text
stringlengths
56
1.16k
[2023-09-02 05:56:33,470::train::INFO] [train] Iter 06689 | loss 0.9549 | loss(rot) 0.4243 | loss(pos) 0.2483 | loss(seq) 0.2823 | grad 3.6763 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4100
[2023-09-02 05:56:41,911::train::INFO] [train] Iter 06690 | loss 1.2851 | loss(rot) 0.4726 | loss(pos) 0.3300 | loss(seq) 0.4826 | grad 3.1924 | lr 0.0010 | time_forward 3.5250 | time_backward 4.9130
[2023-09-02 05:56:51,250::train::INFO] [train] Iter 06691 | loss 2.5964 | loss(rot) 2.4829 | loss(pos) 0.0774 | loss(seq) 0.0361 | grad 2.9824 | lr 0.0010 | time_forward 3.9300 | time_backward 5.4070
[2023-09-02 05:57:00,525::train::INFO] [train] Iter 06692 | loss 1.9183 | loss(rot) 1.1005 | loss(pos) 0.2805 | loss(seq) 0.5372 | grad 3.9935 | lr 0.0010 | time_forward 3.8780 | time_backward 5.3930
[2023-09-02 05:57:11,184::train::INFO] [train] Iter 06693 | loss 2.2402 | loss(rot) 2.0600 | loss(pos) 0.1790 | loss(seq) 0.0012 | grad 5.5589 | lr 0.0010 | time_forward 4.6930 | time_backward 5.9630
[2023-09-02 05:57:21,451::train::INFO] [train] Iter 06694 | loss 1.9991 | loss(rot) 1.1813 | loss(pos) 0.1335 | loss(seq) 0.6842 | grad 3.1077 | lr 0.0010 | time_forward 4.0780 | time_backward 6.1850
[2023-09-02 05:57:24,139::train::INFO] [train] Iter 06695 | loss 1.4114 | loss(rot) 0.5135 | loss(pos) 0.6229 | loss(seq) 0.2751 | grad 4.1221 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4170
[2023-09-02 05:57:32,359::train::INFO] [train] Iter 06696 | loss 2.4175 | loss(rot) 1.8185 | loss(pos) 0.1327 | loss(seq) 0.4664 | grad 4.5055 | lr 0.0010 | time_forward 3.4940 | time_backward 4.7220
[2023-09-02 05:57:42,355::train::INFO] [train] Iter 06697 | loss 0.8056 | loss(rot) 0.2169 | loss(pos) 0.3652 | loss(seq) 0.2235 | grad 2.6691 | lr 0.0010 | time_forward 4.1360 | time_backward 5.8570
[2023-09-02 05:57:52,411::train::INFO] [train] Iter 06698 | loss 1.4546 | loss(rot) 0.8625 | loss(pos) 0.2334 | loss(seq) 0.3586 | grad 3.9644 | lr 0.0010 | time_forward 4.4010 | time_backward 5.6520
[2023-09-02 05:58:01,540::train::INFO] [train] Iter 06699 | loss 2.4365 | loss(rot) 1.8887 | loss(pos) 0.1069 | loss(seq) 0.4409 | grad 4.0024 | lr 0.0010 | time_forward 3.9580 | time_backward 5.1670
[2023-09-02 05:58:10,455::train::INFO] [train] Iter 06700 | loss 0.9473 | loss(rot) 0.2440 | loss(pos) 0.6102 | loss(seq) 0.0931 | grad 3.5756 | lr 0.0010 | time_forward 3.8750 | time_backward 5.0380
[2023-09-02 05:58:13,382::train::INFO] [train] Iter 06701 | loss 2.1707 | loss(rot) 1.5084 | loss(pos) 0.1400 | loss(seq) 0.5223 | grad 5.4884 | lr 0.0010 | time_forward 1.4920 | time_backward 1.4320
[2023-09-02 05:58:18,136::train::INFO] [train] Iter 06702 | loss 2.0575 | loss(rot) 1.9146 | loss(pos) 0.1189 | loss(seq) 0.0240 | grad 5.4865 | lr 0.0010 | time_forward 2.1670 | time_backward 2.5830
