text
stringlengths
56
1.16k
[2023-09-02 04:57:41,606::train::INFO] [train] Iter 06189 | loss 2.3439 | loss(rot) 2.2319 | loss(pos) 0.1089 | loss(seq) 0.0031 | grad 4.5317 | lr 0.0010 | time_forward 3.9710 | time_backward 5.9660
[2023-09-02 04:57:51,543::train::INFO] [train] Iter 06190 | loss 1.4724 | loss(rot) 0.7380 | loss(pos) 0.5023 | loss(seq) 0.2321 | grad 5.8752 | lr 0.0010 | time_forward 3.9960 | time_backward 5.9380
[2023-09-02 04:58:00,115::train::INFO] [train] Iter 06191 | loss 1.4768 | loss(rot) 0.6937 | loss(pos) 0.3562 | loss(seq) 0.4269 | grad 3.7143 | lr 0.0010 | time_forward 3.5980 | time_backward 4.9700
[2023-09-02 04:58:10,113::train::INFO] [train] Iter 06192 | loss 2.0467 | loss(rot) 1.1664 | loss(pos) 0.3352 | loss(seq) 0.5451 | grad 3.4213 | lr 0.0010 | time_forward 4.0170 | time_backward 5.9770
[2023-09-02 04:58:17,247::train::INFO] [train] Iter 06193 | loss 2.5575 | loss(rot) 1.9427 | loss(pos) 0.1360 | loss(seq) 0.4788 | grad 5.3613 | lr 0.0010 | time_forward 3.0630 | time_backward 4.0690
[2023-09-02 04:58:27,546::train::INFO] [train] Iter 06194 | loss 2.1267 | loss(rot) 1.3094 | loss(pos) 0.3409 | loss(seq) 0.4764 | grad 2.9757 | lr 0.0010 | time_forward 4.4700 | time_backward 5.8250
[2023-09-02 04:58:30,276::train::INFO] [train] Iter 06195 | loss 2.6727 | loss(rot) 2.5172 | loss(pos) 0.1552 | loss(seq) 0.0003 | grad 4.9717 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4560
[2023-09-02 04:58:33,606::train::INFO] [train] Iter 06196 | loss 2.6055 | loss(rot) 2.4030 | loss(pos) 0.1042 | loss(seq) 0.0983 | grad 6.1919 | lr 0.0010 | time_forward 1.4520 | time_backward 1.8750
[2023-09-02 04:58:36,360::train::INFO] [train] Iter 06197 | loss 1.8087 | loss(rot) 1.0412 | loss(pos) 0.4546 | loss(seq) 0.3129 | grad 3.6591 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4980
[2023-09-02 04:58:44,544::train::INFO] [train] Iter 06198 | loss 1.0605 | loss(rot) 0.3161 | loss(pos) 0.6737 | loss(seq) 0.0706 | grad 4.3787 | lr 0.0010 | time_forward 3.5180 | time_backward 4.6620
[2023-09-02 04:58:47,235::train::INFO] [train] Iter 06199 | loss 0.8773 | loss(rot) 0.1929 | loss(pos) 0.4849 | loss(seq) 0.1995 | grad 3.2423 | lr 0.0010 | time_forward 1.2940 | time_backward 1.3940
[2023-09-02 04:58:49,953::train::INFO] [train] Iter 06200 | loss 1.5438 | loss(rot) 1.2652 | loss(pos) 0.1105 | loss(seq) 0.1681 | grad 3.6830 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4270
[2023-09-02 04:58:52,315::train::INFO] [train] Iter 06201 | loss 2.6128 | loss(rot) 1.1764 | loss(pos) 0.9059 | loss(seq) 0.5305 | grad 5.9303 | lr 0.0010 | time_forward 1.1840 | time_backward 1.1750
[2023-09-02 04:59:00,391::train::INFO] [train] Iter 06202 | loss 3.0138 | loss(rot) 2.7525 | loss(pos) 0.1470 | loss(seq) 0.1143 | grad 5.1618 | lr 0.0010 | time_forward 3.4030 | time_backward 4.6670
