text
stringlengths
56
1.16k
[2023-09-02 06:08:19,234::train::INFO] [train] Iter 06789 | loss 1.8841 | loss(rot) 0.1922 | loss(pos) 1.6878 | loss(seq) 0.0041 | grad 6.5804 | lr 0.0010 | time_forward 1.0120 | time_backward 1.1970
[2023-09-02 06:08:29,680::train::INFO] [train] Iter 06790 | loss 2.1996 | loss(rot) 1.8339 | loss(pos) 0.1932 | loss(seq) 0.1725 | grad 4.3999 | lr 0.0010 | time_forward 4.5810 | time_backward 5.8610
[2023-09-02 06:08:31,954::train::INFO] [train] Iter 06791 | loss 1.7531 | loss(rot) 0.9874 | loss(pos) 0.2937 | loss(seq) 0.4721 | grad 3.5168 | lr 0.0010 | time_forward 1.0730 | time_backward 1.1980
[2023-09-02 06:08:41,137::train::INFO] [train] Iter 06792 | loss 2.0886 | loss(rot) 1.3946 | loss(pos) 0.1759 | loss(seq) 0.5180 | grad 5.9246 | lr 0.0010 | time_forward 3.8250 | time_backward 5.3550
[2023-09-02 06:08:49,543::train::INFO] [train] Iter 06793 | loss 2.2984 | loss(rot) 1.7218 | loss(pos) 0.2136 | loss(seq) 0.3630 | grad 3.7749 | lr 0.0010 | time_forward 3.5270 | time_backward 4.8730
[2023-09-02 06:08:52,211::train::INFO] [train] Iter 06794 | loss 2.1862 | loss(rot) 1.5711 | loss(pos) 0.2023 | loss(seq) 0.4128 | grad 5.5887 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4390
[2023-09-02 06:08:55,015::train::INFO] [train] Iter 06795 | loss 3.3271 | loss(rot) 3.1596 | loss(pos) 0.1320 | loss(seq) 0.0355 | grad 3.9983 | lr 0.0010 | time_forward 1.3420 | time_backward 1.4590
[2023-09-02 06:08:57,757::train::INFO] [train] Iter 06796 | loss 1.4235 | loss(rot) 0.8977 | loss(pos) 0.0719 | loss(seq) 0.4540 | grad 4.3141 | lr 0.0010 | time_forward 1.3060 | time_backward 1.4330
[2023-09-02 06:09:07,863::train::INFO] [train] Iter 06797 | loss 2.5093 | loss(rot) 1.8424 | loss(pos) 0.2360 | loss(seq) 0.4309 | grad 3.7184 | lr 0.0010 | time_forward 4.1230 | time_backward 5.9800
[2023-09-02 06:09:15,258::train::INFO] [train] Iter 06798 | loss 0.8704 | loss(rot) 0.3141 | loss(pos) 0.3418 | loss(seq) 0.2145 | grad 5.2896 | lr 0.0010 | time_forward 3.1670 | time_backward 4.2240
[2023-09-02 06:09:17,990::train::INFO] [train] Iter 06799 | loss 3.0165 | loss(rot) 2.8987 | loss(pos) 0.1171 | loss(seq) 0.0006 | grad 3.8214 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4530
[2023-09-02 06:09:20,301::train::INFO] [train] Iter 06800 | loss 0.7274 | loss(rot) 0.0355 | loss(pos) 0.4380 | loss(seq) 0.2539 | grad 3.8607 | lr 0.0010 | time_forward 1.0910 | time_backward 1.2160
[2023-09-02 06:09:29,474::train::INFO] [train] Iter 06801 | loss 1.3225 | loss(rot) 0.1389 | loss(pos) 1.1725 | loss(seq) 0.0111 | grad 4.8332 | lr 0.0010 | time_forward 3.8780 | time_backward 5.2840
[2023-09-02 06:09:40,648::train::INFO] [train] Iter 06802 | loss 2.7692 | loss(rot) 2.5719 | loss(pos) 0.1728 | loss(seq) 0.0246 | grad 4.1733 | lr 0.0010 | time_forward 4.5250 | time_backward 6.6450