[2023-09-02 05:58:26,485::train::INFO] [train] Iter 06703 | loss 0.9474 | loss(rot) 0.0502 | loss(pos) 0.8832 | loss(seq) 0.0140 | grad 4.9784 | lr 0.0010 | time_forward 3.5250 | time_backward 4.8200
[2023-09-02 05:58:28,833::train::INFO] [train] Iter 06704 | loss 2.4174 | loss(rot) 2.1792 | loss(pos) 0.2362 | loss(seq) 0.0020 | grad 4.8349 | lr 0.0010 | time_forward 1.0870 | time_backward 1.1910
[2023-09-02 05:58:35,817::train::INFO] [train] Iter 06705 | loss 2.1365 | loss(rot) 1.9156 | loss(pos) 0.1422 | loss(seq) 0.0787 | grad 4.7102 | lr 0.0010 | time_forward 2.9670 | time_backward 4.0140
[2023-09-02 05:58:45,763::train::INFO] [train] Iter 06706 | loss 2.8361 | loss(rot) 2.5573 | loss(pos) 0.2561 | loss(seq) 0.0227 | grad 7.6698 | lr 0.0010 | time_forward 4.0160 | time_backward 5.9260
[2023-09-02 05:58:54,839::train::INFO] [train] Iter 06707 | loss 1.8202 | loss(rot) 0.0287 | loss(pos) 1.7861 | loss(seq) 0.0054 | grad 7.7446 | lr 0.0010 | time_forward 3.9530 | time_backward 5.1190
[2023-09-02 05:59:03,680::train::INFO] [train] Iter 06708 | loss 2.4174 | loss(rot) 2.0115 | loss(pos) 0.1523 | loss(seq) 0.2536 | grad 4.1735 | lr 0.0010 | time_forward 3.6920 | time_backward 5.1450
[2023-09-02 05:59:12,886::train::INFO] [train] Iter 06709 | loss 0.7060 | loss(rot) 0.1296 | loss(pos) 0.5361 | loss(seq) 0.0403 | grad 4.5236 | lr 0.0010 | time_forward 3.8290 | time_backward 5.3730
[2023-09-02 05:59:15,780::train::INFO] [train] Iter 06710 | loss 1.9374 | loss(rot) 0.9074 | loss(pos) 0.5143 | loss(seq) 0.5157 | grad 5.7619 | lr 0.0010 | time_forward 1.4510 | time_backward 1.4400
[2023-09-02 05:59:25,179::train::INFO] [train] Iter 06711 | loss 2.8581 | loss(rot) 2.4333 | loss(pos) 0.2699 | loss(seq) 0.1549 | grad 6.6904 | lr 0.0010 | time_forward 4.1630 | time_backward 5.2330
[2023-09-02 05:59:27,853::train::INFO] [train] Iter 06712 | loss 2.3744 | loss(rot) 2.1507 | loss(pos) 0.2167 | loss(seq) 0.0071 | grad 3.4071 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4340
[2023-09-02 05:59:30,619::train::INFO] [train] Iter 06713 | loss 1.2762 | loss(rot) 0.8000 | loss(pos) 0.1025 | loss(seq) 0.3737 | grad 4.7227 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4260
[2023-09-02 05:59:39,938::train::INFO] [train] Iter 06714 | loss 1.3811 | loss(rot) 0.9230 | loss(pos) 0.1193 | loss(seq) 0.3388 | grad 3.6928 | lr 0.0010 | time_forward 3.9200 | time_backward 5.3610
[2023-09-02 05:59:49,221::train::INFO] [train] Iter 06715 | loss 1.3150 | loss(rot) 0.5232 | loss(pos) 0.2627 | loss(seq) 0.5291 | grad 4.3890 | lr 0.0010 | time_forward 4.0250 | time_backward 5.2540
[2023-09-02 05:59:59,265::train::INFO] [train] Iter 06716 | loss 1.3133 | loss(rot) 0.4472 | loss(pos) 0.4926 | loss(seq) 0.3735 | grad 3.9512 | lr 0.0010 | time_forward 4.1000 | time_backward 5.9400
