text
stringlengths 56
1.16k
|
---|
[2023-09-02 03:55:45,660::train::INFO] [train] Iter 05690 | loss 1.6718 | loss(rot) 0.8309 | loss(pos) 0.4294 | loss(seq) 0.4116 | grad 3.3870 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4220 |
[2023-09-02 03:55:48,120::train::INFO] [train] Iter 05691 | loss 2.3646 | loss(rot) 2.1136 | loss(pos) 0.1612 | loss(seq) 0.0898 | grad 5.0626 | lr 0.0010 | time_forward 1.1960 | time_backward 1.2600 |
[2023-09-02 03:55:50,836::train::INFO] [train] Iter 05692 | loss 2.1501 | loss(rot) 1.6499 | loss(pos) 0.1194 | loss(seq) 0.3808 | grad 4.6413 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4170 |
[2023-09-02 03:56:01,619::train::INFO] [train] Iter 05693 | loss 2.5441 | loss(rot) 1.3249 | loss(pos) 0.5408 | loss(seq) 0.6784 | grad 2.6670 | lr 0.0010 | time_forward 4.2760 | time_backward 6.5030 |
[2023-09-02 03:56:14,708::train::INFO] [train] Iter 05694 | loss 2.4805 | loss(rot) 0.6763 | loss(pos) 1.3611 | loss(seq) 0.4430 | grad 3.8696 | lr 0.0010 | time_forward 4.7930 | time_backward 8.2920 |
[2023-09-02 03:56:17,652::train::INFO] [train] Iter 05695 | loss 2.2053 | loss(rot) 1.9910 | loss(pos) 0.0668 | loss(seq) 0.1475 | grad 3.2623 | lr 0.0010 | time_forward 1.5470 | time_backward 1.3930 |
[2023-09-02 03:56:20,417::train::INFO] [train] Iter 05696 | loss 2.1542 | loss(rot) 1.3741 | loss(pos) 0.3235 | loss(seq) 0.4566 | grad 4.1553 | lr 0.0010 | time_forward 1.3290 | time_backward 1.4340 |
[2023-09-02 03:56:23,137::train::INFO] [train] Iter 05697 | loss 1.9736 | loss(rot) 1.2245 | loss(pos) 0.3298 | loss(seq) 0.4193 | grad 5.1045 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4400 |
[2023-09-02 03:56:25,884::train::INFO] [train] Iter 05698 | loss 1.1563 | loss(rot) 0.2681 | loss(pos) 0.8683 | loss(seq) 0.0199 | grad 4.7731 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4040 |
[2023-09-02 03:56:28,721::train::INFO] [train] Iter 05699 | loss 2.2926 | loss(rot) 1.5871 | loss(pos) 0.2094 | loss(seq) 0.4961 | grad 4.7168 | lr 0.0010 | time_forward 1.4340 | time_backward 1.3910 |
[2023-09-02 03:56:37,216::train::INFO] [train] Iter 05700 | loss 1.8895 | loss(rot) 1.1151 | loss(pos) 0.1065 | loss(seq) 0.6679 | grad 3.5374 | lr 0.0010 | time_forward 3.6740 | time_backward 4.8170 |
[2023-09-02 03:56:47,333::train::INFO] [train] Iter 05701 | loss 2.9112 | loss(rot) 2.2579 | loss(pos) 0.2357 | loss(seq) 0.4176 | grad 3.5695 | lr 0.0010 | time_forward 4.4470 | time_backward 5.6660 |
[2023-09-02 03:56:56,678::train::INFO] [train] Iter 05702 | loss 3.6919 | loss(rot) 2.9201 | loss(pos) 0.3496 | loss(seq) 0.4221 | grad 5.3518 | lr 0.0010 | time_forward 4.0650 | time_backward 5.2770 |
[2023-09-02 03:57:02,717::train::INFO] [train] Iter 05703 | loss 2.4224 | loss(rot) 1.0756 | loss(pos) 0.8247 | loss(seq) 0.5221 | grad 5.2340 | lr 0.0010 | time_forward 2.6130 | time_backward 3.4230 |
