text
stringlengths
56
1.16k
[2023-09-02 05:21:11,679::train::INFO] [train] Iter 06389 | loss 2.3083 | loss(rot) 2.1977 | loss(pos) 0.1085 | loss(seq) 0.0021 | grad 6.8948 | lr 0.0010 | time_forward 1.2970 | time_backward 1.3950
[2023-09-02 05:21:14,396::train::INFO] [train] Iter 06390 | loss 1.7450 | loss(rot) 0.8846 | loss(pos) 0.3866 | loss(seq) 0.4737 | grad 5.7213 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4310
[2023-09-02 05:21:22,980::train::INFO] [train] Iter 06391 | loss 2.2182 | loss(rot) 1.6727 | loss(pos) 0.2541 | loss(seq) 0.2913 | grad 5.8984 | lr 0.0010 | time_forward 3.7230 | time_backward 4.8580
[2023-09-02 05:21:32,324::train::INFO] [train] Iter 06392 | loss 2.0469 | loss(rot) 1.6301 | loss(pos) 0.3235 | loss(seq) 0.0932 | grad 6.9443 | lr 0.0010 | time_forward 3.8880 | time_backward 5.4520
[2023-09-02 05:21:35,019::train::INFO] [train] Iter 06393 | loss 2.3727 | loss(rot) 2.2198 | loss(pos) 0.1485 | loss(seq) 0.0044 | grad 5.1207 | lr 0.0010 | time_forward 1.2930 | time_backward 1.3980
[2023-09-02 05:21:37,787::train::INFO] [train] Iter 06394 | loss 2.5843 | loss(rot) 1.9841 | loss(pos) 0.2166 | loss(seq) 0.3837 | grad 3.8878 | lr 0.0010 | time_forward 1.3150 | time_backward 1.4500
[2023-09-02 05:21:45,929::train::INFO] [train] Iter 06395 | loss 2.0101 | loss(rot) 1.7868 | loss(pos) 0.2230 | loss(seq) 0.0003 | grad 4.7544 | lr 0.0010 | time_forward 3.3890 | time_backward 4.7500
[2023-09-02 05:21:56,181::train::INFO] [train] Iter 06396 | loss 0.8700 | loss(rot) 0.1843 | loss(pos) 0.3787 | loss(seq) 0.3070 | grad 5.4990 | lr 0.0010 | time_forward 4.1480 | time_backward 6.1010
[2023-09-02 05:21:58,870::train::INFO] [train] Iter 06397 | loss 0.9018 | loss(rot) 0.3620 | loss(pos) 0.3469 | loss(seq) 0.1929 | grad 5.3427 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4320
[2023-09-02 05:22:01,327::train::INFO] [train] Iter 06398 | loss 1.7514 | loss(rot) 1.0968 | loss(pos) 0.1589 | loss(seq) 0.4957 | grad 2.9529 | lr 0.0010 | time_forward 1.2100 | time_backward 1.2440
[2023-09-02 05:22:10,305::train::INFO] [train] Iter 06399 | loss 2.7650 | loss(rot) 2.0257 | loss(pos) 0.2079 | loss(seq) 0.5314 | grad 3.9576 | lr 0.0010 | time_forward 3.8120 | time_backward 5.1620
[2023-09-02 05:22:13,067::train::INFO] [train] Iter 06400 | loss 1.7849 | loss(rot) 0.0983 | loss(pos) 1.6630 | loss(seq) 0.0236 | grad 11.0636 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4810
[2023-09-02 05:22:23,323::train::INFO] [train] Iter 06401 | loss 2.2574 | loss(rot) 1.2421 | loss(pos) 0.4670 | loss(seq) 0.5483 | grad 2.7841 | lr 0.0010 | time_forward 4.2700 | time_backward 5.9830
[2023-09-02 05:22:31,497::train::INFO] [train] Iter 06402 | loss 2.3353 | loss(rot) 1.3372 | loss(pos) 0.3779 | loss(seq) 0.6202 | grad 4.7664 | lr 0.0010 | time_forward 3.4040 | time_backward 4.7670
