text
stringlengths
56
1.16k
[2023-09-02 05:44:38,477::train::INFO] [train] Iter 06589 | loss 0.9577 | loss(rot) 0.1517 | loss(pos) 0.5326 | loss(seq) 0.2735 | grad 4.3218 | lr 0.0010 | time_forward 3.5970 | time_backward 4.8960
[2023-09-02 05:44:48,959::train::INFO] [train] Iter 06590 | loss 1.0121 | loss(rot) 0.0654 | loss(pos) 0.5664 | loss(seq) 0.3803 | grad 3.1608 | lr 0.0010 | time_forward 4.3610 | time_backward 6.1170
[2023-09-02 05:44:51,243::train::INFO] [train] Iter 06591 | loss 2.9625 | loss(rot) 2.6602 | loss(pos) 0.2745 | loss(seq) 0.0278 | grad 6.0515 | lr 0.0010 | time_forward 1.0620 | time_backward 1.2180
[2023-09-02 05:45:00,966::train::INFO] [train] Iter 06592 | loss 2.4349 | loss(rot) 2.0136 | loss(pos) 0.3674 | loss(seq) 0.0539 | grad 5.9844 | lr 0.0010 | time_forward 4.0500 | time_backward 5.6690
[2023-09-02 05:45:10,208::train::INFO] [train] Iter 06593 | loss 1.5599 | loss(rot) 0.8543 | loss(pos) 0.1855 | loss(seq) 0.5201 | grad 4.1229 | lr 0.0010 | time_forward 3.8070 | time_backward 5.3680
[2023-09-02 05:45:20,028::train::INFO] [train] Iter 06594 | loss 2.3662 | loss(rot) 1.5526 | loss(pos) 0.3070 | loss(seq) 0.5066 | grad 3.7341 | lr 0.0010 | time_forward 4.0720 | time_backward 5.7460
[2023-09-02 05:45:29,870::train::INFO] [train] Iter 06595 | loss 1.6739 | loss(rot) 1.0108 | loss(pos) 0.3106 | loss(seq) 0.3525 | grad 3.4223 | lr 0.0010 | time_forward 3.9990 | time_backward 5.8390
[2023-09-02 05:45:32,618::train::INFO] [train] Iter 06596 | loss 2.2658 | loss(rot) 1.4606 | loss(pos) 0.1727 | loss(seq) 0.6325 | grad 3.7114 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4430
[2023-09-02 05:45:40,980::train::INFO] [train] Iter 06597 | loss 1.9872 | loss(rot) 0.0185 | loss(pos) 1.9681 | loss(seq) 0.0007 | grad 5.8235 | lr 0.0010 | time_forward 3.4910 | time_backward 4.8540
[2023-09-02 05:45:50,945::train::INFO] [train] Iter 06598 | loss 2.8293 | loss(rot) 2.5819 | loss(pos) 0.1829 | loss(seq) 0.0645 | grad 4.7438 | lr 0.0010 | time_forward 4.0210 | time_backward 5.9370
[2023-09-02 05:45:59,621::train::INFO] [train] Iter 06599 | loss 2.5988 | loss(rot) 2.2259 | loss(pos) 0.1027 | loss(seq) 0.2702 | grad 4.1555 | lr 0.0010 | time_forward 3.6550 | time_backward 5.0190
[2023-09-02 05:46:08,749::train::INFO] [train] Iter 06600 | loss 2.5205 | loss(rot) 1.3212 | loss(pos) 0.6486 | loss(seq) 0.5507 | grad 5.2125 | lr 0.0010 | time_forward 3.8100 | time_backward 5.3140
[2023-09-02 05:46:18,867::train::INFO] [train] Iter 06601 | loss 2.0928 | loss(rot) 1.6805 | loss(pos) 0.2062 | loss(seq) 0.2061 | grad 4.7612 | lr 0.0010 | time_forward 4.2230 | time_backward 5.8910
[2023-09-02 05:46:29,116::train::INFO] [train] Iter 06602 | loss 1.8484 | loss(rot) 0.9320 | loss(pos) 0.5566 | loss(seq) 0.3598 | grad 3.2371 | lr 0.0010 | time_forward 4.2820 | time_backward 5.9630
