text
stringlengths 56
1.16k
|
---|
[2023-09-02 05:33:09,199::train::INFO] [train] Iter 06489 | loss 2.2921 | loss(rot) 1.6283 | loss(pos) 0.1135 | loss(seq) 0.5504 | grad 4.5808 | lr 0.0010 | time_forward 3.5400 | time_backward 4.8920 |
[2023-09-02 05:33:19,147::train::INFO] [train] Iter 06490 | loss 2.8918 | loss(rot) 2.6567 | loss(pos) 0.1962 | loss(seq) 0.0389 | grad 4.4533 | lr 0.0010 | time_forward 4.0290 | time_backward 5.9160 |
[2023-09-02 05:33:21,782::train::INFO] [train] Iter 06491 | loss 0.8019 | loss(rot) 0.2915 | loss(pos) 0.4471 | loss(seq) 0.0633 | grad 4.1358 | lr 0.0010 | time_forward 1.2450 | time_backward 1.3870 |
[2023-09-02 05:33:30,864::train::INFO] [train] Iter 06492 | loss 2.1448 | loss(rot) 1.9817 | loss(pos) 0.0818 | loss(seq) 0.0814 | grad 2.8387 | lr 0.0010 | time_forward 4.0380 | time_backward 5.0410 |
[2023-09-02 05:33:39,032::train::INFO] [train] Iter 06493 | loss 0.9074 | loss(rot) 0.3627 | loss(pos) 0.1727 | loss(seq) 0.3720 | grad 3.5046 | lr 0.0010 | time_forward 3.5330 | time_backward 4.6300 |
[2023-09-02 05:33:41,752::train::INFO] [train] Iter 06494 | loss 1.9400 | loss(rot) 1.7120 | loss(pos) 0.0640 | loss(seq) 0.1639 | grad 3.2654 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4240 |
[2023-09-02 05:33:50,654::train::INFO] [train] Iter 06495 | loss 2.0830 | loss(rot) 1.8658 | loss(pos) 0.2144 | loss(seq) 0.0028 | grad 4.5570 | lr 0.0010 | time_forward 3.8130 | time_backward 5.0860 |
[2023-09-02 05:34:00,968::train::INFO] [train] Iter 06496 | loss 2.8075 | loss(rot) 2.5312 | loss(pos) 0.2762 | loss(seq) 0.0000 | grad 3.0069 | lr 0.0010 | time_forward 4.1950 | time_backward 6.1140 |
[2023-09-02 05:34:09,199::train::INFO] [train] Iter 06497 | loss 1.3257 | loss(rot) 0.0167 | loss(pos) 1.3056 | loss(seq) 0.0034 | grad 5.6947 | lr 0.0010 | time_forward 3.4690 | time_backward 4.7590 |
[2023-09-02 05:34:11,623::train::INFO] [train] Iter 06498 | loss 1.1739 | loss(rot) 0.4318 | loss(pos) 0.6198 | loss(seq) 0.1223 | grad 5.0056 | lr 0.0010 | time_forward 1.1610 | time_backward 1.2600 |
[2023-09-02 05:34:14,395::train::INFO] [train] Iter 06499 | loss 1.2914 | loss(rot) 0.3283 | loss(pos) 0.3893 | loss(seq) 0.5738 | grad 4.1191 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4660 |
[2023-09-02 05:34:17,109::train::INFO] [train] Iter 06500 | loss 2.4578 | loss(rot) 2.2506 | loss(pos) 0.2003 | loss(seq) 0.0069 | grad 7.5298 | lr 0.0010 | time_forward 1.3300 | time_backward 1.3800 |
[2023-09-02 05:34:19,576::train::INFO] [train] Iter 06501 | loss 2.1901 | loss(rot) 1.7116 | loss(pos) 0.3582 | loss(seq) 0.1203 | grad 4.7866 | lr 0.0010 | time_forward 1.1640 | time_backward 1.2540 |
[2023-09-02 05:34:28,604::train::INFO] [train] Iter 06502 | loss 2.1249 | loss(rot) 1.8467 | loss(pos) 0.0857 | loss(seq) 0.1925 | grad 2.5101 | lr 0.0010 | time_forward 3.7990 | time_backward 5.2260 |
