text
stringlengths
56
1.16k
[2023-09-02 04:20:32,267::train::INFO] [train] Iter 05890 | loss 0.5391 | loss(rot) 0.0790 | loss(pos) 0.4423 | loss(seq) 0.0177 | grad 3.4437 | lr 0.0010 | time_forward 4.1150 | time_backward 5.8770
[2023-09-02 04:20:41,271::train::INFO] [train] Iter 05891 | loss 2.2902 | loss(rot) 1.3968 | loss(pos) 0.2717 | loss(seq) 0.6217 | grad 7.1034 | lr 0.0010 | time_forward 3.7740 | time_backward 5.2270
[2023-09-02 04:20:50,416::train::INFO] [train] Iter 05892 | loss 1.2195 | loss(rot) 0.2199 | loss(pos) 0.8735 | loss(seq) 0.1261 | grad 5.8551 | lr 0.0010 | time_forward 3.9240 | time_backward 5.2170
[2023-09-02 04:21:00,227::train::INFO] [train] Iter 05893 | loss 1.4309 | loss(rot) 0.5935 | loss(pos) 0.4405 | loss(seq) 0.3969 | grad 3.8590 | lr 0.0010 | time_forward 3.9430 | time_backward 5.8640
[2023-09-02 04:21:10,189::train::INFO] [train] Iter 05894 | loss 2.7857 | loss(rot) 2.1263 | loss(pos) 0.2374 | loss(seq) 0.4220 | grad 3.3728 | lr 0.0010 | time_forward 4.2020 | time_backward 5.7580
[2023-09-02 04:21:12,464::train::INFO] [train] Iter 05895 | loss 2.8220 | loss(rot) 2.3704 | loss(pos) 0.3180 | loss(seq) 0.1336 | grad 4.1575 | lr 0.0010 | time_forward 1.0760 | time_backward 1.1950
[2023-09-02 04:21:20,963::train::INFO] [train] Iter 05896 | loss 1.1114 | loss(rot) 0.6390 | loss(pos) 0.3471 | loss(seq) 0.1253 | grad 4.0612 | lr 0.0010 | time_forward 3.6310 | time_backward 4.8650
[2023-09-02 04:21:29,491::train::INFO] [train] Iter 05897 | loss 3.7904 | loss(rot) 0.1108 | loss(pos) 3.6790 | loss(seq) 0.0006 | grad 10.7672 | lr 0.0010 | time_forward 3.5760 | time_backward 4.9470
[2023-09-02 04:21:32,242::train::INFO] [train] Iter 05898 | loss 0.9151 | loss(rot) 0.3229 | loss(pos) 0.1893 | loss(seq) 0.4028 | grad 4.1585 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4750
[2023-09-02 04:21:42,179::train::INFO] [train] Iter 05899 | loss 2.5439 | loss(rot) 2.2590 | loss(pos) 0.1981 | loss(seq) 0.0868 | grad 3.8712 | lr 0.0010 | time_forward 4.0180 | time_backward 5.9160
[2023-09-02 04:21:50,634::train::INFO] [train] Iter 05900 | loss 1.7884 | loss(rot) 1.6762 | loss(pos) 0.0966 | loss(seq) 0.0156 | grad 4.1597 | lr 0.0010 | time_forward 3.6110 | time_backward 4.8410
[2023-09-02 04:22:00,894::train::INFO] [train] Iter 05901 | loss 1.5742 | loss(rot) 0.6048 | loss(pos) 0.6324 | loss(seq) 0.3370 | grad 4.1748 | lr 0.0010 | time_forward 4.2810 | time_backward 5.9750
[2023-09-02 04:22:11,081::train::INFO] [train] Iter 05902 | loss 1.8722 | loss(rot) 0.9625 | loss(pos) 0.5988 | loss(seq) 0.3110 | grad 5.0910 | lr 0.0010 | time_forward 4.0460 | time_backward 6.1370
[2023-09-02 04:22:21,154::train::INFO] [train] Iter 05903 | loss 3.0840 | loss(rot) 2.7043 | loss(pos) 0.3796 | loss(seq) 0.0000 | grad 4.1713 | lr 0.0010 | time_forward 4.2100 | time_backward 5.8580
