 4.8020
[2023-09-02 03:37:52,841::train::INFO] [train] Iter 05540 | loss 3.0794 | loss(rot) 2.4481 | loss(pos) 0.2398 | loss(seq) 0.3914 | grad 3.2521 | lr 0.0010 | time_forward 3.5630 | time_backward 5.0920
[2023-09-02 03:38:03,431::train::INFO] [train] Iter 05541 | loss 1.2157 | loss(rot) 0.3597 | loss(pos) 0.7113 | loss(seq) 0.1447 | grad 5.8884 | lr 0.0010 | time_forward 4.1130 | time_backward 6.4730
[2023-09-02 03:38:12,043::train::INFO] [train] Iter 05542 | loss 2.7067 | loss(rot) 2.0599 | loss(pos) 0.1802 | loss(seq) 0.4666 | grad 3.7528 | lr 0.0010 | time_forward 3.6250 | time_backward 4.9700
[2023-09-02 03:38:21,863::train::INFO] [train] Iter 05543 | loss 1.8115 | loss(rot) 1.1547 | loss(pos) 0.1893 | loss(seq) 0.4676 | grad 4.6351 | lr 0.0010 | time_forward 4.0300 | time_backward 5.7860
[2023-09-02 03:38:31,812::train::INFO] [train] Iter 05544 | loss 3.0840 | loss(rot) 2.6607 | loss(pos) 0.4056 | loss(seq) 0.0177 | grad 3.7728 | lr 0.0010 | time_forward 3.9400 | time_backward 6.0050
[2023-09-02 03:38:41,850::train::INFO] [train] Iter 05545 | loss 3.1803 | loss(rot) 2.9017 | loss(pos) 0.2474 | loss(seq) 0.0312 | grad 4.3800 | lr 0.0010 | time_forward 4.0620 | time_backward 5.9740
[2023-09-02 03:38:44,718::train::INFO] [train] Iter 05546 | loss 2.5918 | loss(rot) 2.2532 | loss(pos) 0.3386 | loss(seq) 0.0000 | grad 3.5063 | lr 0.0010 | time_forward 1.3340 | time_backward 1.5300
[2023-09-02 03:38:53,914::train::INFO] [train] Iter 05547 | loss 1.5314 | loss(rot) 0.0271 | loss(pos) 1.4997 | loss(seq) 0.0046 | grad 6.7707 | lr 0.0010 | time_forward 3.8470 | time_backward 5.3460
[2023-09-02 03:39:03,818::train::INFO] [train] Iter 05548 | loss 2.0638 | loss(rot) 1.6149 | loss(pos) 0.2382 | loss(seq) 0.2107 | grad 6.2138 | lr 0.0010 | time_forward 3.9530 | time_backward 5.9480
[2023-09-02 03:39:12,980::train::INFO] [train] Iter 05549 | loss 2.6267 | loss(rot) 1.3229 | loss(pos) 0.9752 | loss(seq) 0.3286 | grad 6.3325 | lr 0.0010 | time_forward 3.8290 | time_backward 5.3290
[2023-09-02 03:39:16,437::train::INFO] [train] Iter 05550 | loss 1.4648 | loss(rot) 0.5784 | loss(pos) 0.2727 | loss(seq) 0.6136 | grad 3.2435 | lr 0.0010 | time_forward 1.4370 | time_backward 2.0170
[2023-09-02 03:39:19,180::train::INFO] [train] Iter 05551 | loss 1.7740 | loss(rot) 1.0786 | loss(pos) 0.3581 | loss(seq) 0.3373 | grad 5.9973 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4830
[2023-09-02 03:39:26,753::train::INFO] [train] Iter 05552 | loss 0.7950 | loss(rot) 0.0468 | loss(pos) 0.7383 | loss(seq) 0.0100 | grad 4.4155 | lr 0.0010 | time_forward 3.1570 | time_backward 4.4120
[2023-09-02 03:39:36,072::train::INFO] [train] Iter 05553 | loss 0.8887 | loss(rot) 0.7297 | loss(pos) 0.0968 | loss(seq) 0.0622 | grad 4.7558 | lr 0.0010 | time_forward 3.9970 | time_backward 5.3180
[2023-09-02 03:39:44,182::train::INFO] [train] Iter 05554 | loss 1.2118 | loss(rot) 0.4809 | loss(pos) 0.3768 | loss(seq) 0.3541 | grad 5.5762 | lr 0.0010 | time_forward 3.3490 | time_backward 4.7560
[2023-09-02 03:39:54,195::train::INFO] [train] Iter 05555 | loss 1.4657 | loss(rot) 0.7360 | loss(pos) 0.5489 | loss(seq) 0.1808 | grad 4.7092 | lr 0.0010 | time_forward 3.9880 | time_backward 6.0210
[2023-09-02 03:40:03,472::train::INFO] [train] Iter 05556 | loss 1.6005 | loss(rot) 0.2425 | loss(pos) 1.3438 | loss(seq) 0.0143 | grad 7.8834 | lr 0.0010 | time_forward 3.8750 | time_backward 5.3980