[2023-09-02 05:34:37,943::train::INFO] [train] Iter 06503 | loss 1.8012 | loss(rot) 1.2242 | loss(pos) 0.1371 | loss(seq) 0.4398 | grad 2.7164 | lr 0.0010 | time_forward 3.9890 | time_backward 5.3460 |
[2023-09-02 05:34:40,422::train::INFO] [train] Iter 06504 | loss 2.0683 | loss(rot) 1.4995 | loss(pos) 0.1799 | loss(seq) 0.3889 | grad 3.3246 | lr 0.0010 | time_forward 1.1750 | time_backward 1.3010 |
[2023-09-02 05:34:49,586::train::INFO] [train] Iter 06505 | loss 1.4381 | loss(rot) 0.8112 | loss(pos) 0.2301 | loss(seq) 0.3968 | grad 4.2922 | lr 0.0010 | time_forward 3.8020 | time_backward 5.3580 |
[2023-09-02 05:34:52,858::train::INFO] [train] Iter 06506 | loss 2.5623 | loss(rot) 1.7261 | loss(pos) 0.3737 | loss(seq) 0.4626 | grad 5.3632 | lr 0.0010 | time_forward 1.4240 | time_backward 1.8440 |
[2023-09-02 05:34:55,534::train::INFO] [train] Iter 06507 | loss 2.5881 | loss(rot) 1.8885 | loss(pos) 0.2729 | loss(seq) 0.4267 | grad 3.7624 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4280 |
[2023-09-02 05:34:58,215::train::INFO] [train] Iter 06508 | loss 1.5908 | loss(rot) 0.5419 | loss(pos) 0.5870 | loss(seq) 0.4619 | grad 5.1154 | lr 0.0010 | time_forward 1.3000 | time_backward 1.3770 |
[2023-09-02 05:35:06,853::train::INFO] [train] Iter 06509 | loss 3.1034 | loss(rot) 2.8114 | loss(pos) 0.0755 | loss(seq) 0.2165 | grad 4.0925 | lr 0.0010 | time_forward 3.7040 | time_backward 4.9300 |
[2023-09-02 05:35:16,906::train::INFO] [train] Iter 06510 | loss 1.7962 | loss(rot) 0.1538 | loss(pos) 1.6362 | loss(seq) 0.0062 | grad 4.9476 | lr 0.0010 | time_forward 4.3030 | time_backward 5.7480 |
[2023-09-02 05:35:19,266::train::INFO] [train] Iter 06511 | loss 0.9135 | loss(rot) 0.2231 | loss(pos) 0.4848 | loss(seq) 0.2056 | grad 3.1164 | lr 0.0010 | time_forward 1.1120 | time_backward 1.2430 |
[2023-09-02 05:35:22,135::train::INFO] [train] Iter 06512 | loss 1.4635 | loss(rot) 0.6845 | loss(pos) 0.5311 | loss(seq) 0.2480 | grad 3.0874 | lr 0.0010 | time_forward 1.4460 | time_backward 1.3990 |
[2023-09-02 05:35:31,058::train::INFO] [train] Iter 06513 | loss 2.0853 | loss(rot) 1.7758 | loss(pos) 0.3091 | loss(seq) 0.0003 | grad 4.0915 | lr 0.0010 | time_forward 3.8470 | time_backward 5.0720 |
[2023-09-02 05:35:40,138::train::INFO] [train] Iter 06514 | loss 1.2161 | loss(rot) 0.6198 | loss(pos) 0.2096 | loss(seq) 0.3867 | grad 3.8763 | lr 0.0010 | time_forward 3.8600 | time_backward 5.2180 |
[2023-09-02 05:35:42,854::train::INFO] [train] Iter 06515 | loss 2.1145 | loss(rot) 1.4177 | loss(pos) 0.1764 | loss(seq) 0.5204 | grad 3.9241 | lr 0.0010 | time_forward 1.3410 | time_backward 1.3710 |
[2023-09-02 05:35:51,400::train::INFO] [train] Iter 06516 | loss 1.1942 | loss(rot) 1.0235 | loss(pos) 0.1589 | loss(seq) 0.0118 | grad 4.1985 | lr 0.0010 | time_forward 3.6880 | time_backward 4.8180 |
[2023-09-02 05:35:54,049::train::INFO] [train] Iter 06517 | loss 2.1789 | loss(rot) 2.0234 | loss(pos) 0.1179 | loss(seq) 0.0376 | grad 4.7928 | lr 0.0010 | time_forward 1.2620 | time_backward 1.3830 |
