text
stringlengths 56
1.16k
|
---|
[2023-09-02 04:32:56,483::train::INFO] [train] Iter 05990 | loss 1.8952 | loss(rot) 1.0821 | loss(pos) 0.2869 | loss(seq) 0.5262 | grad 4.4913 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4280 |
[2023-09-02 04:33:04,036::train::INFO] [train] Iter 05991 | loss 1.7488 | loss(rot) 0.9729 | loss(pos) 0.1266 | loss(seq) 0.6493 | grad 4.2235 | lr 0.0010 | time_forward 3.1960 | time_backward 4.3540 |
[2023-09-02 04:33:06,823::train::INFO] [train] Iter 05992 | loss 1.5966 | loss(rot) 0.8843 | loss(pos) 0.2356 | loss(seq) 0.4767 | grad 3.6641 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4690 |
[2023-09-02 04:33:15,088::train::INFO] [train] Iter 05993 | loss 0.8242 | loss(rot) 0.2369 | loss(pos) 0.5203 | loss(seq) 0.0671 | grad 4.7505 | lr 0.0010 | time_forward 3.4270 | time_backward 4.8350 |
[2023-09-02 04:33:25,114::train::INFO] [train] Iter 05994 | loss 2.5529 | loss(rot) 2.3188 | loss(pos) 0.1184 | loss(seq) 0.1158 | grad 3.3317 | lr 0.0010 | time_forward 4.2030 | time_backward 5.8190 |
[2023-09-02 04:33:28,040::train::INFO] [train] Iter 05995 | loss 0.7516 | loss(rot) 0.3348 | loss(pos) 0.3168 | loss(seq) 0.0999 | grad 3.1751 | lr 0.0010 | time_forward 1.4970 | time_backward 1.4270 |
[2023-09-02 04:33:30,816::train::INFO] [train] Iter 05996 | loss 1.8809 | loss(rot) 1.7575 | loss(pos) 0.1115 | loss(seq) 0.0119 | grad 4.7071 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4810 |
[2023-09-02 04:33:37,863::train::INFO] [train] Iter 05997 | loss 1.8478 | loss(rot) 1.3266 | loss(pos) 0.0936 | loss(seq) 0.4276 | grad 5.0325 | lr 0.0010 | time_forward 2.9820 | time_backward 4.0610 |
[2023-09-02 04:33:47,924::train::INFO] [train] Iter 05998 | loss 2.7864 | loss(rot) 1.9874 | loss(pos) 0.2166 | loss(seq) 0.5823 | grad 4.9846 | lr 0.0010 | time_forward 4.0190 | time_backward 6.0380 |
[2023-09-02 04:33:57,121::train::INFO] [train] Iter 05999 | loss 2.2940 | loss(rot) 2.1390 | loss(pos) 0.0546 | loss(seq) 0.1004 | grad 3.9342 | lr 0.0010 | time_forward 3.8690 | time_backward 5.3250 |
[2023-09-02 04:34:06,939::train::INFO] [train] Iter 06000 | loss 2.8149 | loss(rot) 2.1273 | loss(pos) 0.2291 | loss(seq) 0.4584 | grad 3.6476 | lr 0.0010 | time_forward 3.9660 | time_backward 5.8480 |
[2023-09-02 04:34:43,651::train::INFO] [val] Iter 06000 | loss 2.5417 | loss(rot) 1.7971 | loss(pos) 0.4581 | loss(seq) 0.2865 |
[2023-09-02 04:34:52,360::train::INFO] [train] Iter 06001 | loss 3.0546 | loss(rot) 2.9008 | loss(pos) 0.1477 | loss(seq) 0.0061 | grad 3.7707 | lr 0.0010 | time_forward 3.5120 | time_backward 4.8590 |
[2023-09-02 04:35:00,796::train::INFO] [train] Iter 06002 | loss 2.4880 | loss(rot) 2.2982 | loss(pos) 0.1898 | loss(seq) 0.0000 | grad 7.5721 | lr 0.0010 | time_forward 3.5810 | time_backward 4.8510 |