[2023-09-02 06:00:02,119::train::INFO] [train] Iter 06717 | loss 2.0327 | loss(rot) 1.3598 | loss(pos) 0.3783 | loss(seq) 0.2946 | grad 4.9124 | lr 0.0010 | time_forward 1.4360 | time_backward 1.4150
[2023-09-02 06:00:04,905::train::INFO] [train] Iter 06718 | loss 1.7385 | loss(rot) 1.0204 | loss(pos) 0.2128 | loss(seq) 0.5054 | grad 3.6524 | lr 0.0010 | time_forward 1.4010 | time_backward 1.3810
[2023-09-02 06:00:14,254::train::INFO] [train] Iter 06719 | loss 1.9479 | loss(rot) 0.6993 | loss(pos) 0.7673 | loss(seq) 0.4813 | grad 3.7632 | lr 0.0010 | time_forward 3.9370 | time_backward 5.4060
[2023-09-02 06:00:23,324::train::INFO] [train] Iter 06720 | loss 2.7861 | loss(rot) 2.7194 | loss(pos) 0.0655 | loss(seq) 0.0012 | grad 4.1668 | lr 0.0010 | time_forward 3.8460 | time_backward 5.2200
[2023-09-02 06:00:26,131::train::INFO] [train] Iter 06721 | loss 2.3195 | loss(rot) 1.2802 | loss(pos) 0.3791 | loss(seq) 0.6603 | grad 3.6393 | lr 0.0010 | time_forward 1.3330 | time_backward 1.4700
[2023-09-02 06:00:35,069::train::INFO] [train] Iter 06722 | loss 1.2105 | loss(rot) 0.7249 | loss(pos) 0.2605 | loss(seq) 0.2250 | grad 4.4294 | lr 0.0010 | time_forward 3.7580 | time_backward 5.1760
[2023-09-02 06:00:43,210::train::INFO] [train] Iter 06723 | loss 2.2435 | loss(rot) 2.0142 | loss(pos) 0.0548 | loss(seq) 0.1745 | grad 5.5912 | lr 0.0010 | time_forward 3.4010 | time_backward 4.7360
[2023-09-02 06:00:45,926::train::INFO] [train] Iter 06724 | loss 1.6680 | loss(rot) 0.5130 | loss(pos) 0.9387 | loss(seq) 0.2163 | grad 4.5156 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4450
[2023-09-02 06:00:55,137::train::INFO] [train] Iter 06725 | loss 1.3626 | loss(rot) 1.2696 | loss(pos) 0.0743 | loss(seq) 0.0187 | grad 6.2967 | lr 0.0010 | time_forward 4.0100 | time_backward 5.1980
[2023-09-02 06:01:05,598::train::INFO] [train] Iter 06726 | loss 2.5152 | loss(rot) 2.3150 | loss(pos) 0.2002 | loss(seq) 0.0000 | grad 3.4432 | lr 0.0010 | time_forward 4.3570 | time_backward 6.0990
[2023-09-02 06:01:14,972::train::INFO] [train] Iter 06727 | loss 2.7503 | loss(rot) 2.5500 | loss(pos) 0.1941 | loss(seq) 0.0061 | grad 5.0218 | lr 0.0010 | time_forward 4.0410 | time_backward 5.3290
[2023-09-02 06:01:17,681::train::INFO] [train] Iter 06728 | loss 2.6169 | loss(rot) 2.2310 | loss(pos) 0.0892 | loss(seq) 0.2968 | grad 4.4109 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4390
[2023-09-02 06:01:24,782::train::INFO] [train] Iter 06729 | loss 2.2868 | loss(rot) 1.7795 | loss(pos) 0.0971 | loss(seq) 0.4103 | grad 4.4859 | lr 0.0010 | time_forward 3.1090 | time_backward 3.9880
[2023-09-02 06:01:28,117::train::INFO] [train] Iter 06730 | loss 1.0386 | loss(rot) 0.2340 | loss(pos) 0.6237 | loss(seq) 0.1810 | grad 3.2317 | lr 0.0010 | time_forward 1.4400 | time_backward 1.8920
[2023-09-02 06:01:30,294::train::INFO] [train] Iter 06731 | loss 2.5129 | loss(rot) 2.4078 | loss(pos) 0.0902 | loss(seq) 0.0149 | grad 5.5390 | lr 0.0010 | time_forward 1.0120 | time_backward 1.1620