[2023-09-02 04:22:29,975::train::INFO] [train] Iter 05904 | loss 1.9758 | loss(rot) 1.0928 | loss(pos) 0.3349 | loss(seq) 0.5481 | grad 4.1359 | lr 0.0010 | time_forward 3.7260 | time_backward 5.0910
[2023-09-02 04:22:36,472::train::INFO] [train] Iter 05905 | loss 2.0576 | loss(rot) 1.6868 | loss(pos) 0.1399 | loss(seq) 0.2309 | grad 4.0793 | lr 0.0010 | time_forward 2.7320 | time_backward 3.7610
[2023-09-02 04:22:46,589::train::INFO] [train] Iter 05906 | loss 2.3670 | loss(rot) 2.1933 | loss(pos) 0.1613 | loss(seq) 0.0123 | grad 3.2979 | lr 0.0010 | time_forward 4.2460 | time_backward 5.8670
[2023-09-02 04:22:55,904::train::INFO] [train] Iter 05907 | loss 1.2568 | loss(rot) 0.2076 | loss(pos) 0.8408 | loss(seq) 0.2084 | grad 4.4941 | lr 0.0010 | time_forward 3.8640 | time_backward 5.4470
[2023-09-02 04:23:03,867::train::INFO] [train] Iter 05908 | loss 2.4653 | loss(rot) 2.1925 | loss(pos) 0.2709 | loss(seq) 0.0020 | grad 5.4174 | lr 0.0010 | time_forward 3.3300 | time_backward 4.6290
[2023-09-02 04:23:06,533::train::INFO] [train] Iter 05909 | loss 2.8370 | loss(rot) 2.2723 | loss(pos) 0.1907 | loss(seq) 0.3740 | grad 4.4185 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4180
[2023-09-02 04:23:15,816::train::INFO] [train] Iter 05910 | loss 2.8426 | loss(rot) 2.5780 | loss(pos) 0.2642 | loss(seq) 0.0003 | grad 3.5068 | lr 0.0010 | time_forward 3.8270 | time_backward 5.4530
[2023-09-02 04:23:24,431::train::INFO] [train] Iter 05911 | loss 1.9712 | loss(rot) 1.8019 | loss(pos) 0.1264 | loss(seq) 0.0430 | grad 4.3973 | lr 0.0010 | time_forward 3.6950 | time_backward 4.9170
[2023-09-02 04:23:34,535::train::INFO] [train] Iter 05912 | loss 2.3945 | loss(rot) 1.6741 | loss(pos) 0.1829 | loss(seq) 0.5375 | grad 4.0837 | lr 0.0010 | time_forward 4.0910 | time_backward 6.0110
[2023-09-02 04:23:42,616::train::INFO] [train] Iter 05913 | loss 2.2800 | loss(rot) 1.5802 | loss(pos) 0.1103 | loss(seq) 0.5895 | grad 6.0178 | lr 0.0010 | time_forward 3.4720 | time_backward 4.6040
[2023-09-02 04:23:45,293::train::INFO] [train] Iter 05914 | loss 2.2484 | loss(rot) 1.8753 | loss(pos) 0.2482 | loss(seq) 0.1249 | grad 5.7214 | lr 0.0010 | time_forward 1.2690 | time_backward 1.4060
[2023-09-02 04:23:47,990::train::INFO] [train] Iter 05915 | loss 1.8955 | loss(rot) 0.7679 | loss(pos) 0.3813 | loss(seq) 0.7462 | grad 4.2547 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4230
[2023-09-02 04:23:58,428::train::INFO] [train] Iter 05916 | loss 2.0301 | loss(rot) 1.3638 | loss(pos) 0.1670 | loss(seq) 0.4993 | grad 2.8650 | lr 0.0010 | time_forward 4.3170 | time_backward 6.1180
[2023-09-02 04:24:08,398::train::INFO] [train] Iter 05917 | loss 2.0735 | loss(rot) 1.2582 | loss(pos) 0.2806 | loss(seq) 0.5347 | grad 2.8788 | lr 0.0010 | time_forward 4.0350 | time_backward 5.9310