[2023-09-02 05:46:39,167::train::INFO] [train] Iter 06603 | loss 1.1866 | loss(rot) 0.5575 | loss(pos) 0.2345 | loss(seq) 0.3946 | grad 2.6870 | lr 0.0010 | time_forward 4.0580 | time_backward 5.9890
[2023-09-02 05:46:47,930::train::INFO] [train] Iter 06604 | loss 2.5822 | loss(rot) 2.4382 | loss(pos) 0.1437 | loss(seq) 0.0003 | grad 5.3766 | lr 0.0010 | time_forward 3.6580 | time_backward 5.1020
[2023-09-02 05:46:57,319::train::INFO] [train] Iter 06605 | loss 2.6544 | loss(rot) 1.9137 | loss(pos) 0.2686 | loss(seq) 0.4721 | grad 3.3520 | lr 0.0010 | time_forward 3.8700 | time_backward 5.5150
[2023-09-02 05:47:00,613::train::INFO] [train] Iter 06606 | loss 2.2065 | loss(rot) 1.8182 | loss(pos) 0.1917 | loss(seq) 0.1966 | grad 4.0383 | lr 0.0010 | time_forward 1.4830 | time_backward 1.8070
[2023-09-02 05:47:10,794::train::INFO] [train] Iter 06607 | loss 2.0857 | loss(rot) 1.0808 | loss(pos) 0.4777 | loss(seq) 0.5272 | grad 2.9722 | lr 0.0010 | time_forward 4.2280 | time_backward 5.9490
[2023-09-02 05:47:20,668::train::INFO] [train] Iter 06608 | loss 2.1848 | loss(rot) 1.3837 | loss(pos) 0.3103 | loss(seq) 0.4908 | grad 3.9595 | lr 0.0010 | time_forward 4.0600 | time_backward 5.8110
[2023-09-02 05:47:30,830::train::INFO] [train] Iter 06609 | loss 0.6031 | loss(rot) 0.1219 | loss(pos) 0.2487 | loss(seq) 0.2324 | grad 2.5903 | lr 0.0010 | time_forward 4.1190 | time_backward 6.0390
[2023-09-02 05:47:39,671::train::INFO] [train] Iter 06610 | loss 2.5118 | loss(rot) 2.3319 | loss(pos) 0.1732 | loss(seq) 0.0068 | grad 6.2634 | lr 0.0010 | time_forward 3.7210 | time_backward 5.1160
[2023-09-02 05:47:42,418::train::INFO] [train] Iter 06611 | loss 0.4791 | loss(rot) 0.1395 | loss(pos) 0.2898 | loss(seq) 0.0497 | grad 3.5773 | lr 0.0010 | time_forward 1.3560 | time_backward 1.3880
[2023-09-02 05:47:45,101::train::INFO] [train] Iter 06612 | loss 2.2910 | loss(rot) 1.4931 | loss(pos) 0.3095 | loss(seq) 0.4884 | grad 4.3932 | lr 0.0010 | time_forward 1.3020 | time_backward 1.3770
[2023-09-02 05:47:51,803::train::INFO] [train] Iter 06613 | loss 1.6599 | loss(rot) 1.5549 | loss(pos) 0.1003 | loss(seq) 0.0047 | grad 4.0074 | lr 0.0010 | time_forward 2.9220 | time_backward 3.7770
[2023-09-02 05:47:58,347::train::INFO] [train] Iter 06614 | loss 2.7829 | loss(rot) 1.4172 | loss(pos) 0.8041 | loss(seq) 0.5616 | grad 5.8809 | lr 0.0010 | time_forward 2.7420 | time_backward 3.8000
[2023-09-02 05:48:08,478::train::INFO] [train] Iter 06615 | loss 0.7586 | loss(rot) 0.3319 | loss(pos) 0.3301 | loss(seq) 0.0966 | grad 2.7881 | lr 0.0010 | time_forward 4.0660 | time_backward 6.0620
[2023-09-02 05:48:17,025::train::INFO] [train] Iter 06616 | loss 2.4530 | loss(rot) 2.1249 | loss(pos) 0.1137 | loss(seq) 0.2144 | grad 3.7730 | lr 0.0010 | time_forward 3.6220 | time_backward 4.9210