[2023-09-02 03:40:06,094::train::INFO] [train] Iter 05557 | loss 1.9920 | loss(rot) 0.7503 | loss(pos) 0.5100 | loss(seq) 0.7316 | grad 3.6437 | lr 0.0010 | time_forward 1.2300 | time_backward 1.3880
[2023-09-02 03:40:08,808::train::INFO] [train] Iter 05558 | loss 2.1879 | loss(rot) 1.2665 | loss(pos) 0.4006 | loss(seq) 0.5208 | grad 3.0387 | lr 0.0010 | time_forward 1.3040 | time_backward 1.4070
[2023-09-02 03:40:18,001::train::INFO] [train] Iter 05559 | loss 0.7312 | loss(rot) 0.2185 | loss(pos) 0.4458 | loss(seq) 0.0668 | grad 2.5216 | lr 0.0010 | time_forward 3.8890 | time_backward 5.3010
[2023-09-02 03:40:26,576::train::INFO] [train] Iter 05560 | loss 2.4506 | loss(rot) 2.0882 | loss(pos) 0.3621 | loss(seq) 0.0003 | grad 5.1550 | lr 0.0010 | time_forward 3.6760 | time_backward 4.8950
[2023-09-02 03:40:36,508::train::INFO] [train] Iter 05561 | loss 0.5548 | loss(rot) 0.1056 | loss(pos) 0.3739 | loss(seq) 0.0754 | grad 3.3181 | lr 0.0010 | time_forward 4.0360 | time_backward 5.8920
[2023-09-02 03:40:46,296::train::INFO] [train] Iter 05562 | loss 3.3068 | loss(rot) 2.6677 | loss(pos) 0.3429 | loss(seq) 0.2962 | grad 2.5241 | lr 0.0010 | time_forward 4.1550 | time_backward 5.6310
[2023-09-02 03:40:54,295::train::INFO] [train] Iter 05563 | loss 1.4661 | loss(rot) 0.5490 | loss(pos) 0.5724 | loss(seq) 0.3447 | grad 4.6026 | lr 0.0010 | time_forward 3.4470 | time_backward 4.5490
[2023-09-02 03:40:56,690::train::INFO] [train] Iter 05564 | loss 0.4912 | loss(rot) 0.1571 | loss(pos) 0.2469 | loss(seq) 0.0872 | grad 2.6260 | lr 0.0010 | time_forward 1.1440 | time_backward 1.2470
[2023-09-02 03:41:00,015::train::INFO] [train] Iter 05565 | loss 3.2136 | loss(rot) 1.5575 | loss(pos) 1.0943 | loss(seq) 0.5618 | grad 4.8690 | lr 0.0010 | time_forward 1.4570 | time_backward 1.8650
[2023-09-02 03:41:09,435::train::INFO] [train] Iter 05566 | loss 2.6791 | loss(rot) 2.3310 | loss(pos) 0.3396 | loss(seq) 0.0085 | grad 7.6146 | lr 0.0010 | time_forward 3.8980 | time_backward 5.5180
[2023-09-02 03:41:19,457::train::INFO] [train] Iter 05567 | loss 2.3033 | loss(rot) 1.1196 | loss(pos) 0.6442 | loss(seq) 0.5396 | grad 2.8403 | lr 0.0010 | time_forward 4.2280 | time_backward 5.7910
[2023-09-02 03:41:22,154::train::INFO] [train] Iter 05568 | loss 2.6835 | loss(rot) 0.0508 | loss(pos) 2.6307 | loss(seq) 0.0020 | grad 7.8993 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4260
[2023-09-02 03:41:24,877::train::INFO] [train] Iter 05569 | loss 2.4834 | loss(rot) 1.7065 | loss(pos) 0.2139 | loss(seq) 0.5631 | grad 4.6472 | lr 0.0010 | time_forward 1.3010 | time_backward 1.4190
[2023-09-02 03:41:27,549::train::INFO] [train] Iter 05570 | loss 3.0532 | loss(rot) 2.8074 | loss(pos) 0.1322 | loss(seq) 0.1137 | grad 2.9539 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4260
[2023-09-02 03:41:37,832::train::INFO] [train] Iter 05571 | loss 1.4245 | loss(rot) 0.5439 | loss(pos) 0.5372 | loss(seq) 0.3434 | grad 2.9976 | lr 0.0010 | time_forward 4.2260 | time_backward 6.0540
[2023-09-02 03:41:47,139::train::INFO] [train] Iter 05572 | loss 2.7022 | loss(rot) 2.1994 | loss(pos) 0.1323 | loss(seq) 0.3704 | grad 4.1159 | lr 0.0010 | time_forward 3.9560 | time_backward 5.3470