[2023-09-02 05:22:41,417::train::INFO] [train] Iter 06403 | loss 2.6618 | loss(rot) 1.3547 | loss(pos) 0.7522 | loss(seq) 0.5549 | grad 6.1791 | lr 0.0010 | time_forward 3.9800 | time_backward 5.9370
[2023-09-02 05:22:43,932::train::INFO] [train] Iter 06404 | loss 1.9546 | loss(rot) 1.5057 | loss(pos) 0.4374 | loss(seq) 0.0115 | grad 5.3846 | lr 0.0010 | time_forward 1.1850 | time_backward 1.3270
[2023-09-02 05:22:46,743::train::INFO] [train] Iter 06405 | loss 2.1228 | loss(rot) 0.2527 | loss(pos) 1.8652 | loss(seq) 0.0049 | grad 5.5937 | lr 0.0010 | time_forward 1.3390 | time_backward 1.4390
[2023-09-02 05:22:49,642::train::INFO] [train] Iter 06406 | loss 3.3900 | loss(rot) 2.9099 | loss(pos) 0.4795 | loss(seq) 0.0006 | grad 6.1455 | lr 0.0010 | time_forward 1.4040 | time_backward 1.4390
[2023-09-02 05:22:52,182::train::INFO] [train] Iter 06407 | loss 2.7979 | loss(rot) 2.1256 | loss(pos) 0.2347 | loss(seq) 0.4376 | grad 4.9971 | lr 0.0010 | time_forward 1.2480 | time_backward 1.2890
[2023-09-02 05:23:02,039::train::INFO] [train] Iter 06408 | loss 1.7344 | loss(rot) 1.1630 | loss(pos) 0.1913 | loss(seq) 0.3801 | grad 5.0470 | lr 0.0010 | time_forward 4.0890 | time_backward 5.7640
[2023-09-02 05:23:09,971::train::INFO] [train] Iter 06409 | loss 2.6654 | loss(rot) 2.4092 | loss(pos) 0.2556 | loss(seq) 0.0007 | grad 6.5824 | lr 0.0010 | time_forward 3.3070 | time_backward 4.6220
[2023-09-02 05:23:20,230::train::INFO] [train] Iter 06410 | loss 1.9056 | loss(rot) 1.1044 | loss(pos) 0.3225 | loss(seq) 0.4786 | grad 5.7015 | lr 0.0010 | time_forward 4.2490 | time_backward 6.0080
[2023-09-02 05:23:28,495::train::INFO] [train] Iter 06411 | loss 1.4739 | loss(rot) 0.8075 | loss(pos) 0.2243 | loss(seq) 0.4421 | grad 4.2731 | lr 0.0010 | time_forward 3.4350 | time_backward 4.8100
[2023-09-02 05:23:38,449::train::INFO] [train] Iter 06412 | loss 2.8171 | loss(rot) 2.0315 | loss(pos) 0.4279 | loss(seq) 0.3577 | grad 4.0931 | lr 0.0010 | time_forward 4.1730 | time_backward 5.7780
[2023-09-02 05:23:41,109::train::INFO] [train] Iter 06413 | loss 2.6272 | loss(rot) 1.7287 | loss(pos) 0.2427 | loss(seq) 0.6559 | grad 3.1821 | lr 0.0010 | time_forward 1.2610 | time_backward 1.3960
[2023-09-02 05:23:51,660::train::INFO] [train] Iter 06414 | loss 1.1358 | loss(rot) 0.2369 | loss(pos) 0.8676 | loss(seq) 0.0314 | grad 5.2826 | lr 0.0010 | time_forward 4.2430 | time_backward 6.3040
[2023-09-02 05:23:58,923::train::INFO] [train] Iter 06415 | loss 1.7318 | loss(rot) 1.1914 | loss(pos) 0.1393 | loss(seq) 0.4011 | grad 4.6495 | lr 0.0010 | time_forward 3.0550 | time_backward 4.2050
[2023-09-02 05:24:09,002::train::INFO] [train] Iter 06416 | loss 1.7323 | loss(rot) 0.3130 | loss(pos) 0.6857 | loss(seq) 0.7335 | grad 3.1060 | lr 0.0010 | time_forward 4.2560 | time_backward 5.8190