[2023-09-02 05:48:27,255::train::INFO] [train] Iter 06617 | loss 1.6802 | loss(rot) 0.7458 | loss(pos) 0.4456 | loss(seq) 0.4888 | grad 3.9363 | lr 0.0010 | time_forward 4.5640 | time_backward 5.6620
[2023-09-02 05:48:36,532::train::INFO] [train] Iter 06618 | loss 1.0712 | loss(rot) 0.2035 | loss(pos) 0.5742 | loss(seq) 0.2935 | grad 4.6299 | lr 0.0010 | time_forward 3.8950 | time_backward 5.3780
[2023-09-02 05:48:44,790::train::INFO] [train] Iter 06619 | loss 1.2079 | loss(rot) 0.4181 | loss(pos) 0.4431 | loss(seq) 0.3467 | grad 4.4415 | lr 0.0010 | time_forward 3.6020 | time_backward 4.6530
[2023-09-02 05:48:54,157::train::INFO] [train] Iter 06620 | loss 2.1374 | loss(rot) 1.0262 | loss(pos) 0.5228 | loss(seq) 0.5885 | grad 5.8950 | lr 0.0010 | time_forward 4.0570 | time_backward 5.3060
[2023-09-02 05:48:56,854::train::INFO] [train] Iter 06621 | loss 1.9541 | loss(rot) 1.7050 | loss(pos) 0.1152 | loss(seq) 0.1338 | grad 4.8576 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4340
[2023-09-02 05:49:05,612::train::INFO] [train] Iter 06622 | loss 1.6910 | loss(rot) 1.0004 | loss(pos) 0.2495 | loss(seq) 0.4411 | grad 4.5860 | lr 0.0010 | time_forward 3.7420 | time_backward 4.9820
[2023-09-02 05:49:14,564::train::INFO] [train] Iter 06623 | loss 1.3907 | loss(rot) 0.2032 | loss(pos) 0.8819 | loss(seq) 0.3056 | grad 6.2321 | lr 0.0010 | time_forward 3.9310 | time_backward 5.0180
[2023-09-02 05:49:22,976::train::INFO] [train] Iter 06624 | loss 2.8327 | loss(rot) 1.9360 | loss(pos) 0.4381 | loss(seq) 0.4586 | grad 4.2698 | lr 0.0010 | time_forward 3.5080 | time_backward 4.9000
[2023-09-02 05:49:32,263::train::INFO] [train] Iter 06625 | loss 2.0323 | loss(rot) 1.5609 | loss(pos) 0.1390 | loss(seq) 0.3325 | grad 6.6516 | lr 0.0010 | time_forward 3.8560 | time_backward 5.4270
[2023-09-02 05:49:34,948::train::INFO] [train] Iter 06626 | loss 2.7915 | loss(rot) 2.2335 | loss(pos) 0.2785 | loss(seq) 0.2796 | grad 4.4079 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4340
[2023-09-02 05:49:44,885::train::INFO] [train] Iter 06627 | loss 1.9745 | loss(rot) 1.2113 | loss(pos) 0.3053 | loss(seq) 0.4579 | grad 6.0703 | lr 0.0010 | time_forward 4.0080 | time_backward 5.9050
[2023-09-02 05:49:54,880::train::INFO] [train] Iter 06628 | loss 2.5499 | loss(rot) 1.5466 | loss(pos) 0.3519 | loss(seq) 0.6514 | grad 4.1120 | lr 0.0010 | time_forward 4.0400 | time_backward 5.9510
[2023-09-02 05:50:01,966::train::INFO] [train] Iter 06629 | loss 1.7961 | loss(rot) 1.4881 | loss(pos) 0.1190 | loss(seq) 0.1890 | grad 6.1814 | lr 0.0010 | time_forward 2.9170 | time_backward 4.1660
[2023-09-02 05:50:04,663::train::INFO] [train] Iter 06630 | loss 2.4309 | loss(rot) 2.2438 | loss(pos) 0.1775 | loss(seq) 0.0096 | grad 4.7087 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4340
[2023-09-02 05:50:06,431::train::INFO] [train] Iter 06631 | loss 3.5027 | loss(rot) 2.6043 | loss(pos) 0.7234 | loss(seq) 0.1750 | grad 4.5804 | lr 0.0010 | time_forward 0.8070 | time_backward 0.9580