[2023-09-02 04:59:08,350::train::INFO] [train] Iter 06203 | loss 1.8576 | loss(rot) 1.2413 | loss(pos) 0.2748 | loss(seq) 0.3415 | grad 4.0934 | lr 0.0010 | time_forward 3.3490 | time_backward 4.6070
[2023-09-02 04:59:18,152::train::INFO] [train] Iter 06204 | loss 2.2406 | loss(rot) 1.5890 | loss(pos) 0.3129 | loss(seq) 0.3388 | grad 5.2234 | lr 0.0010 | time_forward 4.0300 | time_backward 5.7680
[2023-09-02 04:59:26,481::train::INFO] [train] Iter 06205 | loss 1.6438 | loss(rot) 0.8076 | loss(pos) 0.5082 | loss(seq) 0.3280 | grad 3.8582 | lr 0.0010 | time_forward 3.4500 | time_backward 4.8750
[2023-09-02 04:59:29,252::train::INFO] [train] Iter 06206 | loss 2.8621 | loss(rot) 2.7548 | loss(pos) 0.1053 | loss(seq) 0.0020 | grad 4.0485 | lr 0.0010 | time_forward 1.3450 | time_backward 1.4220
[2023-09-02 04:59:37,110::train::INFO] [train] Iter 06207 | loss 2.3857 | loss(rot) 2.0193 | loss(pos) 0.1711 | loss(seq) 0.1953 | grad 5.0962 | lr 0.0010 | time_forward 3.3240 | time_backward 4.5050
[2023-09-02 04:59:39,346::train::INFO] [train] Iter 06208 | loss 2.6329 | loss(rot) 1.9282 | loss(pos) 0.1344 | loss(seq) 0.5702 | grad 3.5134 | lr 0.0010 | time_forward 1.0490 | time_backward 1.1830
[2023-09-02 04:59:49,446::train::INFO] [train] Iter 06209 | loss 1.3611 | loss(rot) 0.6514 | loss(pos) 0.3731 | loss(seq) 0.3366 | grad 4.0975 | lr 0.0010 | time_forward 4.0930 | time_backward 6.0020
[2023-09-02 04:59:59,407::train::INFO] [train] Iter 06210 | loss 2.1507 | loss(rot) 0.0954 | loss(pos) 2.0523 | loss(seq) 0.0030 | grad 7.7920 | lr 0.0010 | time_forward 3.9780 | time_backward 5.9790
[2023-09-02 05:00:08,346::train::INFO] [train] Iter 06211 | loss 1.8549 | loss(rot) 1.2765 | loss(pos) 0.1503 | loss(seq) 0.4281 | grad 3.7244 | lr 0.0010 | time_forward 3.7980 | time_backward 5.1370
[2023-09-02 05:00:11,100::train::INFO] [train] Iter 06212 | loss 1.2257 | loss(rot) 0.3803 | loss(pos) 0.5251 | loss(seq) 0.3203 | grad 3.6758 | lr 0.0010 | time_forward 1.3320 | time_backward 1.4190
[2023-09-02 05:00:13,780::train::INFO] [train] Iter 06213 | loss 1.3669 | loss(rot) 0.7783 | loss(pos) 0.4030 | loss(seq) 0.1856 | grad 5.0031 | lr 0.0010 | time_forward 1.2810 | time_backward 1.3950
[2023-09-02 05:00:16,062::train::INFO] [train] Iter 06214 | loss 2.5919 | loss(rot) 1.8692 | loss(pos) 0.2224 | loss(seq) 0.5002 | grad 2.7983 | lr 0.0010 | time_forward 1.0900 | time_backward 1.1890
[2023-09-02 05:00:24,639::train::INFO] [train] Iter 06215 | loss 0.5195 | loss(rot) 0.0598 | loss(pos) 0.1766 | loss(seq) 0.2831 | grad 2.1554 | lr 0.0010 | time_forward 3.6160 | time_backward 4.9570
[2023-09-02 05:00:34,864::train::INFO] [train] Iter 06216 | loss 1.0002 | loss(rot) 0.1642 | loss(pos) 0.8024 | loss(seq) 0.0336 | grad 3.9661 | lr 0.0010 | time_forward 4.1470 | time_backward 6.0740