[2023-09-02 05:24:17,187::train::INFO] [train] Iter 06417 | loss 1.5322 | loss(rot) 0.9006 | loss(pos) 0.3479 | loss(seq) 0.2837 | grad 5.4413 | lr 0.0010 | time_forward 3.4760 | time_backward 4.7050
[2023-09-02 05:24:23,913::train::INFO] [train] Iter 06418 | loss 2.4589 | loss(rot) 1.9266 | loss(pos) 0.1120 | loss(seq) 0.4203 | grad 4.5461 | lr 0.0010 | time_forward 2.8630 | time_backward 3.8600
[2023-09-02 05:24:32,357::train::INFO] [train] Iter 06419 | loss 1.1664 | loss(rot) 0.1067 | loss(pos) 0.9878 | loss(seq) 0.0719 | grad 7.4794 | lr 0.0010 | time_forward 3.5110 | time_backward 4.9290
[2023-09-02 05:24:38,620::train::INFO] [train] Iter 06420 | loss 2.9065 | loss(rot) 2.6783 | loss(pos) 0.1903 | loss(seq) 0.0380 | grad 5.8745 | lr 0.0010 | time_forward 2.6280 | time_backward 3.6310
[2023-09-02 05:24:48,340::train::INFO] [train] Iter 06421 | loss 0.8588 | loss(rot) 0.2753 | loss(pos) 0.3256 | loss(seq) 0.2579 | grad 4.1995 | lr 0.0010 | time_forward 4.0390 | time_backward 5.6780
[2023-09-02 05:24:58,631::train::INFO] [train] Iter 06422 | loss 2.4856 | loss(rot) 2.2606 | loss(pos) 0.2098 | loss(seq) 0.0153 | grad 4.9444 | lr 0.0010 | time_forward 4.2450 | time_backward 6.0420
[2023-09-02 05:25:01,441::train::INFO] [train] Iter 06423 | loss 0.8490 | loss(rot) 0.3105 | loss(pos) 0.1577 | loss(seq) 0.3808 | grad 2.4076 | lr 0.0010 | time_forward 1.2850 | time_backward 1.5210
[2023-09-02 05:25:09,950::train::INFO] [train] Iter 06424 | loss 2.1869 | loss(rot) 2.0059 | loss(pos) 0.1235 | loss(seq) 0.0576 | grad 4.6187 | lr 0.0010 | time_forward 3.4740 | time_backward 5.0150
[2023-09-02 05:25:12,754::train::INFO] [train] Iter 06425 | loss 1.4630 | loss(rot) 0.5736 | loss(pos) 0.4441 | loss(seq) 0.4453 | grad 3.6986 | lr 0.0010 | time_forward 1.3250 | time_backward 1.4750
[2023-09-02 05:25:22,682::train::INFO] [train] Iter 06426 | loss 2.6535 | loss(rot) 1.5811 | loss(pos) 0.6554 | loss(seq) 0.4170 | grad 3.9706 | lr 0.0010 | time_forward 4.0960 | time_backward 5.7990
[2023-09-02 05:25:28,878::train::INFO] [train] Iter 06427 | loss 1.5230 | loss(rot) 0.2917 | loss(pos) 0.8121 | loss(seq) 0.4191 | grad 4.2248 | lr 0.0010 | time_forward 2.6230 | time_backward 3.5680
[2023-09-02 05:25:31,661::train::INFO] [train] Iter 06428 | loss 1.6841 | loss(rot) 0.0237 | loss(pos) 1.6587 | loss(seq) 0.0016 | grad 5.1919 | lr 0.0010 | time_forward 1.3060 | time_backward 1.4730
[2023-09-02 05:25:41,463::train::INFO] [train] Iter 06429 | loss 2.7465 | loss(rot) 2.0332 | loss(pos) 0.2015 | loss(seq) 0.5118 | grad 6.0681 | lr 0.0010 | time_forward 4.0340 | time_backward 5.7640
[2023-09-02 05:25:50,223::train::INFO] [train] Iter 06430 | loss 0.5820 | loss(rot) 0.1563 | loss(pos) 0.3695 | loss(seq) 0.0562 | grad 3.9389 | lr 0.0010 | time_forward 3.7560 | time_backward 5.0000
[2023-09-02 05:26:00,578::train::INFO] [train] Iter 06431 | loss 2.5585 | loss(rot) 1.7124 | loss(pos) 0.5282 | loss(seq) 0.3179 | grad 5.5257 | lr 0.0010 | time_forward 4.1660 | time_backward 6.1850