[2023-09-02 03:57:09,606::train::INFO] [train] Iter 05704 | loss 2.9826 | loss(rot) 2.7317 | loss(pos) 0.0579 | loss(seq) 0.1930 | grad 4.7614 | lr 0.0010 | time_forward 2.8810 | time_backward 4.0050 |
[2023-09-02 03:57:12,513::train::INFO] [train] Iter 05705 | loss 1.6891 | loss(rot) 1.5429 | loss(pos) 0.1186 | loss(seq) 0.0276 | grad 3.4687 | lr 0.0010 | time_forward 1.4120 | time_backward 1.4910 |
[2023-09-02 03:57:22,880::train::INFO] [train] Iter 05706 | loss 2.1722 | loss(rot) 2.0186 | loss(pos) 0.1443 | loss(seq) 0.0093 | grad 3.6138 | lr 0.0010 | time_forward 4.4030 | time_backward 5.9610 |
[2023-09-02 03:57:32,322::train::INFO] [train] Iter 05707 | loss 0.7231 | loss(rot) 0.2294 | loss(pos) 0.1946 | loss(seq) 0.2992 | grad 2.3251 | lr 0.0010 | time_forward 4.0830 | time_backward 5.3550 |
[2023-09-02 03:57:42,686::train::INFO] [train] Iter 05708 | loss 1.1783 | loss(rot) 0.4938 | loss(pos) 0.2171 | loss(seq) 0.4675 | grad 3.2872 | lr 0.0010 | time_forward 4.5690 | time_backward 5.7910 |
[2023-09-02 03:57:45,505::train::INFO] [train] Iter 05709 | loss 2.7958 | loss(rot) 2.6228 | loss(pos) 0.1700 | loss(seq) 0.0030 | grad 5.2679 | lr 0.0010 | time_forward 1.3780 | time_backward 1.4370 |
[2023-09-02 03:57:55,547::train::INFO] [train] Iter 05710 | loss 1.1136 | loss(rot) 0.2902 | loss(pos) 0.5884 | loss(seq) 0.2350 | grad 3.8849 | lr 0.0010 | time_forward 4.0130 | time_backward 6.0270 |
[2023-09-02 03:57:58,396::train::INFO] [train] Iter 05711 | loss 0.8095 | loss(rot) 0.1243 | loss(pos) 0.6647 | loss(seq) 0.0205 | grad 3.9653 | lr 0.0010 | time_forward 1.4300 | time_backward 1.4160 |
[2023-09-02 03:58:06,280::train::INFO] [train] Iter 05712 | loss 2.1038 | loss(rot) 1.4890 | loss(pos) 0.2455 | loss(seq) 0.3693 | grad 4.6165 | lr 0.0010 | time_forward 3.3810 | time_backward 4.4990 |
[2023-09-02 03:58:13,778::train::INFO] [train] Iter 05713 | loss 2.1624 | loss(rot) 2.0342 | loss(pos) 0.1191 | loss(seq) 0.0091 | grad 3.6812 | lr 0.0010 | time_forward 3.2370 | time_backward 4.2570 |
[2023-09-02 03:58:23,835::train::INFO] [train] Iter 05714 | loss 2.2113 | loss(rot) 1.8358 | loss(pos) 0.1259 | loss(seq) 0.2495 | grad 4.7596 | lr 0.0010 | time_forward 4.1970 | time_backward 5.8570 |
[2023-09-02 03:58:33,777::train::INFO] [train] Iter 05715 | loss 3.1041 | loss(rot) 2.9045 | loss(pos) 0.1996 | loss(seq) 0.0000 | grad 3.0870 | lr 0.0010 | time_forward 3.9990 | time_backward 5.9390 |
[2023-09-02 03:58:43,811::train::INFO] [train] Iter 05716 | loss 2.4024 | loss(rot) 1.6367 | loss(pos) 0.2850 | loss(seq) 0.4806 | grad 3.7705 | lr 0.0010 | time_forward 4.2600 | time_backward 5.7710 |
[2023-09-02 03:58:53,819::train::INFO] [train] Iter 05717 | loss 2.2659 | loss(rot) 1.4085 | loss(pos) 0.3053 | loss(seq) 0.5522 | grad 2.8814 | lr 0.0010 | time_forward 4.0720 | time_backward 5.9330 |
[2023-09-02 03:58:56,306::train::INFO] [train] Iter 05718 | loss 2.0646 | loss(rot) 1.3312 | loss(pos) 0.2035 | loss(seq) 0.5299 | grad 4.7239 | lr 0.0010 | time_forward 1.1940 | time_backward 1.2890 |