[2023-09-02 04:24:18,274::train::INFO] [train] Iter 05918 | loss 1.9499 | loss(rot) 0.6669 | loss(pos) 0.8317 | loss(seq) 0.4512 | grad 3.1596 | lr 0.0010 | time_forward 4.1290 | time_backward 5.7450
[2023-09-02 04:24:27,755::train::INFO] [train] Iter 05919 | loss 2.0656 | loss(rot) 1.1620 | loss(pos) 0.4661 | loss(seq) 0.4375 | grad 5.5932 | lr 0.0010 | time_forward 4.0730 | time_backward 5.4030
[2023-09-02 04:24:31,145::train::INFO] [train] Iter 05920 | loss 2.5921 | loss(rot) 2.4382 | loss(pos) 0.1318 | loss(seq) 0.0222 | grad 2.1783 | lr 0.0010 | time_forward 1.5340 | time_backward 1.8530
[2023-09-02 04:24:33,925::train::INFO] [train] Iter 05921 | loss 1.9349 | loss(rot) 1.4512 | loss(pos) 0.1423 | loss(seq) 0.3413 | grad 4.1355 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4800
[2023-09-02 04:24:44,261::train::INFO] [train] Iter 05922 | loss 2.2328 | loss(rot) 1.7984 | loss(pos) 0.1579 | loss(seq) 0.2765 | grad 3.2937 | lr 0.0010 | time_forward 4.1620 | time_backward 6.1710
[2023-09-02 04:24:47,204::train::INFO] [train] Iter 05923 | loss 2.8783 | loss(rot) 0.0658 | loss(pos) 2.8124 | loss(seq) 0.0000 | grad 9.1926 | lr 0.0010 | time_forward 1.4740 | time_backward 1.4640
[2023-09-02 04:24:56,496::train::INFO] [train] Iter 05924 | loss 0.8791 | loss(rot) 0.0532 | loss(pos) 0.8200 | loss(seq) 0.0060 | grad 3.1216 | lr 0.0010 | time_forward 4.0820 | time_backward 5.2080
[2023-09-02 04:25:05,501::train::INFO] [train] Iter 05925 | loss 1.4547 | loss(rot) 0.1318 | loss(pos) 1.3115 | loss(seq) 0.0114 | grad 5.3781 | lr 0.0010 | time_forward 3.9010 | time_backward 5.1010
[2023-09-02 04:25:08,253::train::INFO] [train] Iter 05926 | loss 3.2891 | loss(rot) 2.8051 | loss(pos) 0.2460 | loss(seq) 0.2380 | grad 4.1915 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4770
[2023-09-02 04:25:15,428::train::INFO] [train] Iter 05927 | loss 0.8562 | loss(rot) 0.1491 | loss(pos) 0.6806 | loss(seq) 0.0265 | grad 3.2156 | lr 0.0010 | time_forward 3.0370 | time_backward 4.1340
[2023-09-02 04:25:24,304::train::INFO] [train] Iter 05928 | loss 0.8605 | loss(rot) 0.2995 | loss(pos) 0.4078 | loss(seq) 0.1532 | grad 4.0706 | lr 0.0010 | time_forward 3.8820 | time_backward 4.9900
[2023-09-02 04:25:26,800::train::INFO] [train] Iter 05929 | loss 2.4349 | loss(rot) 1.9735 | loss(pos) 0.3614 | loss(seq) 0.1001 | grad 6.4690 | lr 0.0010 | time_forward 1.1830 | time_backward 1.3100
[2023-09-02 04:25:29,574::train::INFO] [train] Iter 05930 | loss 1.0852 | loss(rot) 0.3375 | loss(pos) 0.4534 | loss(seq) 0.2942 | grad 5.2244 | lr 0.0010 | time_forward 1.3320 | time_backward 1.4380
[2023-09-02 04:25:37,787::train::INFO] [train] Iter 05931 | loss 2.6560 | loss(rot) 2.4885 | loss(pos) 0.1675 | loss(seq) 0.0000 | grad 3.3855 | lr 0.0010 | time_forward 3.3880 | time_backward 4.8220
[2023-09-02 04:25:48,188::train::INFO] [train] Iter 05932 | loss 2.2313 | loss(rot) 2.0548 | loss(pos) 0.1763 | loss(seq) 0.0003 | grad 4.1617 | lr 0.0010 | time_forward 4.1060 | time_backward 6.2920