[2023-09-02 05:26:08,741::train::INFO] [train] Iter 06432 | loss 2.2829 | loss(rot) 1.5600 | loss(pos) 0.4648 | loss(seq) 0.2582 | grad 7.2652 | lr 0.0010 | time_forward 3.5050 | time_backward 4.6550
[2023-09-02 05:26:17,110::train::INFO] [train] Iter 06433 | loss 1.8003 | loss(rot) 1.1124 | loss(pos) 0.3253 | loss(seq) 0.3627 | grad 3.5998 | lr 0.0010 | time_forward 3.6360 | time_backward 4.7290
[2023-09-02 05:26:25,770::train::INFO] [train] Iter 06434 | loss 1.9295 | loss(rot) 0.9983 | loss(pos) 0.6445 | loss(seq) 0.2867 | grad 5.0821 | lr 0.0010 | time_forward 3.6740 | time_backward 4.9830
[2023-09-02 05:26:34,193::train::INFO] [train] Iter 06435 | loss 2.1933 | loss(rot) 2.0438 | loss(pos) 0.1492 | loss(seq) 0.0003 | grad 3.8214 | lr 0.0010 | time_forward 3.6460 | time_backward 4.7720
[2023-09-02 05:26:36,934::train::INFO] [train] Iter 06436 | loss 1.4769 | loss(rot) 0.9719 | loss(pos) 0.1607 | loss(seq) 0.3442 | grad 3.8207 | lr 0.0010 | time_forward 1.3390 | time_backward 1.3980
[2023-09-02 05:26:39,666::train::INFO] [train] Iter 06437 | loss 2.2872 | loss(rot) 2.1667 | loss(pos) 0.1204 | loss(seq) 0.0001 | grad 4.7482 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4190
[2023-09-02 05:26:49,349::train::INFO] [train] Iter 06438 | loss 2.4406 | loss(rot) 2.2823 | loss(pos) 0.1572 | loss(seq) 0.0011 | grad 3.5630 | lr 0.0010 | time_forward 4.0900 | time_backward 5.5890
[2023-09-02 05:26:52,080::train::INFO] [train] Iter 06439 | loss 1.8371 | loss(rot) 1.5109 | loss(pos) 0.3212 | loss(seq) 0.0050 | grad 5.0992 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4390
[2023-09-02 05:26:54,293::train::INFO] [train] Iter 06440 | loss 2.5443 | loss(rot) 1.6754 | loss(pos) 0.3971 | loss(seq) 0.4718 | grad 5.5641 | lr 0.0010 | time_forward 1.0260 | time_backward 1.1700
[2023-09-02 05:27:03,501::train::INFO] [train] Iter 06441 | loss 2.1152 | loss(rot) 1.2683 | loss(pos) 0.2666 | loss(seq) 0.5803 | grad 6.0935 | lr 0.0010 | time_forward 3.8690 | time_backward 5.3350
[2023-09-02 05:27:13,560::train::INFO] [train] Iter 06442 | loss 1.2528 | loss(rot) 0.0612 | loss(pos) 1.1829 | loss(seq) 0.0087 | grad 6.8190 | lr 0.0010 | time_forward 4.2250 | time_backward 5.8310
[2023-09-02 05:27:24,002::train::INFO] [train] Iter 06443 | loss 2.0184 | loss(rot) 1.4175 | loss(pos) 0.1291 | loss(seq) 0.4717 | grad 3.3325 | lr 0.0010 | time_forward 4.0810 | time_backward 6.3580
[2023-09-02 05:27:26,813::train::INFO] [train] Iter 06444 | loss 1.5546 | loss(rot) 0.4247 | loss(pos) 1.0659 | loss(seq) 0.0640 | grad 5.2571 | lr 0.0010 | time_forward 1.3010 | time_backward 1.5050
[2023-09-02 05:27:35,481::train::INFO] [train] Iter 06445 | loss 0.9809 | loss(rot) 0.3468 | loss(pos) 0.5367 | loss(seq) 0.0974 | grad 4.7460 | lr 0.0010 | time_forward 3.8150 | time_backward 4.8500