[2023-09-02 03:59:04,715::train::INFO] [train] Iter 05719 | loss 1.5700 | loss(rot) 1.0105 | loss(pos) 0.2879 | loss(seq) 0.2716 | grad 4.5158 | lr 0.0010 | time_forward 3.4590 | time_backward 4.9280 |
[2023-09-02 03:59:07,555::train::INFO] [train] Iter 05720 | loss 1.3315 | loss(rot) 1.1262 | loss(pos) 0.2053 | loss(seq) 0.0000 | grad 5.6045 | lr 0.0010 | time_forward 1.3640 | time_backward 1.4720 |
[2023-09-02 03:59:09,930::train::INFO] [train] Iter 05721 | loss 2.2983 | loss(rot) 1.6053 | loss(pos) 0.1862 | loss(seq) 0.5068 | grad 4.4510 | lr 0.0010 | time_forward 1.1400 | time_backward 1.2050 |
[2023-09-02 03:59:18,762::train::INFO] [train] Iter 05722 | loss 2.0361 | loss(rot) 1.9784 | loss(pos) 0.0545 | loss(seq) 0.0032 | grad 4.4085 | lr 0.0010 | time_forward 3.7720 | time_backward 5.0560 |
[2023-09-02 03:59:28,620::train::INFO] [train] Iter 05723 | loss 1.3078 | loss(rot) 0.4424 | loss(pos) 0.2512 | loss(seq) 0.6142 | grad 3.3524 | lr 0.0010 | time_forward 3.9750 | time_backward 5.8800 |
[2023-09-02 03:59:36,040::train::INFO] [train] Iter 05724 | loss 1.6083 | loss(rot) 0.9711 | loss(pos) 0.3121 | loss(seq) 0.3252 | grad 5.5609 | lr 0.0010 | time_forward 3.1740 | time_backward 4.2420 |
[2023-09-02 03:59:38,766::train::INFO] [train] Iter 05725 | loss 2.7346 | loss(rot) 2.4722 | loss(pos) 0.1312 | loss(seq) 0.1312 | grad 3.0004 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4400 |
[2023-09-02 03:59:47,516::train::INFO] [train] Iter 05726 | loss 1.3185 | loss(rot) 0.6323 | loss(pos) 0.3167 | loss(seq) 0.3695 | grad 3.9094 | lr 0.0010 | time_forward 3.7080 | time_backward 5.0080 |
[2023-09-02 03:59:55,357::train::INFO] [train] Iter 05727 | loss 1.9879 | loss(rot) 1.5585 | loss(pos) 0.2219 | loss(seq) 0.2075 | grad 5.3413 | lr 0.0010 | time_forward 3.3220 | time_backward 4.5150 |
[2023-09-02 04:00:05,182::train::INFO] [train] Iter 05728 | loss 3.3884 | loss(rot) 2.7883 | loss(pos) 0.1719 | loss(seq) 0.4282 | grad 2.7027 | lr 0.0010 | time_forward 4.0500 | time_backward 5.7710 |
[2023-09-02 04:00:15,330::train::INFO] [train] Iter 05729 | loss 1.2399 | loss(rot) 0.2503 | loss(pos) 0.9358 | loss(seq) 0.0538 | grad 5.4387 | lr 0.0010 | time_forward 4.2400 | time_backward 5.9050 |
[2023-09-02 04:00:25,730::train::INFO] [train] Iter 05730 | loss 1.3586 | loss(rot) 0.5741 | loss(pos) 0.2857 | loss(seq) 0.4987 | grad 2.9606 | lr 0.0010 | time_forward 4.1930 | time_backward 6.2020 |
[2023-09-02 04:00:28,586::train::INFO] [train] Iter 05731 | loss 1.9114 | loss(rot) 1.6510 | loss(pos) 0.1071 | loss(seq) 0.1534 | grad 3.7422 | lr 0.0010 | time_forward 1.3940 | time_backward 1.4570 |
[2023-09-02 04:00:37,039::train::INFO] [train] Iter 05732 | loss 2.2146 | loss(rot) 1.8598 | loss(pos) 0.1269 | loss(seq) 0.2279 | grad 4.2178 | lr 0.0010 | time_forward 3.6130 | time_backward 4.8360 |