[2023-09-02 04:25:57,386::train::INFO] [train] Iter 05933 | loss 2.5511 | loss(rot) 1.8274 | loss(pos) 0.2147 | loss(seq) 0.5090 | grad 3.5286 | lr 0.0010 | time_forward 3.9200 | time_backward 5.2740
[2023-09-02 04:26:00,170::train::INFO] [train] Iter 05934 | loss 2.6185 | loss(rot) 1.9595 | loss(pos) 0.1032 | loss(seq) 0.5557 | grad 4.4347 | lr 0.0010 | time_forward 1.3170 | time_backward 1.4640
[2023-09-02 04:26:09,071::train::INFO] [train] Iter 05935 | loss 2.1409 | loss(rot) 1.2993 | loss(pos) 0.3837 | loss(seq) 0.4579 | grad 6.0671 | lr 0.0010 | time_forward 3.6960 | time_backward 5.2010
[2023-09-02 04:26:18,141::train::INFO] [train] Iter 05936 | loss 1.5580 | loss(rot) 0.7459 | loss(pos) 0.6281 | loss(seq) 0.1840 | grad 3.5203 | lr 0.0010 | time_forward 3.7520 | time_backward 5.3140
[2023-09-02 04:26:27,316::train::INFO] [train] Iter 05937 | loss 2.4847 | loss(rot) 2.0512 | loss(pos) 0.1228 | loss(seq) 0.3106 | grad 4.2963 | lr 0.0010 | time_forward 3.9920 | time_backward 5.1800
[2023-09-02 04:26:36,169::train::INFO] [train] Iter 05938 | loss 2.1372 | loss(rot) 1.6283 | loss(pos) 0.1054 | loss(seq) 0.4035 | grad 4.0287 | lr 0.0010 | time_forward 3.7280 | time_backward 5.1190
[2023-09-02 04:26:45,748::train::INFO] [train] Iter 05939 | loss 2.2451 | loss(rot) 2.1444 | loss(pos) 0.1007 | loss(seq) 0.0000 | grad 4.5548 | lr 0.0010 | time_forward 4.4340 | time_backward 5.1410
[2023-09-02 04:26:54,489::train::INFO] [train] Iter 05940 | loss 0.6027 | loss(rot) 0.2899 | loss(pos) 0.2721 | loss(seq) 0.0406 | grad 2.5959 | lr 0.0010 | time_forward 3.7060 | time_backward 5.0320
[2023-09-02 04:26:56,759::train::INFO] [train] Iter 05941 | loss 2.2085 | loss(rot) 1.3644 | loss(pos) 0.2801 | loss(seq) 0.5640 | grad 4.2311 | lr 0.0010 | time_forward 1.0360 | time_backward 1.2310
[2023-09-02 04:27:05,931::train::INFO] [train] Iter 05942 | loss 2.3614 | loss(rot) 2.1716 | loss(pos) 0.1879 | loss(seq) 0.0020 | grad 3.7233 | lr 0.0010 | time_forward 4.2910 | time_backward 4.8780
[2023-09-02 04:27:09,346::train::INFO] [train] Iter 05943 | loss 2.6840 | loss(rot) 2.1815 | loss(pos) 0.1428 | loss(seq) 0.3597 | grad 3.5716 | lr 0.0010 | time_forward 1.4520 | time_backward 1.9600
[2023-09-02 04:27:16,941::train::INFO] [train] Iter 05944 | loss 3.2822 | loss(rot) 2.3153 | loss(pos) 0.5037 | loss(seq) 0.4632 | grad 7.3713 | lr 0.0010 | time_forward 3.2730 | time_backward 4.3180
[2023-09-02 04:27:19,627::train::INFO] [train] Iter 05945 | loss 1.0181 | loss(rot) 0.3980 | loss(pos) 0.5652 | loss(seq) 0.0548 | grad 4.6210 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4130
[2023-09-02 04:27:27,648::train::INFO] [train] Iter 05946 | loss 1.2587 | loss(rot) 0.9034 | loss(pos) 0.2553 | loss(seq) 0.1001 | grad 4.2707 | lr 0.0010 | time_forward 3.5000 | time_backward 4.5170