[2023-09-02 04:35:03,525::train::INFO] [train] Iter 06003 | loss 1.9493 | loss(rot) 1.1869 | loss(pos) 0.2846 | loss(seq) 0.4778 | grad 4.2484 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4380 |
[2023-09-02 04:35:06,286::train::INFO] [train] Iter 06004 | loss 2.7221 | loss(rot) 2.0655 | loss(pos) 0.1640 | loss(seq) 0.4926 | grad 3.5260 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4440 |
[2023-09-02 04:35:08,655::train::INFO] [train] Iter 06005 | loss 1.5587 | loss(rot) 0.5658 | loss(pos) 0.3138 | loss(seq) 0.6791 | grad 4.3154 | lr 0.0010 | time_forward 1.1420 | time_backward 1.2230 |
[2023-09-02 04:35:17,748::train::INFO] [train] Iter 06006 | loss 2.8387 | loss(rot) 2.6693 | loss(pos) 0.0827 | loss(seq) 0.0866 | grad 3.0161 | lr 0.0010 | time_forward 3.8190 | time_backward 5.2690 |
[2023-09-02 04:35:27,805::train::INFO] [train] Iter 06007 | loss 1.7502 | loss(rot) 0.7638 | loss(pos) 0.5429 | loss(seq) 0.4435 | grad 5.0231 | lr 0.0010 | time_forward 4.0720 | time_backward 5.9820 |
[2023-09-02 04:35:30,536::train::INFO] [train] Iter 06008 | loss 1.8601 | loss(rot) 0.7651 | loss(pos) 0.7775 | loss(seq) 0.3176 | grad 4.8502 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4460 |
[2023-09-02 04:35:40,630::train::INFO] [train] Iter 06009 | loss 1.3463 | loss(rot) 0.4857 | loss(pos) 0.4120 | loss(seq) 0.4486 | grad 3.5197 | lr 0.0010 | time_forward 4.2440 | time_backward 5.8470 |
[2023-09-02 04:35:49,761::train::INFO] [train] Iter 06010 | loss 1.3837 | loss(rot) 0.0994 | loss(pos) 1.2742 | loss(seq) 0.0101 | grad 5.1725 | lr 0.0010 | time_forward 3.8680 | time_backward 5.2600 |
[2023-09-02 04:35:52,357::train::INFO] [train] Iter 06011 | loss 2.5871 | loss(rot) 2.4073 | loss(pos) 0.1605 | loss(seq) 0.0193 | grad 6.2938 | lr 0.0010 | time_forward 1.2300 | time_backward 1.3620 |
[2023-09-02 04:36:01,478::train::INFO] [train] Iter 06012 | loss 1.8738 | loss(rot) 1.1591 | loss(pos) 0.2095 | loss(seq) 0.5053 | grad 5.0717 | lr 0.0010 | time_forward 3.9700 | time_backward 5.1490 |
[2023-09-02 04:36:11,568::train::INFO] [train] Iter 06013 | loss 0.5951 | loss(rot) 0.1673 | loss(pos) 0.3458 | loss(seq) 0.0820 | grad 4.5431 | lr 0.0010 | time_forward 4.0180 | time_backward 6.0690 |
[2023-09-02 04:36:14,597::train::INFO] [train] Iter 06014 | loss 2.0594 | loss(rot) 1.8834 | loss(pos) 0.1592 | loss(seq) 0.0167 | grad 4.3917 | lr 0.0010 | time_forward 1.5980 | time_backward 1.4280 |
[2023-09-02 04:36:17,294::train::INFO] [train] Iter 06015 | loss 2.4980 | loss(rot) 2.3646 | loss(pos) 0.1208 | loss(seq) 0.0126 | grad 3.3313 | lr 0.0010 | time_forward 1.2750 | time_backward 1.3940 |
[2023-09-02 04:36:27,710::train::INFO] [train] Iter 06016 | loss 1.9452 | loss(rot) 1.6698 | loss(pos) 0.2754 | loss(seq) 0.0000 | grad 5.2525 | lr 0.0010 | time_forward 4.1450 | time_backward 6.2680 |
[2023-09-02 04:36:35,959::train::INFO] [train] Iter 06017 | loss 0.8295 | loss(rot) 0.2102 | loss(pos) 0.2390 | loss(seq) 0.3803 | grad 3.0960 | lr 0.0010 | time_forward 3.4410 | time_backward 4.8040 |