[2023-09-02 05:50:09,807::train::INFO] [train] Iter 06632 | loss 2.2330 | loss(rot) 1.8923 | loss(pos) 0.2085 | loss(seq) 0.1322 | grad 5.5043 | lr 0.0010 | time_forward 1.4010 | time_backward 1.9710
[2023-09-02 05:50:20,168::train::INFO] [train] Iter 06633 | loss 2.8986 | loss(rot) 2.6483 | loss(pos) 0.1615 | loss(seq) 0.0888 | grad 3.6280 | lr 0.0010 | time_forward 4.1870 | time_backward 6.1710
[2023-09-02 05:50:22,978::train::INFO] [train] Iter 06634 | loss 2.2636 | loss(rot) 2.1302 | loss(pos) 0.1327 | loss(seq) 0.0006 | grad 3.5347 | lr 0.0010 | time_forward 1.3700 | time_backward 1.4360
[2023-09-02 05:50:30,999::train::INFO] [train] Iter 06635 | loss 1.1134 | loss(rot) 0.1634 | loss(pos) 0.9281 | loss(seq) 0.0218 | grad 4.0190 | lr 0.0010 | time_forward 3.4110 | time_backward 4.6070
[2023-09-02 05:50:39,199::train::INFO] [train] Iter 06636 | loss 2.2697 | loss(rot) 1.5694 | loss(pos) 0.2205 | loss(seq) 0.4798 | grad 3.8846 | lr 0.0010 | time_forward 3.3780 | time_backward 4.7170
[2023-09-02 05:50:49,403::train::INFO] [train] Iter 06637 | loss 1.0893 | loss(rot) 0.4916 | loss(pos) 0.1591 | loss(seq) 0.4385 | grad 2.8091 | lr 0.0010 | time_forward 4.0500 | time_backward 6.1500
[2023-09-02 05:50:52,115::train::INFO] [train] Iter 06638 | loss 2.6669 | loss(rot) 2.4791 | loss(pos) 0.1846 | loss(seq) 0.0032 | grad 4.6288 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4260
[2023-09-02 05:51:00,931::train::INFO] [train] Iter 06639 | loss 1.8129 | loss(rot) 1.3760 | loss(pos) 0.1472 | loss(seq) 0.2897 | grad 4.1616 | lr 0.0010 | time_forward 3.8040 | time_backward 5.0080
[2023-09-02 05:51:03,634::train::INFO] [train] Iter 06640 | loss 2.4501 | loss(rot) 1.9329 | loss(pos) 0.1492 | loss(seq) 0.3679 | grad 4.3674 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4380
[2023-09-02 05:51:13,370::train::INFO] [train] Iter 06641 | loss 2.6993 | loss(rot) 2.4992 | loss(pos) 0.2001 | loss(seq) 0.0000 | grad 3.2848 | lr 0.0010 | time_forward 4.0020 | time_backward 5.7300
[2023-09-02 05:51:16,005::train::INFO] [train] Iter 06642 | loss 1.4903 | loss(rot) 0.6695 | loss(pos) 0.4728 | loss(seq) 0.3480 | grad 2.8394 | lr 0.0010 | time_forward 1.2100 | time_backward 1.4210
[2023-09-02 05:51:25,292::train::INFO] [train] Iter 06643 | loss 2.5421 | loss(rot) 2.4003 | loss(pos) 0.1125 | loss(seq) 0.0293 | grad 5.7883 | lr 0.0010 | time_forward 3.9950 | time_backward 5.2880
[2023-09-02 05:51:34,727::train::INFO] [train] Iter 06644 | loss 1.2119 | loss(rot) 0.6493 | loss(pos) 0.2479 | loss(seq) 0.3147 | grad 4.1223 | lr 0.0010 | time_forward 4.0050 | time_backward 5.4260
[2023-09-02 05:51:42,006::train::INFO] [train] Iter 06645 | loss 2.2322 | loss(rot) 1.9932 | loss(pos) 0.1092 | loss(seq) 0.1299 | grad 5.8987 | lr 0.0010 | time_forward 3.0510 | time_backward 4.2240