[2023-09-02 04:27:35,282::train::INFO] [train] Iter 05947 | loss 1.5311 | loss(rot) 0.0813 | loss(pos) 1.4400 | loss(seq) 0.0098 | grad 6.5180 | lr 0.0010 | time_forward 3.4460 | time_backward 4.1850
[2023-09-02 04:27:45,280::train::INFO] [train] Iter 05948 | loss 1.7920 | loss(rot) 0.9127 | loss(pos) 0.3498 | loss(seq) 0.5295 | grad 5.0737 | lr 0.0010 | time_forward 4.0630 | time_backward 5.9330
[2023-09-02 04:27:53,748::train::INFO] [train] Iter 05949 | loss 1.5801 | loss(rot) 1.3097 | loss(pos) 0.1287 | loss(seq) 0.1417 | grad 3.9282 | lr 0.0010 | time_forward 3.5910 | time_backward 4.8730
[2023-09-02 04:28:03,000::train::INFO] [train] Iter 05950 | loss 2.6841 | loss(rot) 2.3899 | loss(pos) 0.1883 | loss(seq) 0.1060 | grad 3.5185 | lr 0.0010 | time_forward 3.7590 | time_backward 5.4900
[2023-09-02 04:28:05,869::train::INFO] [train] Iter 05951 | loss 1.8203 | loss(rot) 0.0134 | loss(pos) 1.8053 | loss(seq) 0.0016 | grad 5.6621 | lr 0.0010 | time_forward 1.3690 | time_backward 1.4970
[2023-09-02 04:28:08,661::train::INFO] [train] Iter 05952 | loss 1.0774 | loss(rot) 0.4464 | loss(pos) 0.3569 | loss(seq) 0.2742 | grad 3.4626 | lr 0.0010 | time_forward 1.3010 | time_backward 1.4880
[2023-09-02 04:28:17,244::train::INFO] [train] Iter 05953 | loss 2.9697 | loss(rot) 2.1814 | loss(pos) 0.2507 | loss(seq) 0.5375 | grad 3.1420 | lr 0.0010 | time_forward 3.6680 | time_backward 4.8760
[2023-09-02 04:28:26,467::train::INFO] [train] Iter 05954 | loss 1.6304 | loss(rot) 0.0422 | loss(pos) 1.5853 | loss(seq) 0.0029 | grad 6.8472 | lr 0.0010 | time_forward 3.9470 | time_backward 5.2730
[2023-09-02 04:28:33,569::train::INFO] [train] Iter 05955 | loss 1.4026 | loss(rot) 0.2810 | loss(pos) 0.5944 | loss(seq) 0.5272 | grad 4.3077 | lr 0.0010 | time_forward 2.9960 | time_backward 4.1020
[2023-09-02 04:28:43,654::train::INFO] [train] Iter 05956 | loss 2.5285 | loss(rot) 2.3732 | loss(pos) 0.1503 | loss(seq) 0.0049 | grad 4.5105 | lr 0.0010 | time_forward 3.9750 | time_backward 6.1070
[2023-09-02 04:28:53,540::train::INFO] [train] Iter 05957 | loss 0.6721 | loss(rot) 0.1576 | loss(pos) 0.4936 | loss(seq) 0.0209 | grad 4.5533 | lr 0.0010 | time_forward 3.9660 | time_backward 5.9160
[2023-09-02 04:28:56,391::train::INFO] [train] Iter 05958 | loss 2.1061 | loss(rot) 1.4594 | loss(pos) 0.2055 | loss(seq) 0.4412 | grad 3.9657 | lr 0.0010 | time_forward 1.2870 | time_backward 1.5600
[2023-09-02 04:28:59,396::train::INFO] [train] Iter 05959 | loss 1.1881 | loss(rot) 0.1220 | loss(pos) 1.0500 | loss(seq) 0.0160 | grad 7.7463 | lr 0.0010 | time_forward 1.4850 | time_backward 1.5170
[2023-09-02 04:29:01,858::train::INFO] [train] Iter 05960 | loss 2.8367 | loss(rot) 2.3443 | loss(pos) 0.2629 | loss(seq) 0.2295 | grad 5.4420 | lr 0.0010 | time_forward 1.1660 | time_backward 1.2920