[2023-09-02 05:27:37,765::train::INFO] [train] Iter 06446 | loss 1.3162 | loss(rot) 0.4863 | loss(pos) 0.7472 | loss(seq) 0.0827 | grad 4.3782 | lr 0.0010 | time_forward 1.0980 | time_backward 1.1820
[2023-09-02 05:27:46,277::train::INFO] [train] Iter 06447 | loss 1.4783 | loss(rot) 0.2117 | loss(pos) 1.2518 | loss(seq) 0.0148 | grad 7.5734 | lr 0.0010 | time_forward 3.5570 | time_backward 4.9520
[2023-09-02 05:27:54,862::train::INFO] [train] Iter 06448 | loss 1.1306 | loss(rot) 0.0941 | loss(pos) 1.0236 | loss(seq) 0.0129 | grad 6.2766 | lr 0.0010 | time_forward 3.6310 | time_backward 4.9510
[2023-09-02 05:27:57,561::train::INFO] [train] Iter 06449 | loss 1.5306 | loss(rot) 0.4883 | loss(pos) 0.9012 | loss(seq) 0.1411 | grad 3.7103 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4190
[2023-09-02 05:28:06,006::train::INFO] [train] Iter 06450 | loss 1.5698 | loss(rot) 0.9921 | loss(pos) 0.2539 | loss(seq) 0.3238 | grad 5.3368 | lr 0.0010 | time_forward 3.6200 | time_backward 4.8230
[2023-09-02 05:28:16,197::train::INFO] [train] Iter 06451 | loss 2.3501 | loss(rot) 2.0643 | loss(pos) 0.2756 | loss(seq) 0.0102 | grad 4.8099 | lr 0.0010 | time_forward 4.2190 | time_backward 5.9680
[2023-09-02 05:28:26,417::train::INFO] [train] Iter 06452 | loss 1.2989 | loss(rot) 0.5982 | loss(pos) 0.6122 | loss(seq) 0.0886 | grad 3.7408 | lr 0.0010 | time_forward 4.1590 | time_backward 6.0580
[2023-09-02 05:28:36,038::train::INFO] [train] Iter 06453 | loss 2.6593 | loss(rot) 2.2968 | loss(pos) 0.3313 | loss(seq) 0.0313 | grad 4.5952 | lr 0.0010 | time_forward 4.0080 | time_backward 5.6090
[2023-09-02 05:28:44,163::train::INFO] [train] Iter 06454 | loss 2.7354 | loss(rot) 0.0146 | loss(pos) 2.7202 | loss(seq) 0.0006 | grad 9.8590 | lr 0.0010 | time_forward 3.4040 | time_backward 4.7180
[2023-09-02 05:28:52,602::train::INFO] [train] Iter 06455 | loss 3.2740 | loss(rot) 3.0522 | loss(pos) 0.2218 | loss(seq) 0.0000 | grad 4.3363 | lr 0.0010 | time_forward 3.4940 | time_backward 4.9400
[2023-09-02 05:28:55,314::train::INFO] [train] Iter 06456 | loss 2.2853 | loss(rot) 1.4453 | loss(pos) 0.4382 | loss(seq) 0.4019 | grad 4.7637 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4530
[2023-09-02 05:29:03,997::train::INFO] [train] Iter 06457 | loss 0.9072 | loss(rot) 0.2306 | loss(pos) 0.4566 | loss(seq) 0.2200 | grad 3.8575 | lr 0.0010 | time_forward 3.7520 | time_backward 4.9270
[2023-09-02 05:29:06,828::train::INFO] [train] Iter 06458 | loss 2.5848 | loss(rot) 1.8157 | loss(pos) 0.3520 | loss(seq) 0.4170 | grad 3.9320 | lr 0.0010 | time_forward 1.3340 | time_backward 1.4930
[2023-09-02 05:29:17,096::train::INFO] [train] Iter 06459 | loss 1.3465 | loss(rot) 0.6023 | loss(pos) 0.2146 | loss(seq) 0.5296 | grad 2.7381 | lr 0.0010 | time_forward 4.0960 | time_backward 6.1690