[2023-09-02 04:36:38,815::train::INFO] [train] Iter 06018 | loss 1.9733 | loss(rot) 1.7535 | loss(pos) 0.1937 | loss(seq) 0.0261 | grad 3.6262 | lr 0.0010 | time_forward 1.3440 | time_backward 1.5080 |
[2023-09-02 04:36:49,094::train::INFO] [train] Iter 06019 | loss 1.8586 | loss(rot) 1.6804 | loss(pos) 0.1782 | loss(seq) 0.0000 | grad 5.2875 | lr 0.0010 | time_forward 4.1490 | time_backward 6.1250 |
[2023-09-02 04:36:59,477::train::INFO] [train] Iter 06020 | loss 1.8924 | loss(rot) 0.9539 | loss(pos) 0.3548 | loss(seq) 0.5836 | grad 3.6250 | lr 0.0010 | time_forward 4.4060 | time_backward 5.9730 |
[2023-09-02 04:37:02,049::train::INFO] [train] Iter 06021 | loss 2.7413 | loss(rot) 2.4623 | loss(pos) 0.1664 | loss(seq) 0.1127 | grad 4.7897 | lr 0.0010 | time_forward 1.1780 | time_backward 1.3900 |
[2023-09-02 04:37:04,359::train::INFO] [train] Iter 06022 | loss 0.9546 | loss(rot) 0.0490 | loss(pos) 0.8881 | loss(seq) 0.0175 | grad 3.0648 | lr 0.0010 | time_forward 1.0860 | time_backward 1.2210 |
[2023-09-02 04:37:13,021::train::INFO] [train] Iter 06023 | loss 1.9986 | loss(rot) 1.4239 | loss(pos) 0.1104 | loss(seq) 0.4643 | grad 4.0467 | lr 0.0010 | time_forward 3.6070 | time_backward 5.0510 |
[2023-09-02 04:37:23,152::train::INFO] [train] Iter 06024 | loss 1.2166 | loss(rot) 0.3547 | loss(pos) 0.7321 | loss(seq) 0.1298 | grad 4.2189 | lr 0.0010 | time_forward 4.0220 | time_backward 6.1050 |
[2023-09-02 04:37:25,825::train::INFO] [train] Iter 06025 | loss 2.5995 | loss(rot) 2.1060 | loss(pos) 0.1419 | loss(seq) 0.3516 | grad 3.8312 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4230 |
[2023-09-02 04:37:34,261::train::INFO] [train] Iter 06026 | loss 2.5368 | loss(rot) 1.2002 | loss(pos) 0.4917 | loss(seq) 0.8449 | grad 6.5574 | lr 0.0010 | time_forward 3.5920 | time_backward 4.8400 |
[2023-09-02 04:37:36,972::train::INFO] [train] Iter 06027 | loss 2.0763 | loss(rot) 1.9558 | loss(pos) 0.1205 | loss(seq) 0.0000 | grad 5.5748 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4520 |
[2023-09-02 04:37:39,439::train::INFO] [train] Iter 06028 | loss 1.5071 | loss(rot) 1.0050 | loss(pos) 0.2326 | loss(seq) 0.2695 | grad 6.1500 | lr 0.0010 | time_forward 1.1780 | time_backward 1.2860 |
[2023-09-02 04:37:50,030::train::INFO] [train] Iter 06029 | loss 0.9714 | loss(rot) 0.1146 | loss(pos) 0.4867 | loss(seq) 0.3701 | grad 3.5751 | lr 0.0010 | time_forward 4.1550 | time_backward 6.4320 |
[2023-09-02 04:37:58,353::train::INFO] [train] Iter 06030 | loss 2.4023 | loss(rot) 2.1536 | loss(pos) 0.1423 | loss(seq) 0.1065 | grad 4.3529 | lr 0.0010 | time_forward 3.4490 | time_backward 4.8700 |
[2023-09-02 04:38:09,243::train::INFO] [train] Iter 06031 | loss 2.4508 | loss(rot) 2.2451 | loss(pos) 0.2008 | loss(seq) 0.0049 | grad 5.6531 | lr 0.0010 | time_forward 4.3560 | time_backward 6.5300 |