[2023-09-02 05:36:03,212::train::INFO] [train] Iter 06518 | loss 1.0073 | loss(rot) 0.0276 | loss(pos) 0.9749 | loss(seq) 0.0049 | grad 4.2114 | lr 0.0010 | time_forward 3.7620 | time_backward 5.3980 |
[2023-09-02 05:36:13,878::train::INFO] [train] Iter 06519 | loss 1.5107 | loss(rot) 0.0514 | loss(pos) 1.4517 | loss(seq) 0.0076 | grad 7.5812 | lr 0.0010 | time_forward 4.5270 | time_backward 6.1360 |
[2023-09-02 05:36:16,642::train::INFO] [train] Iter 06520 | loss 2.7813 | loss(rot) 2.4012 | loss(pos) 0.1484 | loss(seq) 0.2316 | grad 4.0302 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4520 |
[2023-09-02 05:36:19,413::train::INFO] [train] Iter 06521 | loss 0.6374 | loss(rot) 0.0903 | loss(pos) 0.5255 | loss(seq) 0.0216 | grad 5.8385 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4580 |
[2023-09-02 05:36:31,344::train::INFO] [train] Iter 06522 | loss 0.9463 | loss(rot) 0.4096 | loss(pos) 0.2648 | loss(seq) 0.2718 | grad 2.5358 | lr 0.0010 | time_forward 5.7000 | time_backward 6.2280 |
[2023-09-02 05:36:34,099::train::INFO] [train] Iter 06523 | loss 1.4517 | loss(rot) 0.4550 | loss(pos) 0.7484 | loss(seq) 0.2484 | grad 4.0172 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4440 |
[2023-09-02 05:36:36,869::train::INFO] [train] Iter 06524 | loss 1.3114 | loss(rot) 0.8037 | loss(pos) 0.2703 | loss(seq) 0.2375 | grad 4.8561 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4940 |
[2023-09-02 05:36:46,634::train::INFO] [train] Iter 06525 | loss 1.1613 | loss(rot) 0.4024 | loss(pos) 0.2572 | loss(seq) 0.5017 | grad 6.1788 | lr 0.0010 | time_forward 3.8460 | time_backward 5.9150 |
[2023-09-02 05:36:57,267::train::INFO] [train] Iter 06526 | loss 1.3551 | loss(rot) 0.7547 | loss(pos) 0.5052 | loss(seq) 0.0951 | grad 3.2082 | lr 0.0010 | time_forward 4.3980 | time_backward 6.2310 |
[2023-09-02 05:37:00,597::train::INFO] [train] Iter 06527 | loss 3.0502 | loss(rot) 2.2200 | loss(pos) 0.4558 | loss(seq) 0.3744 | grad 3.4745 | lr 0.0010 | time_forward 1.4770 | time_backward 1.8500 |
[2023-09-02 05:37:03,404::train::INFO] [train] Iter 06528 | loss 2.6484 | loss(rot) 2.3470 | loss(pos) 0.1776 | loss(seq) 0.1239 | grad 5.2528 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4770 |
[2023-09-02 05:37:05,709::train::INFO] [train] Iter 06529 | loss 2.9115 | loss(rot) 1.6970 | loss(pos) 0.7058 | loss(seq) 0.5087 | grad 5.5217 | lr 0.0010 | time_forward 1.1010 | time_backward 1.2010 |
[2023-09-02 05:37:14,879::train::INFO] [train] Iter 06530 | loss 1.2770 | loss(rot) 0.0287 | loss(pos) 1.2451 | loss(seq) 0.0032 | grad 10.6670 | lr 0.0010 | time_forward 3.7920 | time_backward 5.3750 |
[2023-09-02 05:37:25,402::train::INFO] [train] Iter 06531 | loss 3.3088 | loss(rot) 2.7911 | loss(pos) 0.2702 | loss(seq) 0.2476 | grad 4.5098 | lr 0.0010 | time_forward 4.0830 | time_backward 6.4360 |