[2023-09-02 06:09:43,155::train::INFO] [train] Iter 06803 | loss 1.9115 | loss(rot) 1.7727 | loss(pos) 0.1276 | loss(seq) 0.0112 | grad 7.7787 | lr 0.0010 | time_forward 1.2310 | time_backward 1.2720
[2023-09-02 06:09:51,662::train::INFO] [train] Iter 06804 | loss 1.9070 | loss(rot) 1.7176 | loss(pos) 0.0982 | loss(seq) 0.0912 | grad 3.8655 | lr 0.0010 | time_forward 3.6350 | time_backward 4.8550
[2023-09-02 06:10:01,432::train::INFO] [train] Iter 06805 | loss 2.3066 | loss(rot) 1.9096 | loss(pos) 0.1951 | loss(seq) 0.2019 | grad 4.1812 | lr 0.0010 | time_forward 4.0400 | time_backward 5.7260
[2023-09-02 06:10:09,605::train::INFO] [train] Iter 06806 | loss 2.1508 | loss(rot) 1.0246 | loss(pos) 0.4057 | loss(seq) 0.7204 | grad 5.4667 | lr 0.0010 | time_forward 3.5010 | time_backward 4.6680
[2023-09-02 06:10:19,605::train::INFO] [train] Iter 06807 | loss 1.9144 | loss(rot) 0.9997 | loss(pos) 0.3546 | loss(seq) 0.5602 | grad 3.4593 | lr 0.0010 | time_forward 4.0130 | time_backward 5.9830
[2023-09-02 06:10:27,984::train::INFO] [train] Iter 06808 | loss 0.6394 | loss(rot) 0.2726 | loss(pos) 0.2657 | loss(seq) 0.1011 | grad 3.6474 | lr 0.0010 | time_forward 3.5310 | time_backward 4.8450
[2023-09-02 06:10:36,573::train::INFO] [train] Iter 06809 | loss 1.2209 | loss(rot) 0.3774 | loss(pos) 0.5818 | loss(seq) 0.2617 | grad 3.8761 | lr 0.0010 | time_forward 3.6480 | time_backward 4.9390
[2023-09-02 06:10:45,734::train::INFO] [train] Iter 06810 | loss 1.9669 | loss(rot) 1.7880 | loss(pos) 0.1447 | loss(seq) 0.0341 | grad 4.0293 | lr 0.0010 | time_forward 3.8020 | time_backward 5.3560
[2023-09-02 06:10:53,966::train::INFO] [train] Iter 06811 | loss 2.4338 | loss(rot) 2.2857 | loss(pos) 0.1154 | loss(seq) 0.0327 | grad 4.7977 | lr 0.0010 | time_forward 3.5330 | time_backward 4.6950
[2023-09-02 06:11:03,138::train::INFO] [train] Iter 06812 | loss 1.7543 | loss(rot) 1.6392 | loss(pos) 0.1026 | loss(seq) 0.0125 | grad 5.8393 | lr 0.0010 | time_forward 3.9030 | time_backward 5.2650
[2023-09-02 06:11:13,312::train::INFO] [train] Iter 06813 | loss 1.5242 | loss(rot) 0.7951 | loss(pos) 0.3754 | loss(seq) 0.3537 | grad 3.4352 | lr 0.0010 | time_forward 4.2280 | time_backward 5.9440
[2023-09-02 06:11:22,622::train::INFO] [train] Iter 06814 | loss 1.8167 | loss(rot) 0.0194 | loss(pos) 1.7968 | loss(seq) 0.0004 | grad 4.2435 | lr 0.0010 | time_forward 3.8920 | time_backward 5.4140
[2023-09-02 06:11:31,283::train::INFO] [train] Iter 06815 | loss 1.8994 | loss(rot) 1.3076 | loss(pos) 0.1316 | loss(seq) 0.4602 | grad 3.8674 | lr 0.0010 | time_forward 3.7660 | time_backward 4.8920
[2023-09-02 06:11:40,470::train::INFO] [train] Iter 06816 | loss 0.9159 | loss(rot) 0.3401 | loss(pos) 0.5342 | loss(seq) 0.0415 | grad 4.1782 | lr 0.0010 | time_forward 3.9920 | time_backward 5.1920