[2023-09-02 05:51:52,150::train::INFO] [train] Iter 06646 | loss 3.0130 | loss(rot) 2.8561 | loss(pos) 0.1521 | loss(seq) 0.0048 | grad 3.0453 | lr 0.0010 | time_forward 4.2500 | time_backward 5.8900
[2023-09-02 05:51:54,838::train::INFO] [train] Iter 06647 | loss 2.2881 | loss(rot) 2.0339 | loss(pos) 0.1015 | loss(seq) 0.1526 | grad 3.6116 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4510
[2023-09-02 05:51:57,484::train::INFO] [train] Iter 06648 | loss 0.7698 | loss(rot) 0.1622 | loss(pos) 0.5318 | loss(seq) 0.0758 | grad 5.5827 | lr 0.0010 | time_forward 1.3300 | time_backward 1.3120
[2023-09-02 05:52:04,971::train::INFO] [train] Iter 06649 | loss 1.2510 | loss(rot) 0.1931 | loss(pos) 1.0130 | loss(seq) 0.0450 | grad 5.3483 | lr 0.0010 | time_forward 3.1780 | time_backward 4.3060
[2023-09-02 05:52:07,829::train::INFO] [train] Iter 06650 | loss 3.3151 | loss(rot) 3.0166 | loss(pos) 0.2984 | loss(seq) 0.0001 | grad 6.5484 | lr 0.0010 | time_forward 1.4150 | time_backward 1.4400
[2023-09-02 05:52:17,337::train::INFO] [train] Iter 06651 | loss 1.5742 | loss(rot) 0.6681 | loss(pos) 0.5127 | loss(seq) 0.3935 | grad 4.3216 | lr 0.0010 | time_forward 3.9530 | time_backward 5.5250
[2023-09-02 05:52:25,419::train::INFO] [train] Iter 06652 | loss 2.6886 | loss(rot) 2.1940 | loss(pos) 0.1426 | loss(seq) 0.3520 | grad 3.2762 | lr 0.0010 | time_forward 3.3300 | time_backward 4.7480
[2023-09-02 05:52:32,228::train::INFO] [train] Iter 06653 | loss 1.8071 | loss(rot) 0.0425 | loss(pos) 1.7555 | loss(seq) 0.0091 | grad 8.4706 | lr 0.0010 | time_forward 2.9020 | time_backward 3.9030
[2023-09-02 05:52:40,265::train::INFO] [train] Iter 06654 | loss 2.4863 | loss(rot) 2.0559 | loss(pos) 0.1562 | loss(seq) 0.2741 | grad 4.4179 | lr 0.0010 | time_forward 3.4210 | time_backward 4.6120
[2023-09-02 05:52:48,773::train::INFO] [train] Iter 06655 | loss 2.7453 | loss(rot) 2.3474 | loss(pos) 0.1854 | loss(seq) 0.2125 | grad 5.0627 | lr 0.0010 | time_forward 3.6410 | time_backward 4.8640
[2023-09-02 05:52:51,560::train::INFO] [train] Iter 06656 | loss 1.0382 | loss(rot) 0.3545 | loss(pos) 0.3906 | loss(seq) 0.2930 | grad 6.2680 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4710
[2023-09-02 05:53:01,322::train::INFO] [train] Iter 06657 | loss 1.4778 | loss(rot) 0.1119 | loss(pos) 1.3485 | loss(seq) 0.0174 | grad 7.8822 | lr 0.0010 | time_forward 4.0740 | time_backward 5.6620
[2023-09-02 05:53:03,623::train::INFO] [train] Iter 06658 | loss 2.7346 | loss(rot) 2.4849 | loss(pos) 0.1914 | loss(seq) 0.0583 | grad 5.9148 | lr 0.0010 | time_forward 1.0820 | time_backward 1.2160
[2023-09-02 05:53:12,234::train::INFO] [train] Iter 06659 | loss 0.8613 | loss(rot) 0.3046 | loss(pos) 0.2593 | loss(seq) 0.2974 | grad 4.1832 | lr 0.0010 | time_forward 3.6070 | time_backward 4.9900