[2023-09-02 05:37:34,865::train::INFO] [train] Iter 06532 | loss 1.4555 | loss(rot) 0.4465 | loss(pos) 0.4774 | loss(seq) 0.5315 | grad 3.2607 | lr 0.0010 | time_forward 3.9280 | time_backward 5.5310 |
[2023-09-02 05:37:37,602::train::INFO] [train] Iter 06533 | loss 2.4968 | loss(rot) 1.6967 | loss(pos) 0.4230 | loss(seq) 0.3771 | grad 5.7921 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4570 |
[2023-09-02 05:37:43,942::train::INFO] [train] Iter 06534 | loss 1.4487 | loss(rot) 0.4049 | loss(pos) 0.9696 | loss(seq) 0.0742 | grad 4.1774 | lr 0.0010 | time_forward 2.6020 | time_backward 3.7130 |
[2023-09-02 05:37:54,066::train::INFO] [train] Iter 06535 | loss 1.8585 | loss(rot) 1.2675 | loss(pos) 0.1063 | loss(seq) 0.4847 | grad 2.8955 | lr 0.0010 | time_forward 4.8130 | time_backward 5.3080 |
[2023-09-02 05:38:03,150::train::INFO] [train] Iter 06536 | loss 1.4032 | loss(rot) 0.4489 | loss(pos) 0.5880 | loss(seq) 0.3663 | grad 5.7823 | lr 0.0010 | time_forward 3.8710 | time_backward 5.2100 |
[2023-09-02 05:38:05,698::train::INFO] [train] Iter 06537 | loss 5.2756 | loss(rot) 0.0054 | loss(pos) 5.2702 | loss(seq) 0.0000 | grad 13.0686 | lr 0.0010 | time_forward 1.1430 | time_backward 1.4010 |
[2023-09-02 05:38:09,147::train::INFO] [train] Iter 06538 | loss 2.2750 | loss(rot) 1.1870 | loss(pos) 0.7432 | loss(seq) 0.3447 | grad 2.9204 | lr 0.0010 | time_forward 1.4400 | time_backward 1.9920 |
[2023-09-02 05:38:19,213::train::INFO] [train] Iter 06539 | loss 2.8083 | loss(rot) 2.4007 | loss(pos) 0.2075 | loss(seq) 0.2000 | grad 4.2458 | lr 0.0010 | time_forward 3.9770 | time_backward 6.0850 |
[2023-09-02 05:38:21,989::train::INFO] [train] Iter 06540 | loss 2.9392 | loss(rot) 1.8462 | loss(pos) 0.5516 | loss(seq) 0.5413 | grad 5.6840 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4710 |
[2023-09-02 05:38:32,109::train::INFO] [train] Iter 06541 | loss 2.8390 | loss(rot) 0.0933 | loss(pos) 2.7444 | loss(seq) 0.0013 | grad 10.3468 | lr 0.0010 | time_forward 4.1720 | time_backward 5.9450 |
[2023-09-02 05:38:40,789::train::INFO] [train] Iter 06542 | loss 1.3379 | loss(rot) 0.2257 | loss(pos) 1.0868 | loss(seq) 0.0254 | grad 5.5578 | lr 0.0010 | time_forward 3.6540 | time_backward 5.0220 |
[2023-09-02 05:38:52,504::train::INFO] [train] Iter 06543 | loss 2.2377 | loss(rot) 1.5674 | loss(pos) 0.3113 | loss(seq) 0.3591 | grad 2.7867 | lr 0.0010 | time_forward 4.8550 | time_backward 6.8570 |
[2023-09-02 05:38:57,721::train::INFO] [train] Iter 06544 | loss 1.5509 | loss(rot) 0.5592 | loss(pos) 0.8167 | loss(seq) 0.1750 | grad 5.2600 | lr 0.0010 | time_forward 2.4150 | time_backward 2.7830 |
[2023-09-02 05:39:06,522::train::INFO] [train] Iter 06545 | loss 2.5064 | loss(rot) 1.9738 | loss(pos) 0.4749 | loss(seq) 0.0577 | grad 8.9810 | lr 0.0010 | time_forward 3.8260 | time_backward 4.9230 |