[2023-09-02 04:38:12,167::train::INFO] [train] Iter 06032 | loss 1.3865 | loss(rot) 0.0459 | loss(pos) 1.3391 | loss(seq) 0.0015 | grad 4.3699 | lr 0.0010 | time_forward 1.4140 | time_backward 1.5060 |
[2023-09-02 04:38:22,035::train::INFO] [train] Iter 06033 | loss 2.3115 | loss(rot) 1.4120 | loss(pos) 0.3275 | loss(seq) 0.5720 | grad 3.5765 | lr 0.0010 | time_forward 4.0210 | time_backward 5.8450 |
[2023-09-02 04:38:30,487::train::INFO] [train] Iter 06034 | loss 2.6073 | loss(rot) 1.8939 | loss(pos) 0.2056 | loss(seq) 0.5078 | grad 2.7777 | lr 0.0010 | time_forward 3.6070 | time_backward 4.8410 |
[2023-09-02 04:38:38,648::train::INFO] [train] Iter 06035 | loss 2.3828 | loss(rot) 2.0682 | loss(pos) 0.1546 | loss(seq) 0.1599 | grad 3.9145 | lr 0.0010 | time_forward 3.3860 | time_backward 4.7720 |
[2023-09-02 04:38:48,695::train::INFO] [train] Iter 06036 | loss 2.1479 | loss(rot) 1.3320 | loss(pos) 0.2794 | loss(seq) 0.5364 | grad 3.2838 | lr 0.0010 | time_forward 4.1050 | time_backward 5.9390 |
[2023-09-02 04:38:58,968::train::INFO] [train] Iter 06037 | loss 2.4087 | loss(rot) 2.1793 | loss(pos) 0.0802 | loss(seq) 0.1493 | grad 4.2897 | lr 0.0010 | time_forward 4.0810 | time_backward 6.1880 |
[2023-09-02 04:39:09,220::train::INFO] [train] Iter 06038 | loss 1.2069 | loss(rot) 0.3479 | loss(pos) 0.5972 | loss(seq) 0.2618 | grad 5.2154 | lr 0.0010 | time_forward 4.1120 | time_backward 6.1360 |
[2023-09-02 04:39:18,066::train::INFO] [train] Iter 06039 | loss 1.7568 | loss(rot) 0.4932 | loss(pos) 1.2496 | loss(seq) 0.0139 | grad 7.4078 | lr 0.0010 | time_forward 3.7420 | time_backward 5.1010 |
[2023-09-02 04:39:28,359::train::INFO] [train] Iter 06040 | loss 2.3154 | loss(rot) 1.5351 | loss(pos) 0.2853 | loss(seq) 0.4950 | grad 3.5966 | lr 0.0010 | time_forward 4.1760 | time_backward 6.1130 |
[2023-09-02 04:39:38,756::train::INFO] [train] Iter 06041 | loss 1.6874 | loss(rot) 0.8712 | loss(pos) 0.2060 | loss(seq) 0.6103 | grad 3.1210 | lr 0.0010 | time_forward 4.3580 | time_backward 6.0360 |
[2023-09-02 04:39:42,117::train::INFO] [train] Iter 06042 | loss 3.1338 | loss(rot) 2.4873 | loss(pos) 0.2529 | loss(seq) 0.3936 | grad 4.7513 | lr 0.0010 | time_forward 1.4420 | time_backward 1.9160 |
[2023-09-02 04:39:51,025::train::INFO] [train] Iter 06043 | loss 0.6426 | loss(rot) 0.2660 | loss(pos) 0.3489 | loss(seq) 0.0277 | grad 2.7167 | lr 0.0010 | time_forward 3.7770 | time_backward 5.1260 |
[2023-09-02 04:40:01,038::train::INFO] [train] Iter 06044 | loss 1.1560 | loss(rot) 0.7693 | loss(pos) 0.3165 | loss(seq) 0.0701 | grad 3.2146 | lr 0.0010 | time_forward 4.1270 | time_backward 5.8830 |
[2023-09-02 04:40:09,276::train::INFO] [train] Iter 06045 | loss 3.2352 | loss(rot) 2.7343 | loss(pos) 0.2013 | loss(seq) 0.2995 | grad 4.7281 | lr 0.0010 | time_forward 3.5600 | time_backward 4.6560 |