[2023-09-02 05:53:14,934::train::INFO] [train] Iter 06660 | loss 0.9633 | loss(rot) 0.2524 | loss(pos) 0.6861 | loss(seq) 0.0248 | grad 4.6094 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4480
[2023-09-02 05:53:23,751::train::INFO] [train] Iter 06661 | loss 1.8234 | loss(rot) 1.1008 | loss(pos) 0.2702 | loss(seq) 0.4523 | grad 5.2165 | lr 0.0010 | time_forward 3.6950 | time_backward 5.1180
[2023-09-02 05:53:32,929::train::INFO] [train] Iter 06662 | loss 1.3150 | loss(rot) 0.4531 | loss(pos) 0.3940 | loss(seq) 0.4679 | grad 4.0348 | lr 0.0010 | time_forward 3.9100 | time_backward 5.2650
[2023-09-02 05:53:43,023::train::INFO] [train] Iter 06663 | loss 1.5557 | loss(rot) 0.1131 | loss(pos) 1.4314 | loss(seq) 0.0112 | grad 3.7060 | lr 0.0010 | time_forward 4.2690 | time_backward 5.8210
[2023-09-02 05:53:45,297::train::INFO] [train] Iter 06664 | loss 1.1823 | loss(rot) 0.3666 | loss(pos) 0.6059 | loss(seq) 0.2098 | grad 3.5584 | lr 0.0010 | time_forward 1.1070 | time_backward 1.1640
[2023-09-02 05:53:47,992::train::INFO] [train] Iter 06665 | loss 1.7750 | loss(rot) 0.9646 | loss(pos) 0.1523 | loss(seq) 0.6581 | grad 3.7820 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4070
[2023-09-02 05:53:56,136::train::INFO] [train] Iter 06666 | loss 2.2845 | loss(rot) 1.5913 | loss(pos) 0.1878 | loss(seq) 0.5054 | grad 3.9517 | lr 0.0010 | time_forward 3.4020 | time_backward 4.7020
[2023-09-02 05:54:06,310::train::INFO] [train] Iter 06667 | loss 1.7192 | loss(rot) 1.2315 | loss(pos) 0.1593 | loss(seq) 0.3284 | grad 3.7114 | lr 0.0010 | time_forward 4.1210 | time_backward 6.0020
[2023-09-02 05:54:16,754::train::INFO] [train] Iter 06668 | loss 1.8955 | loss(rot) 1.3979 | loss(pos) 0.1680 | loss(seq) 0.3296 | grad 3.6266 | lr 0.0010 | time_forward 4.4150 | time_backward 6.0260
[2023-09-02 05:54:19,445::train::INFO] [train] Iter 06669 | loss 2.2870 | loss(rot) 2.0765 | loss(pos) 0.2104 | loss(seq) 0.0000 | grad 3.6801 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4250
[2023-09-02 05:54:27,972::train::INFO] [train] Iter 06670 | loss 4.0995 | loss(rot) 0.0180 | loss(pos) 4.0815 | loss(seq) 0.0000 | grad 6.9060 | lr 0.0010 | time_forward 3.6620 | time_backward 4.8610
[2023-09-02 05:54:36,648::train::INFO] [train] Iter 06671 | loss 2.3873 | loss(rot) 2.1006 | loss(pos) 0.1521 | loss(seq) 0.1347 | grad 4.4198 | lr 0.0010 | time_forward 3.6870 | time_backward 4.9860
[2023-09-02 05:54:45,473::train::INFO] [train] Iter 06672 | loss 1.8512 | loss(rot) 0.8573 | loss(pos) 0.3665 | loss(seq) 0.6274 | grad 4.3252 | lr 0.0010 | time_forward 3.7230 | time_backward 5.0980
[2023-09-02 05:54:48,192::train::INFO] [train] Iter 06673 | loss 4.2322 | loss(rot) 0.0397 | loss(pos) 4.1926 | loss(seq) 0.0000 | grad 9.2740 | lr 0.0010 | time_forward 1.3040 | time_backward 1.4110
[2023-09-02 05:54:50,909::train::INFO] [train] Iter 06674 | loss 2.9296 | loss(rot) 2.6213 | loss(pos) 0.2167 | loss(seq) 0.0917 | grad 4.4559 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4260