[2023-09-02 05:39:13,962::train::INFO] [train] Iter 06546 | loss 2.4913 | loss(rot) 1.6926 | loss(pos) 0.2910 | loss(seq) 0.5077 | grad 3.7717 | lr 0.0010 | time_forward 3.0900 | time_backward 4.3460 |
[2023-09-02 05:39:24,611::train::INFO] [train] Iter 06547 | loss 2.3250 | loss(rot) 1.6789 | loss(pos) 0.2774 | loss(seq) 0.3687 | grad 4.7806 | lr 0.0010 | time_forward 4.2460 | time_backward 6.3990 |
[2023-09-02 05:39:27,796::train::INFO] [train] Iter 06548 | loss 2.6514 | loss(rot) 2.4122 | loss(pos) 0.2385 | loss(seq) 0.0007 | grad 4.6788 | lr 0.0010 | time_forward 1.6390 | time_backward 1.5420 |
[2023-09-02 05:39:36,961::train::INFO] [train] Iter 06549 | loss 0.7955 | loss(rot) 0.2338 | loss(pos) 0.4704 | loss(seq) 0.0913 | grad 3.2345 | lr 0.0010 | time_forward 3.9980 | time_backward 5.1640 |
[2023-09-02 05:39:46,427::train::INFO] [train] Iter 06550 | loss 2.3136 | loss(rot) 1.9186 | loss(pos) 0.1657 | loss(seq) 0.2293 | grad 4.5657 | lr 0.0010 | time_forward 4.2070 | time_backward 5.2560 |
[2023-09-02 05:39:50,137::train::INFO] [train] Iter 06551 | loss 2.0649 | loss(rot) 1.2395 | loss(pos) 0.3729 | loss(seq) 0.4525 | grad 4.0014 | lr 0.0010 | time_forward 1.7110 | time_backward 1.9940 |
[2023-09-02 05:39:53,511::train::INFO] [train] Iter 06552 | loss 1.6242 | loss(rot) 0.7250 | loss(pos) 0.5012 | loss(seq) 0.3981 | grad 2.7925 | lr 0.0010 | time_forward 1.4490 | time_backward 1.9220 |
[2023-09-02 05:40:03,569::train::INFO] [train] Iter 06553 | loss 1.9653 | loss(rot) 1.1163 | loss(pos) 0.4165 | loss(seq) 0.4325 | grad 6.6672 | lr 0.0010 | time_forward 4.1260 | time_backward 5.9280 |
[2023-09-02 05:40:06,345::train::INFO] [train] Iter 06554 | loss 1.8935 | loss(rot) 1.7383 | loss(pos) 0.1545 | loss(seq) 0.0007 | grad 4.2398 | lr 0.0010 | time_forward 1.3590 | time_backward 1.4120 |
[2023-09-02 05:40:16,657::train::INFO] [train] Iter 06555 | loss 1.7218 | loss(rot) 1.2308 | loss(pos) 0.2225 | loss(seq) 0.2685 | grad 4.1965 | lr 0.0010 | time_forward 4.3570 | time_backward 5.9510 |
[2023-09-02 05:40:24,430::train::INFO] [train] Iter 06556 | loss 1.3424 | loss(rot) 0.2974 | loss(pos) 0.7461 | loss(seq) 0.2990 | grad 5.0665 | lr 0.0010 | time_forward 3.2920 | time_backward 4.4770 |
[2023-09-02 05:40:31,834::train::INFO] [train] Iter 06557 | loss 1.2699 | loss(rot) 1.1392 | loss(pos) 0.1303 | loss(seq) 0.0003 | grad 4.0005 | lr 0.0010 | time_forward 3.0770 | time_backward 4.3230 |
[2023-09-02 05:40:40,494::train::INFO] [train] Iter 06558 | loss 2.9533 | loss(rot) 2.6237 | loss(pos) 0.3284 | loss(seq) 0.0012 | grad 4.3333 | lr 0.0010 | time_forward 3.6980 | time_backward 4.9600 |
[2023-09-02 05:40:43,393::train::INFO] [train] Iter 06559 | loss 2.4845 | loss(rot) 2.0310 | loss(pos) 0.1368 | loss(seq) 0.3167 | grad 3.4225 | lr 0.0010 | time_forward 1.4120 | time_backward 1.4830 |
[2023-09-02 05:40:48,486::train::INFO] [train] Iter 06560 | loss 2.7022 | loss(rot) 0.5792 | loss(pos) 2.1172 | loss(seq) 0.0057 | grad 5.2525 | lr 0.0010 | time_forward 2.2790 | time_backward 2.8100 |