[2023-09-02 06:11:48,264::train::INFO] [train] Iter 06817 | loss 1.8353 | loss(rot) 1.6009 | loss(pos) 0.1977 | loss(seq) 0.0367 | grad 4.5078 | lr 0.0010 | time_forward 3.3220 | time_backward 4.4680
[2023-09-02 06:11:56,117::train::INFO] [train] Iter 06818 | loss 1.8501 | loss(rot) 1.1648 | loss(pos) 0.2726 | loss(seq) 0.4127 | grad 4.9660 | lr 0.0010 | time_forward 3.3290 | time_backward 4.5210
[2023-09-02 06:11:58,734::train::INFO] [train] Iter 06819 | loss 1.7542 | loss(rot) 1.3478 | loss(pos) 0.1498 | loss(seq) 0.2566 | grad 5.7311 | lr 0.0010 | time_forward 1.2380 | time_backward 1.3750
[2023-09-02 06:12:07,151::train::INFO] [train] Iter 06820 | loss 1.0895 | loss(rot) 0.5796 | loss(pos) 0.2930 | loss(seq) 0.2169 | grad 4.1613 | lr 0.0010 | time_forward 3.5160 | time_backward 4.8720
[2023-09-02 06:12:09,795::train::INFO] [train] Iter 06821 | loss 1.0120 | loss(rot) 0.0900 | loss(pos) 0.7312 | loss(seq) 0.1907 | grad 4.7038 | lr 0.0010 | time_forward 1.2480 | time_backward 1.3930
[2023-09-02 06:12:17,870::train::INFO] [train] Iter 06822 | loss 2.0530 | loss(rot) 1.9794 | loss(pos) 0.0504 | loss(seq) 0.0233 | grad 4.4200 | lr 0.0010 | time_forward 3.4260 | time_backward 4.6460
[2023-09-02 06:12:28,473::train::INFO] [train] Iter 06823 | loss 1.3546 | loss(rot) 0.6099 | loss(pos) 0.5988 | loss(seq) 0.1459 | grad 2.5108 | lr 0.0010 | time_forward 4.4300 | time_backward 6.1700
[2023-09-02 06:12:37,168::train::INFO] [train] Iter 06824 | loss 0.7547 | loss(rot) 0.1350 | loss(pos) 0.5720 | loss(seq) 0.0477 | grad 6.3420 | lr 0.0010 | time_forward 3.7790 | time_backward 4.9130
[2023-09-02 06:12:47,512::train::INFO] [train] Iter 06825 | loss 2.4080 | loss(rot) 2.1069 | loss(pos) 0.1233 | loss(seq) 0.1778 | grad 3.2099 | lr 0.0010 | time_forward 4.4360 | time_backward 5.9040
[2023-09-02 06:12:55,732::train::INFO] [train] Iter 06826 | loss 2.3149 | loss(rot) 1.5279 | loss(pos) 0.2386 | loss(seq) 0.5485 | grad 3.3538 | lr 0.0010 | time_forward 3.3940 | time_backward 4.8210
[2023-09-02 06:13:04,168::train::INFO] [train] Iter 06827 | loss 1.0464 | loss(rot) 0.3953 | loss(pos) 0.6068 | loss(seq) 0.0444 | grad 4.0599 | lr 0.0010 | time_forward 3.6210 | time_backward 4.8110
[2023-09-02 06:13:14,181::train::INFO] [train] Iter 06828 | loss 2.4407 | loss(rot) 1.5538 | loss(pos) 0.2873 | loss(seq) 0.5997 | grad 3.5826 | lr 0.0010 | time_forward 4.1650 | time_backward 5.8430
[2023-09-02 06:13:24,249::train::INFO] [train] Iter 06829 | loss 1.4655 | loss(rot) 0.3796 | loss(pos) 1.0247 | loss(seq) 0.0612 | grad 4.8277 | lr 0.0010 | time_forward 4.1240 | time_backward 5.9400
[2023-09-02 06:13:31,677::train::INFO] [train] Iter 06830 | loss 0.8452 | loss(rot) 0.1182 | loss(pos) 0.6910 | loss(seq) 0.0359 | grad 4.5910 | lr 0.0010 | time_forward 3.1900 | time_backward 4.2350
[2023-09-02 06:13:34,349::train::INFO] [train] Iter 06831 | loss 2.3331 | loss(rot) 1.4248 | loss(pos) 0.2685 | loss(seq) 0.6398 | grad 3.5874 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4070