[2023-09-02 04:40:19,203::train::INFO] [train] Iter 06046 | loss 1.0617 | loss(rot) 0.2932 | loss(pos) 0.7259 | loss(seq) 0.0426 | grad 5.2634 | lr 0.0010 | time_forward 4.0000 | time_backward 5.9240 |
[2023-09-02 04:40:27,909::train::INFO] [train] Iter 06047 | loss 2.2277 | loss(rot) 1.3514 | loss(pos) 0.4138 | loss(seq) 0.4625 | grad 4.0054 | lr 0.0010 | time_forward 3.9330 | time_backward 4.7690 |
[2023-09-02 04:40:36,541::train::INFO] [train] Iter 06048 | loss 2.4316 | loss(rot) 1.7800 | loss(pos) 0.6399 | loss(seq) 0.0116 | grad 8.3611 | lr 0.0010 | time_forward 3.6930 | time_backward 4.9360 |
[2023-09-02 04:40:45,615::train::INFO] [train] Iter 06049 | loss 2.7212 | loss(rot) 1.9445 | loss(pos) 0.2165 | loss(seq) 0.5602 | grad 3.3107 | lr 0.0010 | time_forward 3.7970 | time_backward 5.2720 |
[2023-09-02 04:40:52,460::train::INFO] [train] Iter 06050 | loss 1.7163 | loss(rot) 0.0219 | loss(pos) 1.6925 | loss(seq) 0.0020 | grad 5.9425 | lr 0.0010 | time_forward 3.0310 | time_backward 3.8100 |
[2023-09-02 04:41:00,890::train::INFO] [train] Iter 06051 | loss 2.2926 | loss(rot) 1.2265 | loss(pos) 0.7200 | loss(seq) 0.3462 | grad 4.9045 | lr 0.0010 | time_forward 3.5840 | time_backward 4.8430 |
[2023-09-02 04:41:03,634::train::INFO] [train] Iter 06052 | loss 1.2972 | loss(rot) 0.5780 | loss(pos) 0.2936 | loss(seq) 0.4257 | grad 3.5103 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4600 |
[2023-09-02 04:41:06,430::train::INFO] [train] Iter 06053 | loss 2.2111 | loss(rot) 1.5073 | loss(pos) 0.1881 | loss(seq) 0.5157 | grad 3.3580 | lr 0.0010 | time_forward 1.3210 | time_backward 1.4710 |
[2023-09-02 04:41:16,396::train::INFO] [train] Iter 06054 | loss 1.1895 | loss(rot) 0.1194 | loss(pos) 1.0657 | loss(seq) 0.0043 | grad 5.3799 | lr 0.0010 | time_forward 4.0810 | time_backward 5.8810 |
[2023-09-02 04:41:19,118::train::INFO] [train] Iter 06055 | loss 2.7108 | loss(rot) 2.3464 | loss(pos) 0.2275 | loss(seq) 0.1368 | grad 2.8478 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4760 |
[2023-09-02 04:41:29,182::train::INFO] [train] Iter 06056 | loss 2.5658 | loss(rot) 1.9993 | loss(pos) 0.1589 | loss(seq) 0.4076 | grad 3.4940 | lr 0.0010 | time_forward 3.9910 | time_backward 6.0690 |
[2023-09-02 04:41:39,126::train::INFO] [train] Iter 06057 | loss 1.2987 | loss(rot) 0.4432 | loss(pos) 0.3889 | loss(seq) 0.4666 | grad 3.2398 | lr 0.0010 | time_forward 3.9060 | time_backward 6.0340 |
[2023-09-02 04:41:48,948::train::INFO] [train] Iter 06058 | loss 2.6899 | loss(rot) 2.1594 | loss(pos) 0.2550 | loss(seq) 0.2755 | grad 4.5144 | lr 0.0010 | time_forward 3.9790 | time_backward 5.8400 |
[2023-09-02 04:41:57,397::train::INFO] [train] Iter 06059 | loss 1.9602 | loss(rot) 1.9043 | loss(pos) 0.0227 | loss(seq) 0.0332 | grad 5.6308 | lr 0.0010 | time_forward 3.5030 | time_backward 4.9420 |
[2023-09-02 04:42:04,918::train::INFO] [train] Iter 06060 | loss 1.6279 | loss(rot) 0.3435 | loss(pos) 0.9953 | loss(seq) 0.2891 | grad 5.2133 | lr 0.0010 | time_forward 3.2180 | time_backward 4.3000 |