[2023-09-02 03:41:57,096::train::INFO] [train] Iter 05573 | loss 3.2546 | loss(rot) 0.6279 | loss(pos) 2.3656 | loss(seq) 0.2612 | grad 6.1347 | lr 0.0010 | time_forward 3.9770 | time_backward 5.9770
[2023-09-02 03:42:00,457::train::INFO] [train] Iter 05574 | loss 1.4188 | loss(rot) 0.5906 | loss(pos) 0.3508 | loss(seq) 0.4773 | grad 4.0653 | lr 0.0010 | time_forward 1.4300 | time_backward 1.9280
[2023-09-02 03:42:10,420::train::INFO] [train] Iter 05575 | loss 1.0231 | loss(rot) 0.3131 | loss(pos) 0.4792 | loss(seq) 0.2308 | grad 2.7441 | lr 0.0010 | time_forward 4.2680 | time_backward 5.6920
[2023-09-02 03:42:12,657::train::INFO] [train] Iter 05576 | loss 2.4738 | loss(rot) 2.2265 | loss(pos) 0.2272 | loss(seq) 0.0201 | grad 4.5902 | lr 0.0010 | time_forward 1.0490 | time_backward 1.1700
[2023-09-02 03:42:22,806::train::INFO] [train] Iter 05577 | loss 2.3971 | loss(rot) 1.4623 | loss(pos) 0.5240 | loss(seq) 0.4108 | grad 3.9214 | lr 0.0010 | time_forward 4.2990 | time_backward 5.8460
[2023-09-02 03:42:25,459::train::INFO] [train] Iter 05578 | loss 2.0736 | loss(rot) 1.6631 | loss(pos) 0.2280 | loss(seq) 0.1824 | grad 6.2456 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4010
[2023-09-02 03:42:35,613::train::INFO] [train] Iter 05579 | loss 2.8783 | loss(rot) 2.4233 | loss(pos) 0.2553 | loss(seq) 0.1997 | grad 4.4774 | lr 0.0010 | time_forward 4.1720 | time_backward 5.9790
[2023-09-02 03:42:44,327::train::INFO] [train] Iter 05580 | loss 2.4480 | loss(rot) 2.2548 | loss(pos) 0.1622 | loss(seq) 0.0309 | grad 5.7519 | lr 0.0010 | time_forward 3.6720 | time_backward 5.0380
[2023-09-02 03:42:55,410::train::INFO] [train] Iter 05581 | loss 0.7314 | loss(rot) 0.1198 | loss(pos) 0.4572 | loss(seq) 0.1544 | grad 2.5553 | lr 0.0010 | time_forward 4.2780 | time_backward 6.8010
[2023-09-02 03:43:03,542::train::INFO] [train] Iter 05582 | loss 1.9630 | loss(rot) 1.4763 | loss(pos) 0.0683 | loss(seq) 0.4184 | grad 4.0678 | lr 0.0010 | time_forward 3.4580 | time_backward 4.6710
[2023-09-02 03:43:13,604::train::INFO] [train] Iter 05583 | loss 2.7596 | loss(rot) 2.2256 | loss(pos) 0.2538 | loss(seq) 0.2801 | grad 2.8143 | lr 0.0010 | time_forward 4.2600 | time_backward 5.7980
[2023-09-02 03:43:22,809::train::INFO] [train] Iter 05584 | loss 2.9564 | loss(rot) 2.3288 | loss(pos) 0.1172 | loss(seq) 0.5104 | grad 3.5658 | lr 0.0010 | time_forward 3.8260 | time_backward 5.3760
[2023-09-02 03:43:32,163::train::INFO] [train] Iter 05585 | loss 2.7998 | loss(rot) 2.2837 | loss(pos) 0.1805 | loss(seq) 0.3356 | grad 3.4462 | lr 0.0010 | time_forward 3.8950 | time_backward 5.4550
[2023-09-02 03:43:42,286::train::INFO] [train] Iter 05586 | loss 1.5177 | loss(rot) 0.2673 | loss(pos) 1.2267 | loss(seq) 0.0237 | grad 4.4920 | lr 0.0010 | time_forward 4.0210 | time_backward 6.0980
[2023-09-02 03:43:52,329::train::INFO] [train] Iter 05587 | loss 2.6636 | loss(rot) 2.2085 | loss(pos) 0.0987 | loss(seq) 0.3564 | grad 3.7259 | lr 0.0010 | time_forward 3.9980 | time_backward 6.0420
[2023-09-02 03:44:01,057::train::INFO] [train] Iter 05588 | loss 2.5678 | loss(rot) 2.3634 | loss(pos) 0.1342 | loss(seq) 0.0703 | grad 3.1726 | lr 0.0010 | time_forward 3.7180 | time_backward 5.0060
[2023-09-02 03:44:08,702::train::INFO] [train] Iter 05589 | loss 2.2930 | loss(rot) 1.7254 | loss(pos) 0.2027 | loss(seq) 0.3650 | grad 5.0466 | lr 0.0010 | time_forward 3.2920 | time_backward 4.3490