[2023-09-02 06:13:37,081::train::INFO] [train] Iter 06832 | loss 1.1527 | loss(rot) 0.3992 | loss(pos) 0.4389 | loss(seq) 0.3145 | grad 6.5220 | lr 0.0010 | time_forward 1.3460 | time_backward 1.3840
[2023-09-02 06:13:46,332::train::INFO] [train] Iter 06833 | loss 1.0535 | loss(rot) 0.1677 | loss(pos) 0.4060 | loss(seq) 0.4798 | grad 4.3473 | lr 0.0010 | time_forward 3.9420 | time_backward 5.3050
[2023-09-02 06:13:56,524::train::INFO] [train] Iter 06834 | loss 2.1923 | loss(rot) 1.0974 | loss(pos) 0.3614 | loss(seq) 0.7335 | grad 3.6629 | lr 0.0010 | time_forward 4.2490 | time_backward 5.9400
[2023-09-02 06:13:59,299::train::INFO] [train] Iter 06835 | loss 1.1319 | loss(rot) 0.0726 | loss(pos) 1.0374 | loss(seq) 0.0220 | grad 7.8962 | lr 0.0010 | time_forward 1.2990 | time_backward 1.4720
[2023-09-02 06:14:08,326::train::INFO] [train] Iter 06836 | loss 0.6810 | loss(rot) 0.1927 | loss(pos) 0.2964 | loss(seq) 0.1919 | grad 3.1251 | lr 0.0010 | time_forward 3.9350 | time_backward 5.0890
[2023-09-02 06:14:11,019::train::INFO] [train] Iter 06837 | loss 2.4417 | loss(rot) 1.8277 | loss(pos) 0.1864 | loss(seq) 0.4276 | grad 3.5880 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4500
[2023-09-02 06:14:18,604::train::INFO] [train] Iter 06838 | loss 0.8853 | loss(rot) 0.1471 | loss(pos) 0.6995 | loss(seq) 0.0387 | grad 4.9436 | lr 0.0010 | time_forward 3.2860 | time_backward 4.2950
[2023-09-02 06:14:26,631::train::INFO] [train] Iter 06839 | loss 2.4957 | loss(rot) 2.0991 | loss(pos) 0.2067 | loss(seq) 0.1900 | grad 8.1507 | lr 0.0010 | time_forward 3.4570 | time_backward 4.5670
[2023-09-02 06:14:28,440::train::INFO] [train] Iter 06840 | loss 3.0237 | loss(rot) 1.8809 | loss(pos) 0.7161 | loss(seq) 0.4266 | grad 7.1462 | lr 0.0010 | time_forward 0.8830 | time_backward 0.9230
[2023-09-02 06:14:31,907::train::INFO] [train] Iter 06841 | loss 1.2752 | loss(rot) 0.3591 | loss(pos) 0.8775 | loss(seq) 0.0387 | grad 3.3777 | lr 0.0010 | time_forward 1.4610 | time_backward 2.0020
[2023-09-02 06:14:41,846::train::INFO] [train] Iter 06842 | loss 1.7451 | loss(rot) 0.0940 | loss(pos) 1.2964 | loss(seq) 0.3547 | grad 6.4833 | lr 0.0010 | time_forward 4.0730 | time_backward 5.8640
[2023-09-02 06:14:51,800::train::INFO] [train] Iter 06843 | loss 1.7130 | loss(rot) 1.1917 | loss(pos) 0.0873 | loss(seq) 0.4340 | grad 4.1961 | lr 0.0010 | time_forward 4.0980 | time_backward 5.8520
[2023-09-02 06:15:01,837::train::INFO] [train] Iter 06844 | loss 2.5280 | loss(rot) 0.0511 | loss(pos) 2.4750 | loss(seq) 0.0019 | grad 7.5025 | lr 0.0010 | time_forward 4.1700 | time_backward 5.8640
[2023-09-02 06:15:07,375::train::INFO] [train] Iter 06845 | loss 1.6850 | loss(rot) 0.8367 | loss(pos) 0.4934 | loss(seq) 0.3549 | grad 3.5846 | lr 0.0010 | time_forward 2.3680 | time_backward 3.1660