[2023-09-02 04:00:44,605::train::INFO] [train] Iter 05733 | loss 1.3633 | loss(rot) 0.2105 | loss(pos) 0.5628 | loss(seq) 0.5900 | grad 4.8398 | lr 0.0010 | time_forward 3.2980 | time_backward 4.2640 |
[2023-09-02 04:00:53,013::train::INFO] [train] Iter 05734 | loss 1.8285 | loss(rot) 0.9769 | loss(pos) 0.2080 | loss(seq) 0.6436 | grad 3.4341 | lr 0.0010 | time_forward 3.5370 | time_backward 4.8670 |
[2023-09-02 04:01:03,017::train::INFO] [train] Iter 05735 | loss 2.8375 | loss(rot) 2.4341 | loss(pos) 0.1378 | loss(seq) 0.2656 | grad 3.0242 | lr 0.0010 | time_forward 4.0230 | time_backward 5.9770 |
[2023-09-02 04:01:05,797::train::INFO] [train] Iter 05736 | loss 2.0515 | loss(rot) 2.0193 | loss(pos) 0.0253 | loss(seq) 0.0070 | grad 3.1239 | lr 0.0010 | time_forward 1.3210 | time_backward 1.4560 |
[2023-09-02 04:01:16,033::train::INFO] [train] Iter 05737 | loss 1.5786 | loss(rot) 0.7219 | loss(pos) 0.3782 | loss(seq) 0.4785 | grad 4.1340 | lr 0.0010 | time_forward 4.1930 | time_backward 6.0240 |
[2023-09-02 04:01:18,310::train::INFO] [train] Iter 05738 | loss 2.9873 | loss(rot) 2.7000 | loss(pos) 0.2874 | loss(seq) 0.0000 | grad 3.9824 | lr 0.0010 | time_forward 1.0720 | time_backward 1.2020 |
[2023-09-02 04:01:26,726::train::INFO] [train] Iter 05739 | loss 2.3542 | loss(rot) 2.2576 | loss(pos) 0.0880 | loss(seq) 0.0086 | grad 2.9205 | lr 0.0010 | time_forward 3.5580 | time_backward 4.8550 |
[2023-09-02 04:01:28,318::train::INFO] [train] Iter 05740 | loss 2.3952 | loss(rot) 1.7474 | loss(pos) 0.1560 | loss(seq) 0.4919 | grad 3.8455 | lr 0.0010 | time_forward 0.7480 | time_backward 0.8380 |
[2023-09-02 04:01:38,511::train::INFO] [train] Iter 05741 | loss 1.9496 | loss(rot) 1.4220 | loss(pos) 0.1405 | loss(seq) 0.3872 | grad 2.9655 | lr 0.0010 | time_forward 4.3500 | time_backward 5.8400 |
[2023-09-02 04:01:47,754::train::INFO] [train] Iter 05742 | loss 1.5363 | loss(rot) 1.4286 | loss(pos) 0.1076 | loss(seq) 0.0001 | grad 4.3941 | lr 0.0010 | time_forward 3.9100 | time_backward 5.3270 |
[2023-09-02 04:01:57,015::train::INFO] [train] Iter 05743 | loss 1.2014 | loss(rot) 1.0941 | loss(pos) 0.0859 | loss(seq) 0.0214 | grad 4.1626 | lr 0.0010 | time_forward 3.8610 | time_backward 5.3970 |
[2023-09-02 04:01:59,749::train::INFO] [train] Iter 05744 | loss 2.0716 | loss(rot) 1.7238 | loss(pos) 0.1140 | loss(seq) 0.2338 | grad 3.6530 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4440 |
[2023-09-02 04:02:09,385::train::INFO] [train] Iter 05745 | loss 2.3861 | loss(rot) 2.2726 | loss(pos) 0.1123 | loss(seq) 0.0012 | grad 3.9171 | lr 0.0010 | time_forward 4.0800 | time_backward 5.5520 |
[2023-09-02 04:02:19,322::train::INFO] [train] Iter 05746 | loss 2.3078 | loss(rot) 1.1605 | loss(pos) 0.7701 | loss(seq) 0.3771 | grad 6.9846 | lr 0.0010 | time_forward 3.9690 | time_backward 5.9650 |