[2023-09-02 05:29:19,920::train::INFO] [train] Iter 06460 | loss 2.0271 | loss(rot) 1.8925 | loss(pos) 0.1336 | loss(seq) 0.0011 | grad 4.7231 | lr 0.0010 | time_forward 1.4220 | time_backward 1.3970
[2023-09-02 05:29:28,577::train::INFO] [train] Iter 06461 | loss 1.4652 | loss(rot) 0.6349 | loss(pos) 0.3396 | loss(seq) 0.4907 | grad 4.0864 | lr 0.0010 | time_forward 3.7420 | time_backward 4.9120
[2023-09-02 05:29:31,324::train::INFO] [train] Iter 06462 | loss 2.4345 | loss(rot) 2.0468 | loss(pos) 0.1473 | loss(seq) 0.2404 | grad 4.1297 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4340
[2023-09-02 05:29:41,215::train::INFO] [train] Iter 06463 | loss 2.4198 | loss(rot) 1.8808 | loss(pos) 0.1010 | loss(seq) 0.4380 | grad 3.7733 | lr 0.0010 | time_forward 4.1090 | time_backward 5.7790
[2023-09-02 05:29:51,620::train::INFO] [train] Iter 06464 | loss 2.3328 | loss(rot) 1.8404 | loss(pos) 0.1149 | loss(seq) 0.3774 | grad 3.7236 | lr 0.0010 | time_forward 4.2090 | time_backward 6.1930
[2023-09-02 05:30:01,654::train::INFO] [train] Iter 06465 | loss 1.9901 | loss(rot) 1.7894 | loss(pos) 0.1986 | loss(seq) 0.0021 | grad 4.2784 | lr 0.0010 | time_forward 3.9960 | time_backward 6.0340
[2023-09-02 05:30:04,365::train::INFO] [train] Iter 06466 | loss 2.8140 | loss(rot) 2.0774 | loss(pos) 0.2792 | loss(seq) 0.4574 | grad 4.9220 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4270
[2023-09-02 05:30:14,200::train::INFO] [train] Iter 06467 | loss 1.8813 | loss(rot) 1.4985 | loss(pos) 0.2046 | loss(seq) 0.1782 | grad 3.2625 | lr 0.0010 | time_forward 4.0760 | time_backward 5.7550
[2023-09-02 05:30:23,074::train::INFO] [train] Iter 06468 | loss 2.6754 | loss(rot) 1.8462 | loss(pos) 0.3750 | loss(seq) 0.4542 | grad 4.5041 | lr 0.0010 | time_forward 3.7100 | time_backward 5.1610
[2023-09-02 05:30:25,861::train::INFO] [train] Iter 06469 | loss 2.0906 | loss(rot) 1.8788 | loss(pos) 0.2051 | loss(seq) 0.0067 | grad 3.3914 | lr 0.0010 | time_forward 1.3270 | time_backward 1.4560
[2023-09-02 05:30:34,677::train::INFO] [train] Iter 06470 | loss 1.6247 | loss(rot) 0.9024 | loss(pos) 0.2029 | loss(seq) 0.5194 | grad 3.9015 | lr 0.0010 | time_forward 3.7710 | time_backward 5.0420
[2023-09-02 05:30:44,870::train::INFO] [train] Iter 06471 | loss 2.3987 | loss(rot) 1.8513 | loss(pos) 0.2378 | loss(seq) 0.3096 | grad 4.3792 | lr 0.0010 | time_forward 4.1190 | time_backward 6.0700
[2023-09-02 05:30:54,937::train::INFO] [train] Iter 06472 | loss 0.9573 | loss(rot) 0.2234 | loss(pos) 0.5314 | loss(seq) 0.2025 | grad 3.3327 | lr 0.0010 | time_forward 4.2090 | time_backward 5.8550
[2023-09-02 05:31:05,161::train::INFO] [train] Iter 06473 | loss 3.1916 | loss(rot) 3.0267 | loss(pos) 0.0633 | loss(seq) 0.1017 | grad 5.7144 | lr 0.0010 | time_forward 4.0140 | time_backward 6.2040
[2023-09-02 05:31:13,419::train::INFO] [train] Iter 06474 | loss 0.8844 | loss(rot) 0.2001 | loss(pos) 0.5967 | loss(seq) 0.0876 | grad 3.0118 | lr 0.0010 | time_forward 3.3480 | time_backward 4.9070