[2023-09-02 06:15:10,035::train::INFO] [train] Iter 06846 | loss 1.6727 | loss(rot) 0.1502 | loss(pos) 1.4841 | loss(seq) 0.0384 | grad 10.2168 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4140
[2023-09-02 06:15:19,070::train::INFO] [train] Iter 06847 | loss 1.6477 | loss(rot) 1.3544 | loss(pos) 0.2903 | loss(seq) 0.0031 | grad 5.6250 | lr 0.0010 | time_forward 3.7540 | time_backward 5.2770
[2023-09-02 06:15:29,103::train::INFO] [train] Iter 06848 | loss 2.4381 | loss(rot) 1.6382 | loss(pos) 0.1881 | loss(seq) 0.6118 | grad 5.5041 | lr 0.0010 | time_forward 4.0650 | time_backward 5.9650
[2023-09-02 06:15:38,454::train::INFO] [train] Iter 06849 | loss 1.5708 | loss(rot) 0.6899 | loss(pos) 0.2656 | loss(seq) 0.6154 | grad 2.7225 | lr 0.0010 | time_forward 3.9240 | time_backward 5.4240
[2023-09-02 06:15:48,504::train::INFO] [train] Iter 06850 | loss 2.7187 | loss(rot) 2.3948 | loss(pos) 0.1293 | loss(seq) 0.1945 | grad 3.6812 | lr 0.0010 | time_forward 4.2060 | time_backward 5.8400
[2023-09-02 06:15:57,270::train::INFO] [train] Iter 06851 | loss 2.5301 | loss(rot) 1.8887 | loss(pos) 0.2169 | loss(seq) 0.4244 | grad 3.9644 | lr 0.0010 | time_forward 3.6170 | time_backward 5.1460
[2023-09-02 06:16:00,045::train::INFO] [train] Iter 06852 | loss 2.8760 | loss(rot) 2.5888 | loss(pos) 0.2746 | loss(seq) 0.0126 | grad 4.3876 | lr 0.0010 | time_forward 1.3320 | time_backward 1.4390
[2023-09-02 06:16:09,577::train::INFO] [train] Iter 06853 | loss 1.4594 | loss(rot) 0.2135 | loss(pos) 0.2258 | loss(seq) 1.0201 | grad 2.5486 | lr 0.0010 | time_forward 4.0230 | time_backward 5.5050
[2023-09-02 06:16:19,912::train::INFO] [train] Iter 06854 | loss 2.8481 | loss(rot) 2.6082 | loss(pos) 0.2029 | loss(seq) 0.0369 | grad 3.6578 | lr 0.0010 | time_forward 4.1160 | time_backward 6.2150
[2023-09-02 06:16:22,644::train::INFO] [train] Iter 06855 | loss 1.9340 | loss(rot) 0.9026 | loss(pos) 0.5442 | loss(seq) 0.4873 | grad 3.9471 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4700
[2023-09-02 06:16:31,651::train::INFO] [train] Iter 06856 | loss 2.2766 | loss(rot) 0.0082 | loss(pos) 2.2678 | loss(seq) 0.0006 | grad 7.1126 | lr 0.0010 | time_forward 3.7690 | time_backward 5.2140
[2023-09-02 06:16:40,934::train::INFO] [train] Iter 06857 | loss 1.6903 | loss(rot) 1.5639 | loss(pos) 0.1066 | loss(seq) 0.0198 | grad 5.1686 | lr 0.0010 | time_forward 3.8980 | time_backward 5.3820
[2023-09-02 06:16:50,965::train::INFO] [train] Iter 06858 | loss 1.8822 | loss(rot) 1.1060 | loss(pos) 0.2427 | loss(seq) 0.5335 | grad 3.2922 | lr 0.0010 | time_forward 4.2690 | time_backward 5.7570
[2023-09-02 06:16:59,249::train::INFO] [train] Iter 06859 | loss 1.1829 | loss(rot) 0.4704 | loss(pos) 0.4057 | loss(seq) 0.3069 | grad 3.2810 | lr 0.0010 | time_forward 3.6700 | time_backward 4.6110