[2023-09-02 04:29:11,899::train::INFO] [train] Iter 05961 | loss 2.2194 | loss(rot) 1.0551 | loss(pos) 0.6552 | loss(seq) 0.5091 | grad 4.0829 | lr 0.0010 | time_forward 4.2020 | time_backward 5.8370
[2023-09-02 04:29:19,276::train::INFO] [train] Iter 05962 | loss 2.3599 | loss(rot) 1.9144 | loss(pos) 0.1713 | loss(seq) 0.2742 | grad 5.0327 | lr 0.0010 | time_forward 3.0320 | time_backward 4.3410
[2023-09-02 04:29:22,011::train::INFO] [train] Iter 05963 | loss 1.9427 | loss(rot) 1.4090 | loss(pos) 0.1075 | loss(seq) 0.4261 | grad 3.5037 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4580
[2023-09-02 04:29:31,574::train::INFO] [train] Iter 05964 | loss 2.1842 | loss(rot) 0.7737 | loss(pos) 0.8338 | loss(seq) 0.5767 | grad 7.2794 | lr 0.0010 | time_forward 4.0700 | time_backward 5.4710
[2023-09-02 04:29:40,345::train::INFO] [train] Iter 05965 | loss 1.9364 | loss(rot) 1.3894 | loss(pos) 0.2070 | loss(seq) 0.3400 | grad 3.6043 | lr 0.0010 | time_forward 3.6720 | time_backward 5.0970
[2023-09-02 04:29:49,570::train::INFO] [train] Iter 05966 | loss 1.5811 | loss(rot) 0.9116 | loss(pos) 0.2066 | loss(seq) 0.4630 | grad 4.6421 | lr 0.0010 | time_forward 3.8890 | time_backward 5.3330
[2023-09-02 04:29:57,906::train::INFO] [train] Iter 05967 | loss 1.3428 | loss(rot) 0.6552 | loss(pos) 0.4833 | loss(seq) 0.2043 | grad 3.3249 | lr 0.0010 | time_forward 3.5380 | time_backward 4.7940
[2023-09-02 04:30:07,960::train::INFO] [train] Iter 05968 | loss 1.6723 | loss(rot) 0.0283 | loss(pos) 1.6396 | loss(seq) 0.0044 | grad 5.7344 | lr 0.0010 | time_forward 4.1120 | time_backward 5.9390
[2023-09-02 04:30:10,638::train::INFO] [train] Iter 05969 | loss 2.0536 | loss(rot) 1.9096 | loss(pos) 0.1391 | loss(seq) 0.0049 | grad 6.1527 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4240
[2023-09-02 04:30:19,215::train::INFO] [train] Iter 05970 | loss 2.1843 | loss(rot) 0.0267 | loss(pos) 2.1540 | loss(seq) 0.0036 | grad 8.6992 | lr 0.0010 | time_forward 3.7040 | time_backward 4.8690
[2023-09-02 04:30:28,383::train::INFO] [train] Iter 05971 | loss 2.1387 | loss(rot) 1.3906 | loss(pos) 0.4208 | loss(seq) 0.3273 | grad 4.4433 | lr 0.0010 | time_forward 3.9000 | time_backward 5.2660
[2023-09-02 04:30:37,251::train::INFO] [train] Iter 05972 | loss 2.4344 | loss(rot) 1.3866 | loss(pos) 0.4354 | loss(seq) 0.6124 | grad 3.4613 | lr 0.0010 | time_forward 3.7230 | time_backward 5.1400
[2023-09-02 04:30:47,124::train::INFO] [train] Iter 05973 | loss 2.5778 | loss(rot) 1.7004 | loss(pos) 0.2393 | loss(seq) 0.6381 | grad 3.6563 | lr 0.0010 | time_forward 3.8840 | time_backward 5.9850
[2023-09-02 04:30:57,176::train::INFO] [train] Iter 05974 | loss 1.9699 | loss(rot) 1.2058 | loss(pos) 0.1725 | loss(seq) 0.5915 | grad 3.7900 | lr 0.0010 | time_forward 4.0470 | time_backward 6.0010
[2023-09-02 04:31:03,021::train::INFO] [train] Iter 05975 | loss 1.8325 | loss(rot) 1.6235 | loss(pos) 0.1467 | loss(seq) 0.0624 | grad 2.7352 | lr 0.0010 | time_forward 2.4790 | time_backward 3.3640