[2023-09-02 05:40:56,771::train::INFO] [train] Iter 06561 | loss 1.2506 | loss(rot) 0.3244 | loss(pos) 0.5917 | loss(seq) 0.3344 | grad 5.6664 | lr 0.0010 | time_forward 3.5310 | time_backward 4.6890 |
[2023-09-02 05:41:08,029::train::INFO] [train] Iter 06562 | loss 2.0316 | loss(rot) 1.4807 | loss(pos) 0.1263 | loss(seq) 0.4247 | grad 3.2623 | lr 0.0010 | time_forward 5.5990 | time_backward 5.6060 |
[2023-09-02 05:41:11,549::train::INFO] [train] Iter 06563 | loss 3.4291 | loss(rot) 2.6603 | loss(pos) 0.3373 | loss(seq) 0.4315 | grad 2.9118 | lr 0.0010 | time_forward 1.6010 | time_backward 1.9150 |
[2023-09-02 05:41:19,963::train::INFO] [train] Iter 06564 | loss 2.6289 | loss(rot) 1.2308 | loss(pos) 0.9428 | loss(seq) 0.4553 | grad 6.5400 | lr 0.0010 | time_forward 3.5830 | time_backward 4.8260 |
[2023-09-02 05:41:29,353::train::INFO] [train] Iter 06565 | loss 2.2083 | loss(rot) 1.2447 | loss(pos) 0.4328 | loss(seq) 0.5309 | grad 6.6423 | lr 0.0010 | time_forward 3.9850 | time_backward 5.4010 |
[2023-09-02 05:41:39,076::train::INFO] [train] Iter 06566 | loss 2.0010 | loss(rot) 0.0195 | loss(pos) 1.9782 | loss(seq) 0.0033 | grad 6.5817 | lr 0.0010 | time_forward 4.2780 | time_backward 5.4410 |
[2023-09-02 05:41:47,361::train::INFO] [train] Iter 06567 | loss 2.7779 | loss(rot) 2.5791 | loss(pos) 0.1468 | loss(seq) 0.0520 | grad 3.9168 | lr 0.0010 | time_forward 3.4770 | time_backward 4.8050 |
[2023-09-02 05:41:56,640::train::INFO] [train] Iter 06568 | loss 2.5135 | loss(rot) 2.2933 | loss(pos) 0.2200 | loss(seq) 0.0001 | grad 4.4848 | lr 0.0010 | time_forward 3.9860 | time_backward 5.2900 |
[2023-09-02 05:42:06,307::train::INFO] [train] Iter 06569 | loss 1.8040 | loss(rot) 1.3025 | loss(pos) 0.3145 | loss(seq) 0.1869 | grad 5.0215 | lr 0.0010 | time_forward 4.1900 | time_backward 5.4730 |
[2023-09-02 05:42:09,093::train::INFO] [train] Iter 06570 | loss 1.9652 | loss(rot) 1.0117 | loss(pos) 0.3944 | loss(seq) 0.5590 | grad 5.3699 | lr 0.0010 | time_forward 1.4640 | time_backward 1.3190 |
[2023-09-02 05:42:17,489::train::INFO] [train] Iter 06571 | loss 1.5368 | loss(rot) 0.8384 | loss(pos) 0.3325 | loss(seq) 0.3659 | grad 4.5623 | lr 0.0010 | time_forward 3.5470 | time_backward 4.8450 |
[2023-09-02 05:42:20,374::train::INFO] [train] Iter 06572 | loss 1.4111 | loss(rot) 1.2030 | loss(pos) 0.1832 | loss(seq) 0.0249 | grad 3.7644 | lr 0.0010 | time_forward 1.3160 | time_backward 1.5650 |
[2023-09-02 05:42:23,323::train::INFO] [train] Iter 06573 | loss 2.0712 | loss(rot) 1.3016 | loss(pos) 0.2939 | loss(seq) 0.4757 | grad 5.1497 | lr 0.0010 | time_forward 1.4040 | time_backward 1.5280 |
[2023-09-02 05:42:33,907::train::INFO] [train] Iter 06574 | loss 1.3486 | loss(rot) 0.4886 | loss(pos) 0.4166 | loss(seq) 0.4433 | grad 3.3280 | lr 0.0010 | time_forward 4.7820 | time_backward 5.7990 |