[2023-09-02 06:17:01,896::train::INFO] [train] Iter 06860 | loss 1.8076 | loss(rot) 0.9646 | loss(pos) 0.6263 | loss(seq) 0.2167 | grad 4.9116 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4000
[2023-09-02 06:17:09,255::train::INFO] [train] Iter 06861 | loss 1.1526 | loss(rot) 0.2787 | loss(pos) 0.6330 | loss(seq) 0.2409 | grad 3.4223 | lr 0.0010 | time_forward 3.1290 | time_backward 4.2260
[2023-09-02 06:17:11,646::train::INFO] [train] Iter 06862 | loss 1.4412 | loss(rot) 0.8438 | loss(pos) 0.2380 | loss(seq) 0.3595 | grad 7.7467 | lr 0.0010 | time_forward 1.1620 | time_backward 1.2270
[2023-09-02 06:17:14,345::train::INFO] [train] Iter 06863 | loss 0.7484 | loss(rot) 0.0282 | loss(pos) 0.7128 | loss(seq) 0.0073 | grad 4.7100 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4220
[2023-09-02 06:17:24,207::train::INFO] [train] Iter 06864 | loss 2.0714 | loss(rot) 1.3832 | loss(pos) 0.2361 | loss(seq) 0.4521 | grad 4.3200 | lr 0.0010 | time_forward 4.1450 | time_backward 5.7130
[2023-09-02 06:17:34,226::train::INFO] [train] Iter 06865 | loss 0.5812 | loss(rot) 0.1237 | loss(pos) 0.3784 | loss(seq) 0.0790 | grad 3.7180 | lr 0.0010 | time_forward 4.1960 | time_backward 5.8200
[2023-09-02 06:17:36,929::train::INFO] [train] Iter 06866 | loss 2.5658 | loss(rot) 2.2600 | loss(pos) 0.2162 | loss(seq) 0.0896 | grad 4.3632 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4080
[2023-09-02 06:17:46,128::train::INFO] [train] Iter 06867 | loss 2.2531 | loss(rot) 1.5788 | loss(pos) 0.2108 | loss(seq) 0.4635 | grad 4.2559 | lr 0.0010 | time_forward 3.9770 | time_backward 5.2180
[2023-09-02 06:17:48,812::train::INFO] [train] Iter 06868 | loss 1.6312 | loss(rot) 0.8322 | loss(pos) 0.1510 | loss(seq) 0.6480 | grad 3.4002 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4040
[2023-09-02 06:17:57,656::train::INFO] [train] Iter 06869 | loss 1.7288 | loss(rot) 1.0082 | loss(pos) 0.3682 | loss(seq) 0.3523 | grad 4.6367 | lr 0.0010 | time_forward 3.8570 | time_backward 4.9840
[2023-09-02 06:18:06,233::train::INFO] [train] Iter 06870 | loss 2.8591 | loss(rot) 2.0853 | loss(pos) 0.3097 | loss(seq) 0.4641 | grad 4.6825 | lr 0.0010 | time_forward 3.6740 | time_backward 4.9010
[2023-09-02 06:18:15,370::train::INFO] [train] Iter 06871 | loss 1.2796 | loss(rot) 0.4672 | loss(pos) 0.4754 | loss(seq) 0.3370 | grad 4.5640 | lr 0.0010 | time_forward 3.8930 | time_backward 5.2400
[2023-09-02 06:18:18,032::train::INFO] [train] Iter 06872 | loss 1.8413 | loss(rot) 1.4493 | loss(pos) 0.1441 | loss(seq) 0.2479 | grad 5.1362 | lr 0.0010 | time_forward 1.2700 | time_backward 1.3880
[2023-09-02 06:18:20,771::train::INFO] [train] Iter 06873 | loss 3.1003 | loss(rot) 2.6476 | loss(pos) 0.1558 | loss(seq) 0.2969 | grad 3.5059 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4200
[2023-09-02 06:18:30,629::train::INFO] [train] Iter 06874 | loss 1.7594 | loss(rot) 0.4179 | loss(pos) 1.0475 | loss(seq) 0.2940 | grad 4.8483 | lr 0.0010 | time_forward 4.1480 | time_backward 5.7060