[2023-09-02 04:31:10,082::train::INFO] [train] Iter 05976 | loss 2.3052 | loss(rot) 1.7227 | loss(pos) 0.2432 | loss(seq) 0.3393 | grad 5.3047 | lr 0.0010 | time_forward 2.9670 | time_backward 4.0900
[2023-09-02 04:31:18,570::train::INFO] [train] Iter 05977 | loss 2.5686 | loss(rot) 2.2390 | loss(pos) 0.1126 | loss(seq) 0.2171 | grad 4.0053 | lr 0.0010 | time_forward 3.5200 | time_backward 4.9650
[2023-09-02 04:31:26,837::train::INFO] [train] Iter 05978 | loss 0.8330 | loss(rot) 0.0854 | loss(pos) 0.7362 | loss(seq) 0.0113 | grad 4.5069 | lr 0.0010 | time_forward 3.4070 | time_backward 4.8560
[2023-09-02 04:31:35,134::train::INFO] [train] Iter 05979 | loss 0.8836 | loss(rot) 0.0471 | loss(pos) 0.8303 | loss(seq) 0.0062 | grad 7.0050 | lr 0.0010 | time_forward 3.4220 | time_backward 4.8720
[2023-09-02 04:31:41,194::train::INFO] [train] Iter 05980 | loss 1.2895 | loss(rot) 0.6587 | loss(pos) 0.3696 | loss(seq) 0.2611 | grad 3.6071 | lr 0.0010 | time_forward 2.6090 | time_backward 3.4470
[2023-09-02 04:31:49,797::train::INFO] [train] Iter 05981 | loss 1.2086 | loss(rot) 0.0672 | loss(pos) 1.1305 | loss(seq) 0.0109 | grad 9.0721 | lr 0.0010 | time_forward 3.6440 | time_backward 4.9550
[2023-09-02 04:31:53,206::train::INFO] [train] Iter 05982 | loss 1.2285 | loss(rot) 0.2896 | loss(pos) 0.8834 | loss(seq) 0.0555 | grad 5.1463 | lr 0.0010 | time_forward 1.4190 | time_backward 1.9870
[2023-09-02 04:32:04,071::train::INFO] [train] Iter 05983 | loss 0.5736 | loss(rot) 0.1551 | loss(pos) 0.3487 | loss(seq) 0.0699 | grad 3.0112 | lr 0.0010 | time_forward 4.4640 | time_backward 6.3970
[2023-09-02 04:32:06,824::train::INFO] [train] Iter 05984 | loss 1.0808 | loss(rot) 0.1627 | loss(pos) 0.9091 | loss(seq) 0.0090 | grad 5.1332 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4990
[2023-09-02 04:32:15,758::train::INFO] [train] Iter 05985 | loss 2.2264 | loss(rot) 0.0581 | loss(pos) 2.1669 | loss(seq) 0.0014 | grad 9.0204 | lr 0.0010 | time_forward 3.8080 | time_backward 5.1230
[2023-09-02 04:32:23,763::train::INFO] [train] Iter 05986 | loss 3.5514 | loss(rot) 0.0044 | loss(pos) 3.5466 | loss(seq) 0.0004 | grad 12.0106 | lr 0.0010 | time_forward 3.3120 | time_backward 4.6890
[2023-09-02 04:32:33,604::train::INFO] [train] Iter 05987 | loss 2.2471 | loss(rot) 1.8762 | loss(pos) 0.1868 | loss(seq) 0.1841 | grad 2.9371 | lr 0.0010 | time_forward 4.1460 | time_backward 5.6920
[2023-09-02 04:32:43,478::train::INFO] [train] Iter 05988 | loss 2.4177 | loss(rot) 2.3098 | loss(pos) 0.0913 | loss(seq) 0.0166 | grad 5.4805 | lr 0.0010 | time_forward 3.9660 | time_backward 5.9040
[2023-09-02 04:32:53,786::train::INFO] [train] Iter 05989 | loss 2.7841 | loss(rot) 1.7042 | loss(pos) 0.4171 | loss(seq) 0.6629 | grad 4.5441 | lr 0.0010 | time_forward 4.3680 | time_backward 5.9370