[2023-09-02 05:00:43,667::train::INFO] [train] Iter 06217 | loss 0.7071 | loss(rot) 0.0538 | loss(pos) 0.6439 | loss(seq) 0.0094 | grad 4.1083 | lr 0.0010 | time_forward 3.7340 | time_backward 5.0660
[2023-09-02 05:00:53,806::train::INFO] [train] Iter 06218 | loss 1.1584 | loss(rot) 0.0319 | loss(pos) 1.1215 | loss(seq) 0.0050 | grad 4.8975 | lr 0.0010 | time_forward 4.1380 | time_backward 5.9990
[2023-09-02 05:00:56,718::train::INFO] [train] Iter 06219 | loss 1.4128 | loss(rot) 0.7252 | loss(pos) 0.2424 | loss(seq) 0.4452 | grad 4.0914 | lr 0.0010 | time_forward 1.6160 | time_backward 1.2920
[2023-09-02 05:00:59,191::train::INFO] [train] Iter 06220 | loss 1.5242 | loss(rot) 0.0569 | loss(pos) 1.4613 | loss(seq) 0.0061 | grad 6.2048 | lr 0.0010 | time_forward 1.2560 | time_backward 1.1940
[2023-09-02 05:01:08,939::train::INFO] [train] Iter 06221 | loss 1.8321 | loss(rot) 1.5370 | loss(pos) 0.2884 | loss(seq) 0.0067 | grad 5.0084 | lr 0.0010 | time_forward 4.1720 | time_backward 5.5730
[2023-09-02 05:01:11,639::train::INFO] [train] Iter 06222 | loss 1.9835 | loss(rot) 1.3006 | loss(pos) 0.2388 | loss(seq) 0.4441 | grad 3.3344 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4550
[2023-09-02 05:01:19,877::train::INFO] [train] Iter 06223 | loss 2.0891 | loss(rot) 1.5199 | loss(pos) 0.1591 | loss(seq) 0.4100 | grad 3.9080 | lr 0.0010 | time_forward 3.5180 | time_backward 4.7160
[2023-09-02 05:01:27,182::train::INFO] [train] Iter 06224 | loss 1.1744 | loss(rot) 0.3586 | loss(pos) 0.2534 | loss(seq) 0.5624 | grad 4.6934 | lr 0.0010 | time_forward 3.4310 | time_backward 3.8710
[2023-09-02 05:01:37,023::train::INFO] [train] Iter 06225 | loss 0.8123 | loss(rot) 0.2461 | loss(pos) 0.5176 | loss(seq) 0.0487 | grad 4.5331 | lr 0.0010 | time_forward 3.9840 | time_backward 5.8530
[2023-09-02 05:01:46,898::train::INFO] [train] Iter 06226 | loss 2.0791 | loss(rot) 1.4228 | loss(pos) 0.2229 | loss(seq) 0.4333 | grad 4.1020 | lr 0.0010 | time_forward 4.0450 | time_backward 5.8260
[2023-09-02 05:01:56,298::train::INFO] [train] Iter 06227 | loss 1.8493 | loss(rot) 1.1612 | loss(pos) 0.2476 | loss(seq) 0.4405 | grad 4.5506 | lr 0.0010 | time_forward 3.9090 | time_backward 5.4870
[2023-09-02 05:02:04,818::train::INFO] [train] Iter 06228 | loss 2.6402 | loss(rot) 2.5072 | loss(pos) 0.1283 | loss(seq) 0.0048 | grad 4.1413 | lr 0.0010 | time_forward 3.5940 | time_backward 4.9220
[2023-09-02 05:02:13,484::train::INFO] [train] Iter 06229 | loss 0.9653 | loss(rot) 0.3973 | loss(pos) 0.2970 | loss(seq) 0.2710 | grad 4.0913 | lr 0.0010 | time_forward 3.5650 | time_backward 5.0970
[2023-09-02 05:02:25,091::train::INFO] [train] Iter 06230 | loss 1.2548 | loss(rot) 0.0969 | loss(pos) 1.1441 | loss(seq) 0.0138 | grad 5.2051 | lr 0.0010 | time_forward 4.3470 | time_backward 7.2560
[2023-09-02 05:02:33,698::train::INFO] [train] Iter 06231 | loss 3.0301 | loss(rot) 2.3675 | loss(pos) 0.3622 | loss(seq) 0.3004 | grad 4.5415 | lr 0.0010 | time_forward 3.5440 | time_backward 5.0600