[2023-09-02 06:18:38,543::train::INFO] [train] Iter 06875 | loss 1.2125 | loss(rot) 0.5636 | loss(pos) 0.5082 | loss(seq) 0.1407 | grad 4.3969 | lr 0.0010 | time_forward 3.4030 | time_backward 4.5070
[2023-09-02 06:18:40,771::train::INFO] [train] Iter 06876 | loss 2.2925 | loss(rot) 1.9658 | loss(pos) 0.2201 | loss(seq) 0.1066 | grad 4.8015 | lr 0.0010 | time_forward 1.0560 | time_backward 1.1700
[2023-09-02 06:18:49,104::train::INFO] [train] Iter 06877 | loss 1.1938 | loss(rot) 0.3307 | loss(pos) 0.3236 | loss(seq) 0.5395 | grad 5.6698 | lr 0.0010 | time_forward 3.5760 | time_backward 4.7530
[2023-09-02 06:18:51,982::train::INFO] [train] Iter 06878 | loss 1.5489 | loss(rot) 0.9411 | loss(pos) 0.1910 | loss(seq) 0.4167 | grad 4.3589 | lr 0.0010 | time_forward 1.4630 | time_backward 1.4120
[2023-09-02 06:19:01,916::train::INFO] [train] Iter 06879 | loss 1.6745 | loss(rot) 0.9527 | loss(pos) 0.2222 | loss(seq) 0.4995 | grad 4.3804 | lr 0.0010 | time_forward 3.9950 | time_backward 5.9130
[2023-09-02 06:19:11,786::train::INFO] [train] Iter 06880 | loss 1.6375 | loss(rot) 1.4311 | loss(pos) 0.1881 | loss(seq) 0.0183 | grad 5.9119 | lr 0.0010 | time_forward 4.3810 | time_backward 5.4860
[2023-09-02 06:19:20,338::train::INFO] [train] Iter 06881 | loss 1.1226 | loss(rot) 0.5992 | loss(pos) 0.0894 | loss(seq) 0.4340 | grad 3.3787 | lr 0.0010 | time_forward 3.5880 | time_backward 4.9610
[2023-09-02 06:19:28,961::train::INFO] [train] Iter 06882 | loss 1.4772 | loss(rot) 0.9054 | loss(pos) 0.1567 | loss(seq) 0.4151 | grad 4.0434 | lr 0.0010 | time_forward 3.6800 | time_backward 4.9400
[2023-09-02 06:19:39,124::train::INFO] [train] Iter 06883 | loss 2.2577 | loss(rot) 1.5567 | loss(pos) 0.1955 | loss(seq) 0.5055 | grad 3.9620 | lr 0.0010 | time_forward 4.2590 | time_backward 5.9010
[2023-09-02 06:19:49,451::train::INFO] [train] Iter 06884 | loss 2.8639 | loss(rot) 2.3540 | loss(pos) 0.1916 | loss(seq) 0.3183 | grad 3.7888 | lr 0.0010 | time_forward 4.2560 | time_backward 6.0680
[2023-09-02 06:19:59,561::train::INFO] [train] Iter 06885 | loss 2.6636 | loss(rot) 1.7183 | loss(pos) 0.4565 | loss(seq) 0.4889 | grad 4.0846 | lr 0.0010 | time_forward 4.3510 | time_backward 5.7550
[2023-09-02 06:20:08,919::train::INFO] [train] Iter 06886 | loss 1.1892 | loss(rot) 0.0556 | loss(pos) 1.1230 | loss(seq) 0.0106 | grad 4.4454 | lr 0.0010 | time_forward 3.8620 | time_backward 5.4930
[2023-09-02 06:20:11,566::train::INFO] [train] Iter 06887 | loss 2.5419 | loss(rot) 1.5617 | loss(pos) 0.4952 | loss(seq) 0.4850 | grad 5.7159 | lr 0.0010 | time_forward 1.2480 | time_backward 1.3950
[2023-09-02 06:20:14,856::train::INFO] [train] Iter 06888 | loss 1.0442 | loss(rot) 0.3200 | loss(pos) 0.4241 | loss(seq) 0.3001 | grad 2.5383 | lr 0.0010 | time_forward 1.4340 | time_backward 1.8270