[2023-09-02 04:02:28,758::train::INFO] [train] Iter 05747 | loss 2.1342 | loss(rot) 1.6249 | loss(pos) 0.1310 | loss(seq) 0.3782 | grad 3.3399 | lr 0.0010 | time_forward 4.0430 | time_backward 5.3900 |
[2023-09-02 04:02:38,919::train::INFO] [train] Iter 05748 | loss 1.5564 | loss(rot) 0.8811 | loss(pos) 0.1811 | loss(seq) 0.4943 | grad 2.6857 | lr 0.0010 | time_forward 4.2720 | time_backward 5.8860 |
[2023-09-02 04:02:47,664::train::INFO] [train] Iter 05749 | loss 0.5270 | loss(rot) 0.0776 | loss(pos) 0.4334 | loss(seq) 0.0160 | grad 3.0715 | lr 0.0010 | time_forward 3.7490 | time_backward 4.9750 |
[2023-09-02 04:02:57,093::train::INFO] [train] Iter 05750 | loss 2.4258 | loss(rot) 2.2118 | loss(pos) 0.2019 | loss(seq) 0.0121 | grad 5.5089 | lr 0.0010 | time_forward 3.9680 | time_backward 5.4580 |
[2023-09-02 04:03:07,225::train::INFO] [train] Iter 05751 | loss 1.5349 | loss(rot) 0.8336 | loss(pos) 0.1771 | loss(seq) 0.5242 | grad 3.4124 | lr 0.0010 | time_forward 4.1220 | time_backward 6.0060 |
[2023-09-02 04:03:15,717::train::INFO] [train] Iter 05752 | loss 2.8097 | loss(rot) 2.0333 | loss(pos) 0.2345 | loss(seq) 0.5419 | grad 4.7095 | lr 0.0010 | time_forward 3.5410 | time_backward 4.9340 |
[2023-09-02 04:03:23,907::train::INFO] [train] Iter 05753 | loss 1.6884 | loss(rot) 1.5710 | loss(pos) 0.1163 | loss(seq) 0.0012 | grad 4.8481 | lr 0.0010 | time_forward 3.3940 | time_backward 4.7930 |
[2023-09-02 04:03:32,518::train::INFO] [train] Iter 05754 | loss 2.1466 | loss(rot) 0.8570 | loss(pos) 0.9277 | loss(seq) 0.3619 | grad 5.9555 | lr 0.0010 | time_forward 3.6290 | time_backward 4.9780 |
[2023-09-02 04:03:35,249::train::INFO] [train] Iter 05755 | loss 1.9983 | loss(rot) 0.6052 | loss(pos) 1.3793 | loss(seq) 0.0139 | grad 6.2381 | lr 0.0010 | time_forward 1.3090 | time_backward 1.4180 |
[2023-09-02 04:03:38,035::train::INFO] [train] Iter 05756 | loss 1.9071 | loss(rot) 1.2851 | loss(pos) 0.0860 | loss(seq) 0.5360 | grad 6.7554 | lr 0.0010 | time_forward 1.3310 | time_backward 1.4510 |
[2023-09-02 04:03:40,720::train::INFO] [train] Iter 05757 | loss 0.4652 | loss(rot) 0.0987 | loss(pos) 0.3481 | loss(seq) 0.0184 | grad 3.4359 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4210 |
[2023-09-02 04:03:49,290::train::INFO] [train] Iter 05758 | loss 1.9371 | loss(rot) 1.0365 | loss(pos) 0.4062 | loss(seq) 0.4943 | grad 4.2581 | lr 0.0010 | time_forward 3.6730 | time_backward 4.8930 |
[2023-09-02 04:03:58,542::train::INFO] [train] Iter 05759 | loss 1.7010 | loss(rot) 1.0478 | loss(pos) 0.2587 | loss(seq) 0.3945 | grad 3.6023 | lr 0.0010 | time_forward 3.8610 | time_backward 5.3880 |
[2023-09-02 04:04:08,481::train::INFO] [train] Iter 05760 | loss 2.0749 | loss(rot) 1.7949 | loss(pos) 0.2528 | loss(seq) 0.0272 | grad 6.5513 | lr 0.0010 | time_forward 3.9550 | time_backward 5.9800 |
[2023-09-02 04:04:17,146::train::INFO] [train] Iter 05761 | loss 0.9045 | loss(rot) 0.2672 | loss(pos) 0.5874 | loss(seq) 0.0498 | grad 4.7861 | lr 0.0010 | time_forward 3.5850 | time_backward 5.0760 |