[2023-09-02 05:02:42,703::train::INFO] [train] Iter 06232 | loss 2.5187 | loss(rot) 2.1526 | loss(pos) 0.1112 | loss(seq) 0.2549 | grad 3.6022 | lr 0.0010 | time_forward 3.9380 | time_backward 5.0630
[2023-09-02 05:02:52,908::train::INFO] [train] Iter 06233 | loss 2.0949 | loss(rot) 0.9354 | loss(pos) 0.6982 | loss(seq) 0.4613 | grad 4.8899 | lr 0.0010 | time_forward 4.1710 | time_backward 6.0300
[2023-09-02 05:03:01,085::train::INFO] [train] Iter 06234 | loss 1.0497 | loss(rot) 0.5581 | loss(pos) 0.1110 | loss(seq) 0.3806 | grad 2.8709 | lr 0.0010 | time_forward 3.4080 | time_backward 4.7660
[2023-09-02 05:03:11,185::train::INFO] [train] Iter 06235 | loss 1.6735 | loss(rot) 0.0493 | loss(pos) 1.6136 | loss(seq) 0.0106 | grad 8.5928 | lr 0.0010 | time_forward 4.1130 | time_backward 5.9840
[2023-09-02 05:03:19,782::train::INFO] [train] Iter 06236 | loss 2.8562 | loss(rot) 2.6054 | loss(pos) 0.2459 | loss(seq) 0.0048 | grad 2.8871 | lr 0.0010 | time_forward 3.6270 | time_backward 4.9510
[2023-09-02 05:03:27,971::train::INFO] [train] Iter 06237 | loss 1.5682 | loss(rot) 1.3452 | loss(pos) 0.2209 | loss(seq) 0.0021 | grad 8.1751 | lr 0.0010 | time_forward 3.3730 | time_backward 4.8130
[2023-09-02 05:03:36,536::train::INFO] [train] Iter 06238 | loss 2.8273 | loss(rot) 2.7226 | loss(pos) 0.1045 | loss(seq) 0.0001 | grad 3.0950 | lr 0.0010 | time_forward 3.5460 | time_backward 5.0130
[2023-09-02 05:03:45,249::train::INFO] [train] Iter 06239 | loss 2.0891 | loss(rot) 0.9922 | loss(pos) 0.5575 | loss(seq) 0.5395 | grad 8.2380 | lr 0.0010 | time_forward 3.7230 | time_backward 4.9860
[2023-09-02 05:03:55,001::train::INFO] [train] Iter 06240 | loss 2.1072 | loss(rot) 0.8667 | loss(pos) 0.6471 | loss(seq) 0.5933 | grad 4.9995 | lr 0.0010 | time_forward 3.9760 | time_backward 5.7740
[2023-09-02 05:04:04,103::train::INFO] [train] Iter 06241 | loss 1.1574 | loss(rot) 0.1999 | loss(pos) 0.8820 | loss(seq) 0.0755 | grad 7.4507 | lr 0.0010 | time_forward 3.9110 | time_backward 5.1880
[2023-09-02 05:04:06,762::train::INFO] [train] Iter 06242 | loss 1.7832 | loss(rot) 0.9530 | loss(pos) 0.2191 | loss(seq) 0.6111 | grad 4.2636 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4130
[2023-09-02 05:04:09,443::train::INFO] [train] Iter 06243 | loss 1.4680 | loss(rot) 0.8525 | loss(pos) 0.1582 | loss(seq) 0.4572 | grad 3.2873 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4120
[2023-09-02 05:04:17,633::train::INFO] [train] Iter 06244 | loss 1.2875 | loss(rot) 0.0951 | loss(pos) 1.1821 | loss(seq) 0.0103 | grad 9.3849 | lr 0.0010 | time_forward 3.4310 | time_backward 4.7560
[2023-09-02 05:04:20,335::train::INFO] [train] Iter 06245 | loss 2.8597 | loss(rot) 2.6437 | loss(pos) 0.2148 | loss(seq) 0.0012 | grad 4.5040 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4370