[2023-09-02 05:42:36,672::train::INFO] [train] Iter 06575 | loss 2.3770 | loss(rot) 1.6548 | loss(pos) 0.1078 | loss(seq) 0.6144 | grad 4.2393 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4840 |
[2023-09-02 05:42:46,885::train::INFO] [train] Iter 06576 | loss 2.1315 | loss(rot) 1.2469 | loss(pos) 0.2382 | loss(seq) 0.6465 | grad 3.3862 | lr 0.0010 | time_forward 4.1580 | time_backward 5.9490 |
[2023-09-02 05:42:55,579::train::INFO] [train] Iter 06577 | loss 2.1026 | loss(rot) 1.8511 | loss(pos) 0.2272 | loss(seq) 0.0244 | grad 5.1898 | lr 0.0010 | time_forward 3.6630 | time_backward 5.0270 |
[2023-09-02 05:43:05,712::train::INFO] [train] Iter 06578 | loss 1.5537 | loss(rot) 0.7702 | loss(pos) 0.1786 | loss(seq) 0.6050 | grad 3.8069 | lr 0.0010 | time_forward 4.0640 | time_backward 6.0660 |
[2023-09-02 05:43:15,750::train::INFO] [train] Iter 06579 | loss 2.1095 | loss(rot) 1.4712 | loss(pos) 0.2043 | loss(seq) 0.4340 | grad 7.0926 | lr 0.0010 | time_forward 4.0340 | time_backward 6.0010 |
[2023-09-02 05:43:25,950::train::INFO] [train] Iter 06580 | loss 2.1441 | loss(rot) 0.9791 | loss(pos) 0.6000 | loss(seq) 0.5650 | grad 3.4410 | lr 0.0010 | time_forward 4.2340 | time_backward 5.9620 |
[2023-09-02 05:43:34,673::train::INFO] [train] Iter 06581 | loss 0.8416 | loss(rot) 0.2231 | loss(pos) 0.3612 | loss(seq) 0.2572 | grad 2.8755 | lr 0.0010 | time_forward 3.6920 | time_backward 5.0280 |
[2023-09-02 05:43:44,243::train::INFO] [train] Iter 06582 | loss 3.0965 | loss(rot) 2.8289 | loss(pos) 0.2676 | loss(seq) 0.0000 | grad 3.9582 | lr 0.0010 | time_forward 4.0450 | time_backward 5.5210 |
[2023-09-02 05:43:55,143::train::INFO] [train] Iter 06583 | loss 1.5043 | loss(rot) 0.8096 | loss(pos) 0.3165 | loss(seq) 0.3783 | grad 2.8329 | lr 0.0010 | time_forward 4.3140 | time_backward 6.5820 |
[2023-09-02 05:44:04,153::train::INFO] [train] Iter 06584 | loss 1.2987 | loss(rot) 0.7168 | loss(pos) 0.2727 | loss(seq) 0.3092 | grad 4.0594 | lr 0.0010 | time_forward 3.9260 | time_backward 5.0800 |
[2023-09-02 05:44:13,629::train::INFO] [train] Iter 06585 | loss 2.0542 | loss(rot) 1.5316 | loss(pos) 0.2363 | loss(seq) 0.2863 | grad 5.3039 | lr 0.0010 | time_forward 4.0990 | time_backward 5.3740 |
[2023-09-02 05:44:16,453::train::INFO] [train] Iter 06586 | loss 2.5813 | loss(rot) 1.5773 | loss(pos) 0.5714 | loss(seq) 0.4326 | grad 3.2421 | lr 0.0010 | time_forward 1.3440 | time_backward 1.4750 |
[2023-09-02 05:44:26,647::train::INFO] [train] Iter 06587 | loss 1.2889 | loss(rot) 0.1803 | loss(pos) 1.0449 | loss(seq) 0.0637 | grad 8.1223 | lr 0.0010 | time_forward 4.4840 | time_backward 5.7070 |
[2023-09-02 05:44:29,980::train::INFO] [train] Iter 06588 | loss 2.6112 | loss(rot) 2.2761 | loss(pos) 0.3351 | loss(seq) 0.0000 | grad 4.9446 | lr 0.0010 | time_forward 1.8820 | time_backward 1.4470 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.