[2023-09-02 04:42:13,626::train::INFO] [train] Iter 06061 | loss 1.2506 | loss(rot) 0.2216 | loss(pos) 0.7488 | loss(seq) 0.2802 | grad 4.5054 | lr 0.0010 | time_forward 3.7190 | time_backward 4.9860 |
[2023-09-02 04:42:15,922::train::INFO] [train] Iter 06062 | loss 2.0011 | loss(rot) 1.8438 | loss(pos) 0.1362 | loss(seq) 0.0212 | grad 3.1970 | lr 0.0010 | time_forward 1.0550 | time_backward 1.2370 |
[2023-09-02 04:42:24,020::train::INFO] [train] Iter 06063 | loss 2.3731 | loss(rot) 1.9610 | loss(pos) 0.1672 | loss(seq) 0.2449 | grad 3.8132 | lr 0.0010 | time_forward 3.3340 | time_backward 4.7610 |
[2023-09-02 04:42:33,923::train::INFO] [train] Iter 06064 | loss 1.6278 | loss(rot) 0.3797 | loss(pos) 1.0354 | loss(seq) 0.2127 | grad 4.9959 | lr 0.0010 | time_forward 4.1440 | time_backward 5.7560 |
[2023-09-02 04:42:44,263::train::INFO] [train] Iter 06065 | loss 1.8159 | loss(rot) 1.6161 | loss(pos) 0.1572 | loss(seq) 0.0426 | grad 5.7668 | lr 0.0010 | time_forward 4.2220 | time_backward 6.1150 |
[2023-09-02 04:42:52,639::train::INFO] [train] Iter 06066 | loss 0.8350 | loss(rot) 0.1007 | loss(pos) 0.7218 | loss(seq) 0.0125 | grad 5.3311 | lr 0.0010 | time_forward 3.4730 | time_backward 4.9000 |
[2023-09-02 04:43:01,150::train::INFO] [train] Iter 06067 | loss 2.5387 | loss(rot) 2.3613 | loss(pos) 0.1742 | loss(seq) 0.0033 | grad 5.1035 | lr 0.0010 | time_forward 3.3420 | time_backward 5.1650 |
[2023-09-02 04:43:09,747::train::INFO] [train] Iter 06068 | loss 1.6611 | loss(rot) 1.5227 | loss(pos) 0.1180 | loss(seq) 0.0204 | grad 4.1233 | lr 0.0010 | time_forward 3.6440 | time_backward 4.9480 |
[2023-09-02 04:43:19,710::train::INFO] [train] Iter 06069 | loss 1.3376 | loss(rot) 0.6283 | loss(pos) 0.3774 | loss(seq) 0.3318 | grad 3.0217 | lr 0.0010 | time_forward 4.0400 | time_backward 5.9190 |
[2023-09-02 04:43:26,886::train::INFO] [train] Iter 06070 | loss 2.7317 | loss(rot) 2.5091 | loss(pos) 0.2224 | loss(seq) 0.0001 | grad 5.2457 | lr 0.0010 | time_forward 3.0490 | time_backward 4.1240 |
[2023-09-02 04:43:29,575::train::INFO] [train] Iter 06071 | loss 2.5143 | loss(rot) 2.0907 | loss(pos) 0.4235 | loss(seq) 0.0000 | grad 4.5539 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4330 |
[2023-09-02 04:43:32,295::train::INFO] [train] Iter 06072 | loss 2.5625 | loss(rot) 2.4052 | loss(pos) 0.1504 | loss(seq) 0.0070 | grad 4.4570 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4490 |
[2023-09-02 04:43:40,588::train::INFO] [train] Iter 06073 | loss 2.9765 | loss(rot) 2.6474 | loss(pos) 0.1427 | loss(seq) 0.1864 | grad 4.3973 | lr 0.0010 | time_forward 3.5190 | time_backward 4.7300 |
[2023-09-02 04:43:42,813::train::INFO] [train] Iter 06074 | loss 1.8418 | loss(rot) 0.9456 | loss(pos) 0.5369 | loss(seq) 0.3592 | grad 3.6138 | lr 0.0010 | time_forward 1.0410 | time_backward 1.1800 |