[2023-09-02 05:04:23,080::train::INFO] [train] Iter 06246 | loss 1.6682 | loss(rot) 0.8278 | loss(pos) 0.3755 | loss(seq) 0.4649 | grad 4.1289 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4450
[2023-09-02 05:04:31,323::train::INFO] [train] Iter 06247 | loss 2.6934 | loss(rot) 2.4334 | loss(pos) 0.2401 | loss(seq) 0.0199 | grad 4.9194 | lr 0.0010 | time_forward 3.5030 | time_backward 4.7370
[2023-09-02 05:04:39,822::train::INFO] [train] Iter 06248 | loss 1.3706 | loss(rot) 0.9551 | loss(pos) 0.3256 | loss(seq) 0.0899 | grad 4.1939 | lr 0.0010 | time_forward 3.6070 | time_backward 4.8880
[2023-09-02 05:04:48,515::train::INFO] [train] Iter 06249 | loss 1.4954 | loss(rot) 0.6073 | loss(pos) 0.4544 | loss(seq) 0.4338 | grad 5.0178 | lr 0.0010 | time_forward 3.6730 | time_backward 5.0160
[2023-09-02 05:04:51,181::train::INFO] [train] Iter 06250 | loss 2.3667 | loss(rot) 2.1009 | loss(pos) 0.2435 | loss(seq) 0.0223 | grad 4.7879 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4220
[2023-09-02 05:05:01,523::train::INFO] [train] Iter 06251 | loss 1.3447 | loss(rot) 0.2657 | loss(pos) 0.6830 | loss(seq) 0.3960 | grad 6.5927 | lr 0.0010 | time_forward 4.2870 | time_backward 6.0510
[2023-09-02 05:05:12,316::train::INFO] [train] Iter 06252 | loss 1.9059 | loss(rot) 1.0723 | loss(pos) 0.2940 | loss(seq) 0.5396 | grad 3.3946 | lr 0.0010 | time_forward 4.2430 | time_backward 6.5460
[2023-09-02 05:05:20,938::train::INFO] [train] Iter 06253 | loss 1.8804 | loss(rot) 1.1563 | loss(pos) 0.3042 | loss(seq) 0.4198 | grad 5.0005 | lr 0.0010 | time_forward 3.5890 | time_backward 5.0290
[2023-09-02 05:05:30,838::train::INFO] [train] Iter 06254 | loss 1.5848 | loss(rot) 0.7528 | loss(pos) 0.3222 | loss(seq) 0.5099 | grad 3.3286 | lr 0.0010 | time_forward 3.9910 | time_backward 5.9070
[2023-09-02 05:05:40,779::train::INFO] [train] Iter 06255 | loss 1.0347 | loss(rot) 0.1384 | loss(pos) 0.6452 | loss(seq) 0.2511 | grad 4.1194 | lr 0.0010 | time_forward 4.1060 | time_backward 5.8310
[2023-09-02 05:05:49,258::train::INFO] [train] Iter 06256 | loss 2.1788 | loss(rot) 0.8568 | loss(pos) 0.7925 | loss(seq) 0.5296 | grad 4.3812 | lr 0.0010 | time_forward 3.5220 | time_backward 4.9550
[2023-09-02 05:05:56,752::train::INFO] [train] Iter 06257 | loss 2.1703 | loss(rot) 0.7626 | loss(pos) 1.1046 | loss(seq) 0.3031 | grad 6.5900 | lr 0.0010 | time_forward 3.2080 | time_backward 4.2820
[2023-09-02 05:06:06,769::train::INFO] [train] Iter 06258 | loss 1.8384 | loss(rot) 0.5138 | loss(pos) 0.6020 | loss(seq) 0.7226 | grad 3.4262 | lr 0.0010 | time_forward 4.0340 | time_backward 5.9810
[2023-09-02 05:06:09,434::train::INFO] [train] Iter 06259 | loss 1.6144 | loss(rot) 0.7967 | loss(pos) 0.4405 | loss(seq) 0.3772 | grad 4.6668 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4260