[2023-09-02 04:04:25,849::train::INFO] [train] Iter 05762 | loss 1.7692 | loss(rot) 0.6351 | loss(pos) 0.4380 | loss(seq) 0.6960 | grad 4.3936 | lr 0.0010 | time_forward 3.6750 | time_backward 5.0260 |
[2023-09-02 04:04:34,556::train::INFO] [train] Iter 05763 | loss 1.9707 | loss(rot) 1.2465 | loss(pos) 0.2613 | loss(seq) 0.4630 | grad 3.4476 | lr 0.0010 | time_forward 3.6560 | time_backward 5.0480 |
[2023-09-02 04:04:43,202::train::INFO] [train] Iter 05764 | loss 1.0465 | loss(rot) 0.3448 | loss(pos) 0.5103 | loss(seq) 0.1913 | grad 3.6398 | lr 0.0010 | time_forward 3.6710 | time_backward 4.9720 |
[2023-09-02 04:04:52,346::train::INFO] [train] Iter 05765 | loss 2.6795 | loss(rot) 1.6441 | loss(pos) 0.5255 | loss(seq) 0.5099 | grad 4.8180 | lr 0.0010 | time_forward 3.8490 | time_backward 5.2900 |
[2023-09-02 04:04:54,992::train::INFO] [train] Iter 05766 | loss 2.2516 | loss(rot) 2.1012 | loss(pos) 0.1081 | loss(seq) 0.0424 | grad 4.7279 | lr 0.0010 | time_forward 1.2570 | time_backward 1.3860 |
[2023-09-02 04:05:03,657::train::INFO] [train] Iter 05767 | loss 1.2619 | loss(rot) 0.4407 | loss(pos) 0.3564 | loss(seq) 0.4648 | grad 3.3990 | lr 0.0010 | time_forward 3.7310 | time_backward 4.9320 |
[2023-09-02 04:05:06,306::train::INFO] [train] Iter 05768 | loss 1.7974 | loss(rot) 0.9825 | loss(pos) 0.3654 | loss(seq) 0.4495 | grad 2.8282 | lr 0.0010 | time_forward 1.2560 | time_backward 1.3900 |
[2023-09-02 04:05:16,239::train::INFO] [train] Iter 05769 | loss 2.5763 | loss(rot) 2.2258 | loss(pos) 0.3032 | loss(seq) 0.0472 | grad 4.6909 | lr 0.0010 | time_forward 4.0050 | time_backward 5.8870 |
[2023-09-02 04:05:26,076::train::INFO] [train] Iter 05770 | loss 2.3193 | loss(rot) 2.0547 | loss(pos) 0.2640 | loss(seq) 0.0007 | grad 5.6351 | lr 0.0010 | time_forward 4.0860 | time_backward 5.7480 |
[2023-09-02 04:05:34,451::train::INFO] [train] Iter 05771 | loss 1.8036 | loss(rot) 0.9173 | loss(pos) 0.2772 | loss(seq) 0.6091 | grad 5.8026 | lr 0.0010 | time_forward 3.4800 | time_backward 4.8930 |
[2023-09-02 04:05:41,950::train::INFO] [train] Iter 05772 | loss 1.1049 | loss(rot) 0.5298 | loss(pos) 0.4702 | loss(seq) 0.1049 | grad 4.1009 | lr 0.0010 | time_forward 3.2340 | time_backward 4.2620 |
[2023-09-02 04:05:48,335::train::INFO] [train] Iter 05773 | loss 1.1047 | loss(rot) 0.4008 | loss(pos) 0.5223 | loss(seq) 0.1816 | grad 3.2402 | lr 0.0010 | time_forward 2.6920 | time_backward 3.6890 |
[2023-09-02 04:05:51,090::train::INFO] [train] Iter 05774 | loss 1.7119 | loss(rot) 0.8743 | loss(pos) 0.4830 | loss(seq) 0.3546 | grad 4.3566 | lr 0.0010 | time_forward 1.3430 | time_backward 1.4090 |
[2023-09-02 04:05:53,419::train::INFO] [train] Iter 05775 | loss 2.3978 | loss(rot) 2.2655 | loss(pos) 0.1107 | loss(seq) 0.0216 | grad 4.6815 | lr 0.0010 | time_forward 1.1320 | time_backward 1.1590 |