[2023-09-02 04:43:52,179::train::INFO] [train] Iter 06075 | loss 1.9871 | loss(rot) 1.3731 | loss(pos) 0.1534 | loss(seq) 0.4605 | grad 5.7720 | lr 0.0010 | time_forward 3.9080 | time_backward 5.4540 |
[2023-09-02 04:43:54,469::train::INFO] [train] Iter 06076 | loss 1.5441 | loss(rot) 0.9423 | loss(pos) 0.0964 | loss(seq) 0.5054 | grad 4.1645 | lr 0.0010 | time_forward 1.1000 | time_backward 1.1880 |
[2023-09-02 04:44:04,491::train::INFO] [train] Iter 06077 | loss 2.5305 | loss(rot) 1.7181 | loss(pos) 0.2492 | loss(seq) 0.5632 | grad 5.9058 | lr 0.0010 | time_forward 4.5770 | time_backward 5.4410 |
[2023-09-02 04:44:07,728::train::INFO] [train] Iter 06078 | loss 1.5775 | loss(rot) 0.6282 | loss(pos) 0.4081 | loss(seq) 0.5412 | grad 2.8316 | lr 0.0010 | time_forward 1.4000 | time_backward 1.8340 |
[2023-09-02 04:44:16,888::train::INFO] [train] Iter 06079 | loss 2.6700 | loss(rot) 2.5055 | loss(pos) 0.1645 | loss(seq) 0.0000 | grad 4.7629 | lr 0.0010 | time_forward 3.9220 | time_backward 5.2340 |
[2023-09-02 04:44:19,625::train::INFO] [train] Iter 06080 | loss 1.2189 | loss(rot) 0.5103 | loss(pos) 0.4556 | loss(seq) 0.2530 | grad 4.6593 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4390 |
[2023-09-02 04:44:28,335::train::INFO] [train] Iter 06081 | loss 2.6372 | loss(rot) 2.4132 | loss(pos) 0.2240 | loss(seq) 0.0000 | grad 2.6066 | lr 0.0010 | time_forward 3.7300 | time_backward 4.9770 |
[2023-09-02 04:44:37,849::train::INFO] [train] Iter 06082 | loss 0.9344 | loss(rot) 0.5242 | loss(pos) 0.3124 | loss(seq) 0.0979 | grad 3.6725 | lr 0.0010 | time_forward 3.9940 | time_backward 5.5160 |
[2023-09-02 04:44:46,329::train::INFO] [train] Iter 06083 | loss 2.4234 | loss(rot) 2.2193 | loss(pos) 0.1638 | loss(seq) 0.0403 | grad 4.4154 | lr 0.0010 | time_forward 3.5240 | time_backward 4.9530 |
[2023-09-02 04:44:56,352::train::INFO] [train] Iter 06084 | loss 2.6643 | loss(rot) 2.4874 | loss(pos) 0.1736 | loss(seq) 0.0032 | grad 3.5647 | lr 0.0010 | time_forward 4.0800 | time_backward 5.9400 |
[2023-09-02 04:45:06,407::train::INFO] [train] Iter 06085 | loss 2.2158 | loss(rot) 1.3570 | loss(pos) 0.3361 | loss(seq) 0.5227 | grad 3.4175 | lr 0.0010 | time_forward 4.0410 | time_backward 6.0100 |
[2023-09-02 04:45:09,221::train::INFO] [train] Iter 06086 | loss 1.5489 | loss(rot) 0.7966 | loss(pos) 0.3608 | loss(seq) 0.3915 | grad 6.4191 | lr 0.0010 | time_forward 1.2940 | time_backward 1.5180 |
[2023-09-02 04:45:17,622::train::INFO] [train] Iter 06087 | loss 2.1527 | loss(rot) 1.6896 | loss(pos) 0.1823 | loss(seq) 0.2808 | grad 3.2754 | lr 0.0010 | time_forward 3.5610 | time_backward 4.8360 |
[2023-09-02 04:45:27,542::train::INFO] [train] Iter 06088 | loss 2.5229 | loss(rot) 2.0675 | loss(pos) 0.2658 | loss(seq) 0.1897 | grad 2.9451 | lr 0.0010 | time_forward 4.1970 | time_backward 5.7190 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.