[2023-09-02 05:06:20,027::train::INFO] [train] Iter 06260 | loss 1.6134 | loss(rot) 0.7715 | loss(pos) 0.3637 | loss(seq) 0.4782 | grad 6.2669 | lr 0.0010 | time_forward 5.4200 | time_backward 5.1400
[2023-09-02 05:06:23,348::train::INFO] [train] Iter 06261 | loss 1.8531 | loss(rot) 1.2200 | loss(pos) 0.1362 | loss(seq) 0.4969 | grad 3.7675 | lr 0.0010 | time_forward 1.4460 | time_backward 1.8710
[2023-09-02 05:06:25,630::train::INFO] [train] Iter 06262 | loss 1.1973 | loss(rot) 0.4653 | loss(pos) 0.5129 | loss(seq) 0.2190 | grad 3.2396 | lr 0.0010 | time_forward 1.0610 | time_backward 1.2170
[2023-09-02 05:06:33,862::train::INFO] [train] Iter 06263 | loss 0.6733 | loss(rot) 0.1034 | loss(pos) 0.4177 | loss(seq) 0.1522 | grad 3.4702 | lr 0.0010 | time_forward 3.5620 | time_backward 4.6670
[2023-09-02 05:06:41,767::train::INFO] [train] Iter 06264 | loss 2.4823 | loss(rot) 2.1454 | loss(pos) 0.1538 | loss(seq) 0.1830 | grad 4.5212 | lr 0.0010 | time_forward 3.3340 | time_backward 4.5670
[2023-09-02 05:06:51,717::train::INFO] [train] Iter 06265 | loss 2.5400 | loss(rot) 1.9949 | loss(pos) 0.1191 | loss(seq) 0.4259 | grad 3.9837 | lr 0.0010 | time_forward 4.0820 | time_backward 5.8650
[2023-09-02 05:07:01,497::train::INFO] [train] Iter 06266 | loss 2.8672 | loss(rot) 0.0301 | loss(pos) 2.8371 | loss(seq) 0.0000 | grad 6.1657 | lr 0.0010 | time_forward 4.1000 | time_backward 5.6770
[2023-09-02 05:07:04,208::train::INFO] [train] Iter 06267 | loss 1.9483 | loss(rot) 1.3154 | loss(pos) 0.2592 | loss(seq) 0.3737 | grad 5.0843 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4300
[2023-09-02 05:07:07,113::train::INFO] [train] Iter 06268 | loss 1.7145 | loss(rot) 0.4721 | loss(pos) 1.1744 | loss(seq) 0.0680 | grad 9.9443 | lr 0.0010 | time_forward 1.3750 | time_backward 1.5010
[2023-09-02 05:07:16,149::train::INFO] [train] Iter 06269 | loss 2.3287 | loss(rot) 1.3904 | loss(pos) 0.4193 | loss(seq) 0.5191 | grad 3.9854 | lr 0.0010 | time_forward 3.8580 | time_backward 5.1750
[2023-09-02 05:07:25,741::train::INFO] [train] Iter 06270 | loss 0.9586 | loss(rot) 0.3344 | loss(pos) 0.4049 | loss(seq) 0.2193 | grad 3.9024 | lr 0.0010 | time_forward 4.1080 | time_backward 5.4800
[2023-09-02 05:07:35,859::train::INFO] [train] Iter 06271 | loss 1.4361 | loss(rot) 0.8330 | loss(pos) 0.3033 | loss(seq) 0.2997 | grad 4.7881 | lr 0.0010 | time_forward 4.1100 | time_backward 6.0050
[2023-09-02 05:07:44,415::train::INFO] [train] Iter 06272 | loss 1.5956 | loss(rot) 0.8780 | loss(pos) 0.2890 | loss(seq) 0.4285 | grad 2.8757 | lr 0.0010 | time_forward 3.7050 | time_backward 4.8230
[2023-09-02 05:07:54,437::train::INFO] [train] Iter 06273 | loss 1.4339 | loss(rot) 0.3323 | loss(pos) 0.7608 | loss(seq) 0.3409 | grad 4.6664 | lr 0.0010 | time_forward 4.1300 | time_backward 5.8890
[2023-09-02 05:07:57,132::train::INFO] [train] Iter 06274 | loss 1.1675 | loss(rot) 0.6018 | loss(pos) 0.1708 | loss(seq) 0.3948 | grad 2.0808 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4300