[2023-09-02 04:06:03,536::train::INFO] [train] Iter 05776 | loss 1.9969 | loss(rot) 1.4497 | loss(pos) 0.0965 | loss(seq) 0.4507 | grad 2.9383 | lr 0.0010 | time_forward 4.1860 | time_backward 5.9270 |
[2023-09-02 04:06:13,094::train::INFO] [train] Iter 05777 | loss 2.1679 | loss(rot) 1.9055 | loss(pos) 0.0494 | loss(seq) 0.2130 | grad 4.0757 | lr 0.0010 | time_forward 4.0590 | time_backward 5.4830 |
[2023-09-02 04:06:23,330::train::INFO] [train] Iter 05778 | loss 1.1078 | loss(rot) 0.5792 | loss(pos) 0.2786 | loss(seq) 0.2499 | grad 2.4814 | lr 0.0010 | time_forward 4.3390 | time_backward 5.8940 |
[2023-09-02 04:06:25,993::train::INFO] [train] Iter 05779 | loss 2.9823 | loss(rot) 2.7572 | loss(pos) 0.2128 | loss(seq) 0.0123 | grad 3.4732 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4280 |
[2023-09-02 04:06:34,326::train::INFO] [train] Iter 05780 | loss 2.1099 | loss(rot) 1.9857 | loss(pos) 0.0569 | loss(seq) 0.0673 | grad 2.8161 | lr 0.0010 | time_forward 3.5650 | time_backward 4.7650 |
[2023-09-02 04:06:36,958::train::INFO] [train] Iter 05781 | loss 3.0238 | loss(rot) 0.0063 | loss(pos) 3.0176 | loss(seq) 0.0000 | grad 6.7120 | lr 0.0010 | time_forward 1.2460 | time_backward 1.3820 |
[2023-09-02 04:06:45,847::train::INFO] [train] Iter 05782 | loss 0.7288 | loss(rot) 0.2226 | loss(pos) 0.4601 | loss(seq) 0.0461 | grad 2.7375 | lr 0.0010 | time_forward 3.6360 | time_backward 5.2260 |
[2023-09-02 04:06:55,197::train::INFO] [train] Iter 05783 | loss 1.4345 | loss(rot) 0.0365 | loss(pos) 1.3930 | loss(seq) 0.0050 | grad 6.1155 | lr 0.0010 | time_forward 3.9910 | time_backward 5.3570 |
[2023-09-02 04:07:02,418::train::INFO] [train] Iter 05784 | loss 2.8347 | loss(rot) 2.0409 | loss(pos) 0.3604 | loss(seq) 0.4334 | grad 3.6067 | lr 0.0010 | time_forward 3.0270 | time_backward 4.1910 |
[2023-09-02 04:07:09,511::train::INFO] [train] Iter 05785 | loss 1.6776 | loss(rot) 1.0731 | loss(pos) 0.1514 | loss(seq) 0.4532 | grad 4.8729 | lr 0.0010 | time_forward 3.0100 | time_backward 4.0790 |
[2023-09-02 04:07:12,256::train::INFO] [train] Iter 05786 | loss 1.9397 | loss(rot) 1.4158 | loss(pos) 0.1487 | loss(seq) 0.3753 | grad 4.8036 | lr 0.0010 | time_forward 1.3080 | time_backward 1.4340 |
[2023-09-02 04:07:21,465::train::INFO] [train] Iter 05787 | loss 2.2108 | loss(rot) 1.1531 | loss(pos) 0.4169 | loss(seq) 0.6408 | grad 5.0376 | lr 0.0010 | time_forward 3.9310 | time_backward 5.2740 |
[2023-09-02 04:07:30,759::train::INFO] [train] Iter 05788 | loss 2.1936 | loss(rot) 1.8220 | loss(pos) 0.1274 | loss(seq) 0.2443 | grad 2.8864 | lr 0.0010 | time_forward 3.8060 | time_backward 5.4850 |
[2023-09-02 04:07:40,654::train::INFO] [train] Iter 05789 | loss 1.6154 | loss(rot) 0.1404 | loss(pos) 1.4596 | loss(seq) 0.0154 | grad 5.0526 | lr 0.0010 | time_forward 4.0940 | time_backward 5.7980 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.