[2023-09-02 06:01:32,890::train::INFO] [train] Iter 06732 | loss 1.2836 | loss(rot) 0.4324 | loss(pos) 0.4092 | loss(seq) 0.4420 | grad 2.8267 | lr 0.0010 | time_forward 1.2160 | time_backward 1.3770
[2023-09-02 06:01:35,612::train::INFO] [train] Iter 06733 | loss 1.9334 | loss(rot) 0.9769 | loss(pos) 0.3139 | loss(seq) 0.6426 | grad 6.3717 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4290
[2023-09-02 06:01:38,312::train::INFO] [train] Iter 06734 | loss 1.5272 | loss(rot) 1.1306 | loss(pos) 0.0951 | loss(seq) 0.3015 | grad 4.6257 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4180
[2023-09-02 06:01:40,603::train::INFO] [train] Iter 06735 | loss 3.6342 | loss(rot) 0.0707 | loss(pos) 3.5635 | loss(seq) 0.0000 | grad 8.6433 | lr 0.0010 | time_forward 1.1160 | time_backward 1.1700
[2023-09-02 06:01:43,444::train::INFO] [train] Iter 06736 | loss 2.4984 | loss(rot) 0.3961 | loss(pos) 2.1006 | loss(seq) 0.0017 | grad 5.3441 | lr 0.0010 | time_forward 1.4130 | time_backward 1.4040
[2023-09-02 06:01:51,929::train::INFO] [train] Iter 06737 | loss 1.9156 | loss(rot) 1.4964 | loss(pos) 0.1977 | loss(seq) 0.2216 | grad 7.3003 | lr 0.0010 | time_forward 3.6290 | time_backward 4.8500
[2023-09-02 06:02:00,614::train::INFO] [train] Iter 06738 | loss 1.2682 | loss(rot) 0.3231 | loss(pos) 0.8669 | loss(seq) 0.0782 | grad 6.0290 | lr 0.0010 | time_forward 3.7410 | time_backward 4.9400
[2023-09-02 06:02:09,305::train::INFO] [train] Iter 06739 | loss 0.8518 | loss(rot) 0.1788 | loss(pos) 0.3365 | loss(seq) 0.3366 | grad 2.6832 | lr 0.0010 | time_forward 3.6170 | time_backward 5.0710
[2023-09-02 06:02:20,292::train::INFO] [train] Iter 06740 | loss 2.7503 | loss(rot) 2.2275 | loss(pos) 0.1606 | loss(seq) 0.3622 | grad 2.9594 | lr 0.0010 | time_forward 4.8190 | time_backward 6.1640
[2023-09-02 06:02:29,103::train::INFO] [train] Iter 06741 | loss 2.7860 | loss(rot) 2.6325 | loss(pos) 0.0800 | loss(seq) 0.0735 | grad 4.7483 | lr 0.0010 | time_forward 3.6990 | time_backward 5.1090
[2023-09-02 06:02:37,447::train::INFO] [train] Iter 06742 | loss 1.7805 | loss(rot) 1.5714 | loss(pos) 0.1951 | loss(seq) 0.0140 | grad 5.2243 | lr 0.0010 | time_forward 3.5270 | time_backward 4.8130
[2023-09-02 06:02:45,825::train::INFO] [train] Iter 06743 | loss 1.3338 | loss(rot) 0.5538 | loss(pos) 0.5343 | loss(seq) 0.2458 | grad 4.5304 | lr 0.0010 | time_forward 3.5850 | time_backward 4.7900
[2023-09-02 06:02:49,561::train::INFO] [train] Iter 06744 | loss 1.8511 | loss(rot) 0.6726 | loss(pos) 0.5443 | loss(seq) 0.6342 | grad 3.6630 | lr 0.0010 | time_forward 1.6420 | time_backward 2.0900
[2023-09-02 06:02:52,304::train::INFO] [train] Iter 06745 | loss 1.3170 | loss(rot) 0.6331 | loss(pos) 0.2355 | loss(seq) 0.4484 | grad 4.6938 | lr 0.0010 | time_forward 1.3310 | time_backward 1.3930