[2023-09-02 05:31:18,162::train::INFO] [train] Iter 06475 | loss 1.5072 | loss(rot) 0.6500 | loss(pos) 0.5494 | loss(seq) 0.3077 | grad 6.5722 | lr 0.0010 | time_forward 2.0650 | time_backward 2.6740
[2023-09-02 05:31:27,504::train::INFO] [train] Iter 06476 | loss 1.8402 | loss(rot) 0.5766 | loss(pos) 0.7670 | loss(seq) 0.4966 | grad 5.8378 | lr 0.0010 | time_forward 3.8820 | time_backward 5.4090
[2023-09-02 05:31:36,855::train::INFO] [train] Iter 06477 | loss 1.2683 | loss(rot) 0.2663 | loss(pos) 0.4676 | loss(seq) 0.5343 | grad 4.3995 | lr 0.0010 | time_forward 3.9410 | time_backward 5.4070
[2023-09-02 05:31:44,999::train::INFO] [train] Iter 06478 | loss 2.1253 | loss(rot) 1.6390 | loss(pos) 0.1709 | loss(seq) 0.3154 | grad 3.6486 | lr 0.0010 | time_forward 3.4350 | time_backward 4.7050
[2023-09-02 05:31:47,732::train::INFO] [train] Iter 06479 | loss 2.4916 | loss(rot) 1.7273 | loss(pos) 0.2765 | loss(seq) 0.4878 | grad 2.8628 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4140
[2023-09-02 05:31:55,465::train::INFO] [train] Iter 06480 | loss 2.3795 | loss(rot) 1.3867 | loss(pos) 0.4535 | loss(seq) 0.5393 | grad 3.3982 | lr 0.0010 | time_forward 3.1740 | time_backward 4.5550
[2023-09-02 05:32:01,138::train::INFO] [train] Iter 06481 | loss 2.0113 | loss(rot) 1.4612 | loss(pos) 0.1310 | loss(seq) 0.4191 | grad 3.4394 | lr 0.0010 | time_forward 2.4190 | time_backward 3.2500
[2023-09-02 05:32:10,437::train::INFO] [train] Iter 06482 | loss 1.3920 | loss(rot) 0.7021 | loss(pos) 0.2200 | loss(seq) 0.4699 | grad 2.8439 | lr 0.0010 | time_forward 4.0500 | time_backward 5.2440
[2023-09-02 05:32:12,636::train::INFO] [train] Iter 06483 | loss 2.2277 | loss(rot) 1.7909 | loss(pos) 0.1816 | loss(seq) 0.2552 | grad 5.8252 | lr 0.0010 | time_forward 1.0470 | time_backward 1.1480
[2023-09-02 05:32:22,697::train::INFO] [train] Iter 06484 | loss 2.4072 | loss(rot) 1.1368 | loss(pos) 0.5681 | loss(seq) 0.7023 | grad 3.0069 | lr 0.0010 | time_forward 4.2860 | time_backward 5.7700
[2023-09-02 05:32:32,545::train::INFO] [train] Iter 06485 | loss 1.8889 | loss(rot) 1.0777 | loss(pos) 0.1870 | loss(seq) 0.6242 | grad 3.8641 | lr 0.0010 | time_forward 3.9990 | time_backward 5.8460
[2023-09-02 05:32:41,400::train::INFO] [train] Iter 06486 | loss 2.1357 | loss(rot) 1.4480 | loss(pos) 0.1180 | loss(seq) 0.5698 | grad 3.9301 | lr 0.0010 | time_forward 3.8940 | time_backward 4.9580
[2023-09-02 05:32:51,442::train::INFO] [train] Iter 06487 | loss 1.2202 | loss(rot) 0.4379 | loss(pos) 0.4195 | loss(seq) 0.3628 | grad 3.3748 | lr 0.0010 | time_forward 4.3260 | time_backward 5.7130
[2023-09-02 05:33:00,763::train::INFO] [train] Iter 06488 | loss 2.3424 | loss(rot) 1.7382 | loss(pos) 0.2920 | loss(seq) 0.3123 | grad 5.1348 | lr 0.0010 | time_forward 4.0080 | time_backward 5.3080