[2023-09-02 05:54:58,932::train::INFO] [train] Iter 06675 | loss 1.4327 | loss(rot) 0.4221 | loss(pos) 0.8644 | loss(seq) 0.1462 | grad 2.6427 | lr 0.0010 | time_forward 3.3420 | time_backward 4.6780
[2023-09-02 05:55:09,143::train::INFO] [train] Iter 06676 | loss 2.5977 | loss(rot) 1.6925 | loss(pos) 0.3230 | loss(seq) 0.5822 | grad 3.3591 | lr 0.0010 | time_forward 4.2730 | time_backward 5.9050
[2023-09-02 05:55:17,841::train::INFO] [train] Iter 06677 | loss 1.0653 | loss(rot) 0.2992 | loss(pos) 0.7224 | loss(seq) 0.0437 | grad 4.8026 | lr 0.0010 | time_forward 3.8080 | time_backward 4.8570
[2023-09-02 05:55:27,878::train::INFO] [train] Iter 06678 | loss 1.2351 | loss(rot) 0.0849 | loss(pos) 0.9473 | loss(seq) 0.2029 | grad 3.9196 | lr 0.0010 | time_forward 4.0760 | time_backward 5.9580
[2023-09-02 05:55:30,635::train::INFO] [train] Iter 06679 | loss 0.6996 | loss(rot) 0.2583 | loss(pos) 0.3298 | loss(seq) 0.1116 | grad 3.9626 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4870
[2023-09-02 05:55:38,695::train::INFO] [train] Iter 06680 | loss 1.4526 | loss(rot) 0.0841 | loss(pos) 1.3533 | loss(seq) 0.0152 | grad 5.7661 | lr 0.0010 | time_forward 3.3910 | time_backward 4.6470
[2023-09-02 05:55:48,122::train::INFO] [train] Iter 06681 | loss 2.4294 | loss(rot) 2.0786 | loss(pos) 0.1870 | loss(seq) 0.1638 | grad 3.6212 | lr 0.0010 | time_forward 3.9730 | time_backward 5.4510
[2023-09-02 05:55:57,612::train::INFO] [train] Iter 06682 | loss 1.9231 | loss(rot) 0.7357 | loss(pos) 0.5187 | loss(seq) 0.6688 | grad 4.4440 | lr 0.0010 | time_forward 3.9480 | time_backward 5.5380
[2023-09-02 05:56:05,248::train::INFO] [train] Iter 06683 | loss 1.2800 | loss(rot) 0.3998 | loss(pos) 0.4360 | loss(seq) 0.4442 | grad 3.4831 | lr 0.0010 | time_forward 3.1500 | time_backward 4.4780
[2023-09-02 05:56:08,548::train::INFO] [train] Iter 06684 | loss 2.7461 | loss(rot) 2.5666 | loss(pos) 0.1773 | loss(seq) 0.0021 | grad 3.9118 | lr 0.0010 | time_forward 1.4280 | time_backward 1.8700
[2023-09-02 05:56:10,751::train::INFO] [train] Iter 06685 | loss 2.3435 | loss(rot) 2.2143 | loss(pos) 0.1260 | loss(seq) 0.0032 | grad 3.7181 | lr 0.0010 | time_forward 1.0090 | time_backward 1.1910
[2023-09-02 05:56:13,473::train::INFO] [train] Iter 06686 | loss 1.5467 | loss(rot) 1.2629 | loss(pos) 0.0873 | loss(seq) 0.1965 | grad 4.9061 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4110
[2023-09-02 05:56:22,451::train::INFO] [train] Iter 06687 | loss 1.9918 | loss(rot) 1.4515 | loss(pos) 0.1241 | loss(seq) 0.4162 | grad 9.7556 | lr 0.0010 | time_forward 3.6370 | time_backward 5.3370
[2023-09-02 05:56:30,805::train::INFO] [train] Iter 06688 | loss 1.9638 | loss(rot) 1.0903 | loss(pos) 0.3691 | loss(seq) 0.5043 | grad 3.4331 | lr 0.0010 | time_forward 3.5580 | time_backward 4.7930