[2023-09-02 06:03:01,024::train::INFO] [train] Iter 06746 | loss 2.4487 | loss(rot) 2.2183 | loss(pos) 0.1479 | loss(seq) 0.0826 | grad 3.3354 | lr 0.0010 | time_forward 3.7350 | time_backward 4.9820
[2023-09-02 06:03:09,496::train::INFO] [train] Iter 06747 | loss 1.5872 | loss(rot) 1.4199 | loss(pos) 0.1586 | loss(seq) 0.0087 | grad 4.0506 | lr 0.0010 | time_forward 3.5610 | time_backward 4.9050
[2023-09-02 06:03:12,187::train::INFO] [train] Iter 06748 | loss 2.4631 | loss(rot) 2.2685 | loss(pos) 0.0768 | loss(seq) 0.1178 | grad 3.5091 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4230
[2023-09-02 06:03:21,108::train::INFO] [train] Iter 06749 | loss 1.9704 | loss(rot) 1.2717 | loss(pos) 0.2236 | loss(seq) 0.4751 | grad 4.6335 | lr 0.0010 | time_forward 3.8940 | time_backward 5.0230
[2023-09-02 06:03:29,652::train::INFO] [train] Iter 06750 | loss 1.8911 | loss(rot) 1.6143 | loss(pos) 0.1395 | loss(seq) 0.1373 | grad 6.5238 | lr 0.0010 | time_forward 3.6010 | time_backward 4.9390
[2023-09-02 06:03:38,641::train::INFO] [train] Iter 06751 | loss 0.7034 | loss(rot) 0.3690 | loss(pos) 0.2238 | loss(seq) 0.1106 | grad 2.5284 | lr 0.0010 | time_forward 3.8260 | time_backward 5.1590
[2023-09-02 06:03:47,120::train::INFO] [train] Iter 06752 | loss 1.1532 | loss(rot) 0.4974 | loss(pos) 0.3280 | loss(seq) 0.3278 | grad 2.2771 | lr 0.0010 | time_forward 3.5930 | time_backward 4.8830
[2023-09-02 06:03:55,130::train::INFO] [train] Iter 06753 | loss 1.4253 | loss(rot) 0.1406 | loss(pos) 1.2752 | loss(seq) 0.0095 | grad 5.2833 | lr 0.0010 | time_forward 3.3820 | time_backward 4.6250
[2023-09-02 06:04:04,404::train::INFO] [train] Iter 06754 | loss 1.7730 | loss(rot) 1.3083 | loss(pos) 0.0491 | loss(seq) 0.4156 | grad 4.4589 | lr 0.0010 | time_forward 3.9580 | time_backward 5.3110
[2023-09-02 06:04:13,657::train::INFO] [train] Iter 06755 | loss 2.2430 | loss(rot) 1.2013 | loss(pos) 0.3690 | loss(seq) 0.6727 | grad 4.8727 | lr 0.0010 | time_forward 3.8360 | time_backward 5.4140
[2023-09-02 06:04:23,679::train::INFO] [train] Iter 06756 | loss 2.9192 | loss(rot) 2.2126 | loss(pos) 0.2247 | loss(seq) 0.4820 | grad 3.9428 | lr 0.0010 | time_forward 4.0970 | time_backward 5.9220
[2023-09-02 06:04:31,986::train::INFO] [train] Iter 06757 | loss 2.0895 | loss(rot) 1.4300 | loss(pos) 0.1425 | loss(seq) 0.5169 | grad 4.8620 | lr 0.0010 | time_forward 3.5580 | time_backward 4.7440
[2023-09-02 06:04:34,656::train::INFO] [train] Iter 06758 | loss 1.4936 | loss(rot) 0.7820 | loss(pos) 0.2630 | loss(seq) 0.4487 | grad 4.4808 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4170
[2023-09-02 06:04:43,214::train::INFO] [train] Iter 06759 | loss 1.3857 | loss(rot) 1.2532 | loss(pos) 0.1280 | loss(seq) 0.0045 | grad 5.7345 | lr 0.0010 | time_forward 3.6130 | time_backward 4.9170