[2023-09-02 05:07:59,884::train::INFO] [train] Iter 06275 | loss 1.7194 | loss(rot) 0.0962 | loss(pos) 1.2429 | loss(seq) 0.3804 | grad 6.5718 | lr 0.0010 | time_forward 1.2990 | time_backward 1.4500
[2023-09-02 05:08:02,721::train::INFO] [train] Iter 06276 | loss 2.2869 | loss(rot) 1.7857 | loss(pos) 0.1574 | loss(seq) 0.3437 | grad 4.0078 | lr 0.0010 | time_forward 1.3240 | time_backward 1.4950
[2023-09-02 05:08:10,150::train::INFO] [train] Iter 06277 | loss 1.7934 | loss(rot) 1.0545 | loss(pos) 0.4270 | loss(seq) 0.3119 | grad 4.6966 | lr 0.0010 | time_forward 3.1320 | time_backward 4.2930
[2023-09-02 05:08:18,892::train::INFO] [train] Iter 06278 | loss 2.4129 | loss(rot) 2.0838 | loss(pos) 0.3271 | loss(seq) 0.0020 | grad 4.2498 | lr 0.0010 | time_forward 3.6010 | time_backward 5.1380
[2023-09-02 05:08:28,136::train::INFO] [train] Iter 06279 | loss 1.1869 | loss(rot) 0.5159 | loss(pos) 0.2349 | loss(seq) 0.4361 | grad 4.0755 | lr 0.0010 | time_forward 3.9030 | time_backward 5.3380
[2023-09-02 05:08:30,792::train::INFO] [train] Iter 06280 | loss 2.8268 | loss(rot) 0.0356 | loss(pos) 2.7905 | loss(seq) 0.0006 | grad 5.8989 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4090
[2023-09-02 05:08:38,984::train::INFO] [train] Iter 06281 | loss 2.0686 | loss(rot) 1.4692 | loss(pos) 0.2299 | loss(seq) 0.3695 | grad 5.8281 | lr 0.0010 | time_forward 3.5120 | time_backward 4.6770
[2023-09-02 05:08:47,508::train::INFO] [train] Iter 06282 | loss 2.5433 | loss(rot) 2.2886 | loss(pos) 0.2546 | loss(seq) 0.0000 | grad 4.3651 | lr 0.0010 | time_forward 3.6810 | time_backward 4.8390
[2023-09-02 05:08:56,555::train::INFO] [train] Iter 06283 | loss 1.1029 | loss(rot) 0.0680 | loss(pos) 1.0203 | loss(seq) 0.0146 | grad 4.7583 | lr 0.0010 | time_forward 3.8140 | time_backward 5.2300
[2023-09-02 05:09:06,674::train::INFO] [train] Iter 06284 | loss 2.0870 | loss(rot) 1.3021 | loss(pos) 0.3263 | loss(seq) 0.4586 | grad 4.7212 | lr 0.0010 | time_forward 4.0380 | time_backward 6.0790
[2023-09-02 05:09:16,651::train::INFO] [train] Iter 06285 | loss 3.3986 | loss(rot) 0.0076 | loss(pos) 3.3904 | loss(seq) 0.0006 | grad 7.0132 | lr 0.0010 | time_forward 4.0720 | time_backward 5.9000
[2023-09-02 05:09:19,279::train::INFO] [train] Iter 06286 | loss 2.0783 | loss(rot) 1.7960 | loss(pos) 0.2305 | loss(seq) 0.0519 | grad 3.9657 | lr 0.0010 | time_forward 1.2360 | time_backward 1.3890
[2023-09-02 05:09:28,202::train::INFO] [train] Iter 06287 | loss 2.1250 | loss(rot) 1.7984 | loss(pos) 0.1668 | loss(seq) 0.1598 | grad 3.8337 | lr 0.0010 | time_forward 3.7500 | time_backward 5.1690
[2023-09-02 05:09:30,869::train::INFO] [train] Iter 06288 | loss 1.5944 | loss(rot) 1.0112 | loss(pos) 0.2856 | loss(seq) 0.2975 | grad 4.3468 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4220