[2023-09-02 06:04:51,977::train::INFO] [train] Iter 06760 | loss 1.4548 | loss(rot) 0.4145 | loss(pos) 0.9972 | loss(seq) 0.0432 | grad 5.4519 | lr 0.0010 | time_forward 3.6150 | time_backward 5.1450
[2023-09-02 06:04:54,671::train::INFO] [train] Iter 06761 | loss 0.9047 | loss(rot) 0.2789 | loss(pos) 0.3707 | loss(seq) 0.2552 | grad 4.1058 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4010
[2023-09-02 06:04:57,523::train::INFO] [train] Iter 06762 | loss 1.3598 | loss(rot) 0.8003 | loss(pos) 0.1719 | loss(seq) 0.3876 | grad 2.8661 | lr 0.0010 | time_forward 1.3500 | time_backward 1.4620
[2023-09-02 06:05:07,519::train::INFO] [train] Iter 06763 | loss 2.4314 | loss(rot) 2.1528 | loss(pos) 0.2325 | loss(seq) 0.0461 | grad 3.8147 | lr 0.0010 | time_forward 4.2660 | time_backward 5.7010
[2023-09-02 06:05:14,335::train::INFO] [train] Iter 06764 | loss 1.6631 | loss(rot) 1.4019 | loss(pos) 0.2377 | loss(seq) 0.0235 | grad 4.6040 | lr 0.0010 | time_forward 2.8420 | time_backward 3.9710
[2023-09-02 06:05:24,856::train::INFO] [train] Iter 06765 | loss 0.8593 | loss(rot) 0.3485 | loss(pos) 0.4228 | loss(seq) 0.0879 | grad 4.3025 | lr 0.0010 | time_forward 4.3680 | time_backward 6.1490
[2023-09-02 06:05:35,015::train::INFO] [train] Iter 06766 | loss 2.2432 | loss(rot) 1.9142 | loss(pos) 0.1396 | loss(seq) 0.1895 | grad 3.1465 | lr 0.0010 | time_forward 4.1300 | time_backward 6.0250
[2023-09-02 06:05:38,490::train::INFO] [train] Iter 06767 | loss 1.8560 | loss(rot) 0.4916 | loss(pos) 0.5919 | loss(seq) 0.7725 | grad 4.3277 | lr 0.0010 | time_forward 1.5020 | time_backward 1.9690
[2023-09-02 06:05:40,826::train::INFO] [train] Iter 06768 | loss 2.6256 | loss(rot) 1.5483 | loss(pos) 0.4901 | loss(seq) 0.5872 | grad 5.0380 | lr 0.0010 | time_forward 1.1330 | time_backward 1.2000
[2023-09-02 06:05:49,864::train::INFO] [train] Iter 06769 | loss 2.7139 | loss(rot) 2.5798 | loss(pos) 0.0985 | loss(seq) 0.0355 | grad 4.9268 | lr 0.0010 | time_forward 3.8440 | time_backward 5.1900
[2023-09-02 06:05:59,237::train::INFO] [train] Iter 06770 | loss 1.0157 | loss(rot) 0.1238 | loss(pos) 0.8730 | loss(seq) 0.0189 | grad 4.7943 | lr 0.0010 | time_forward 3.9680 | time_backward 5.4020
[2023-09-02 06:06:07,203::train::INFO] [train] Iter 06771 | loss 2.6048 | loss(rot) 1.8165 | loss(pos) 0.3109 | loss(seq) 0.4774 | grad 5.1353 | lr 0.0010 | time_forward 3.3370 | time_backward 4.6250
[2023-09-02 06:06:09,909::train::INFO] [train] Iter 06772 | loss 1.4144 | loss(rot) 0.1400 | loss(pos) 1.0050 | loss(seq) 0.2695 | grad 5.9662 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4430
[2023-09-02 06:06:19,953::train::INFO] [train] Iter 06773 | loss 2.5211 | loss(rot) 1.9357 | loss(pos) 0.3103 | loss(seq) 0.2751 | grad 6.8714 | lr 0.0010 | time_forward 4.2280 | time_backward 5.8130
[2023-09-02 06:06:22,173::train::INFO] [train] Iter 06774 | loss 1.7159 | loss(rot) 1.6129 | loss(pos) 0.0710 | loss(seq) 0.0320 | grad 5.3158 | lr 0.0010 | time_forward 1.0400 | time_backward 1.1760
[2023-09-02 06:06:25,200::train::INFO] [train] Iter 06775 | loss 1.7874 | loss(rot) 0.8360 | loss(pos) 0.6488 | loss(seq) 0.3025 | grad 3.4789 | lr 0.0010 | time_forward 1.5620 | time_backward 1.4610
[2023-09-02 06:06:36,164::train::INFO] [train] Iter 06776 | loss 2.2460 | loss(rot) 1.9291 | loss(pos) 0.2134 | loss(seq) 0.1035 | grad 4.2341 | lr 0.0010 | time_forward 5.1650 | time_backward 5.7720
[2023-09-02 06:06:43,656::train::INFO] [train] Iter 06777 | loss 1.9386 | loss(rot) 0.8263 | loss(pos) 0.5389 | loss(seq) 0.5734 | grad 5.3239 | lr 0.0010 | time_forward 3.2370 | time_backward 4.2520
[2023-09-02 06:06:50,436::train::INFO] [train] Iter 06778 | loss 2.2435 | loss(rot) 1.9592 | loss(pos) 0.1169 | loss(seq) 0.1674 | grad 3.3180 | lr 0.0010 | time_forward 2.9350 | time_backward 3.8410
[2023-09-02 06:06:59,224::train::INFO] [train] Iter 06779 | loss 2.1187 | loss(rot) 1.5488 | loss(pos) 0.2381 | loss(seq) 0.3318 | grad 5.8467 | lr 0.0010 | time_forward 3.7510 | time_backward 5.0340
[2023-09-02 06:07:07,864::train::INFO] [train] Iter 06780 | loss 3.0111 | loss(rot) 2.1022 | loss(pos) 0.4902 | loss(seq) 0.4187 | grad 4.5122 | lr 0.0010 | time_forward 3.7280 | time_backward 4.9080
[2023-09-02 06:07:12,557::train::INFO] [train] Iter 06781 | loss 1.4536 | loss(rot) 0.3524 | loss(pos) 1.0321 | loss(seq) 0.0691 | grad 5.0224 | lr 0.0010 | time_forward 2.1030 | time_backward 2.5870
[2023-09-02 06:07:20,638::train::INFO] [train] Iter 06782 | loss 2.8262 | loss(rot) 2.2912 | loss(pos) 0.1700 | loss(seq) 0.3649 | grad 4.6636 | lr 0.0010 | time_forward 3.2770 | time_backward 4.8010
[2023-09-02 06:07:30,828::train::INFO] [train] Iter 06783 | loss 2.7415 | loss(rot) 2.0672 | loss(pos) 0.2503 | loss(seq) 0.4240 | grad 4.7809 | lr 0.0010 | time_forward 4.0930 | time_backward 6.0220
[2023-09-02 06:07:40,453::train::INFO] [train] Iter 06784 | loss 2.1763 | loss(rot) 1.7432 | loss(pos) 0.2208 | loss(seq) 0.2123 | grad 3.3701 | lr 0.0010 | time_forward 3.9780 | time_backward 5.6440
[2023-09-02 06:07:49,522::train::INFO] [train] Iter 06785 | loss 1.7497 | loss(rot) 0.0659 | loss(pos) 1.4384 | loss(seq) 0.2454 | grad 5.2797 | lr 0.0010 | time_forward 3.8630 | time_backward 5.2020
[2023-09-02 06:07:58,550::train::INFO] [train] Iter 06786 | loss 1.6527 | loss(rot) 0.6416 | loss(pos) 0.2979 | loss(seq) 0.7131 | grad 3.3023 | lr 0.0010 | time_forward 3.8010 | time_backward 5.2250
[2023-09-02 06:08:08,338::train::INFO] [train] Iter 06787 | loss 2.7268 | loss(rot) 2.4873 | loss(pos) 0.1488 | loss(seq) 0.0908 | grad 3.4857 | lr 0.0010 | time_forward 4.1650 | time_backward 5.6190
[2023-09-02 06:08:17,022::train::INFO] [train] Iter 06788 | loss 2.3333 | loss(rot) 2.1825 | loss(pos) 0.1507 | loss(seq) 0.0001 | grad 4.4078 | lr 0.0010 | time_forward 3.6630 | time_backward 5.0170