text
stringlengths
56
1.16k
[2023-09-02 06:32:59,469::train::INFO] [train] Iter 06989 | loss 1.8204 | loss(rot) 0.8869 | loss(pos) 0.3989 | loss(seq) 0.5346 | grad 5.8344 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4160
[2023-09-02 06:33:09,413::train::INFO] [train] Iter 06990 | loss 1.5253 | loss(rot) 1.3648 | loss(pos) 0.0824 | loss(seq) 0.0781 | grad 5.3295 | lr 0.0010 | time_forward 4.0690 | time_backward 5.8710
[2023-09-02 06:33:19,260::train::INFO] [train] Iter 06991 | loss 1.8983 | loss(rot) 1.7010 | loss(pos) 0.1261 | loss(seq) 0.0712 | grad 3.2338 | lr 0.0010 | time_forward 4.1960 | time_backward 5.6470
[2023-09-02 06:33:27,540::train::INFO] [train] Iter 06992 | loss 2.3385 | loss(rot) 2.1104 | loss(pos) 0.1708 | loss(seq) 0.0573 | grad 6.1952 | lr 0.0010 | time_forward 3.6550 | time_backward 4.6220
[2023-09-02 06:33:37,577::train::INFO] [train] Iter 06993 | loss 3.0905 | loss(rot) 2.8108 | loss(pos) 0.2784 | loss(seq) 0.0012 | grad 3.0030 | lr 0.0010 | time_forward 4.0040 | time_backward 6.0300
[2023-09-02 06:33:46,393::train::INFO] [train] Iter 06994 | loss 2.7182 | loss(rot) 2.5655 | loss(pos) 0.1499 | loss(seq) 0.0028 | grad 3.7359 | lr 0.0010 | time_forward 3.9330 | time_backward 4.8800
[2023-09-02 06:33:56,569::train::INFO] [train] Iter 06995 | loss 1.8049 | loss(rot) 1.3895 | loss(pos) 0.0848 | loss(seq) 0.3306 | grad 3.9803 | lr 0.0010 | time_forward 4.1730 | time_backward 6.0000
[2023-09-02 06:34:06,521::train::INFO] [train] Iter 06996 | loss 0.4647 | loss(rot) 0.2006 | loss(pos) 0.2124 | loss(seq) 0.0516 | grad 3.0819 | lr 0.0010 | time_forward 4.1640 | time_backward 5.7840
[2023-09-02 06:34:15,000::train::INFO] [train] Iter 06997 | loss 1.8638 | loss(rot) 1.7696 | loss(pos) 0.0941 | loss(seq) 0.0001 | grad 4.0806 | lr 0.0010 | time_forward 3.5940 | time_backward 4.8820
[2023-09-02 06:34:25,483::train::INFO] [train] Iter 06998 | loss 0.8290 | loss(rot) 0.1423 | loss(pos) 0.6434 | loss(seq) 0.0434 | grad 3.8943 | lr 0.0010 | time_forward 4.5410 | time_backward 5.9380
[2023-09-02 06:34:35,587::train::INFO] [train] Iter 06999 | loss 2.3232 | loss(rot) 1.9874 | loss(pos) 0.3358 | loss(seq) 0.0000 | grad 4.0019 | lr 0.0010 | time_forward 4.1890 | time_backward 5.9120
[2023-09-02 06:34:39,482::train::INFO] [train] Iter 07000 | loss 1.8807 | loss(rot) 0.9122 | loss(pos) 0.4883 | loss(seq) 0.4802 | grad 4.0762 | lr 0.0010 | time_forward 1.7910 | time_backward 2.1000
[2023-09-02 06:35:16,296::train::INFO] [val] Iter 07000 | loss 2.0949 | loss(rot) 1.5097 | loss(pos) 0.3154 | loss(seq) 0.2698
[2023-09-02 06:35:19,327::train::INFO] [train] Iter 07001 | loss 1.0958 | loss(rot) 0.3573 | loss(pos) 0.6818 | loss(seq) 0.0568 | grad 6.7088 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4430
[2023-09-02 06:35:28,188::train::INFO] [train] Iter 07002 | loss 2.5973 | loss(rot) 2.2792 | loss(pos) 0.2948 | loss(seq) 0.0232 | grad 3.6126 | lr 0.0010 | time_forward 3.7030 | time_backward 5.1320
[2023-09-02 06:35:31,512::train::INFO] [train] Iter 07003 | loss 2.6373 | loss(rot) 2.2873 | loss(pos) 0.1291 | loss(seq) 0.2209 | grad 3.4824 | lr 0.0010 | time_forward 1.4540 | time_backward 1.8670
[2023-09-02 06:35:34,302::train::INFO] [train] Iter 07004 | loss 0.8080 | loss(rot) 0.1256 | loss(pos) 0.6613 | loss(seq) 0.0211 | grad 4.1860 | lr 0.0010 | time_forward 1.3250 | time_backward 1.4610
[2023-09-02 06:35:44,069::train::INFO] [train] Iter 07005 | loss 2.4512 | loss(rot) 0.0058 | loss(pos) 2.4454 | loss(seq) 0.0000 | grad 7.0235 | lr 0.0010 | time_forward 4.4690 | time_backward 5.2940
[2023-09-02 06:35:54,194::train::INFO] [train] Iter 07006 | loss 2.0755 | loss(rot) 1.8680 | loss(pos) 0.2075 | loss(seq) 0.0000 | grad 4.8024 | lr 0.0010 | time_forward 4.0450 | time_backward 6.0760
[2023-09-02 06:35:56,946::train::INFO] [train] Iter 07007 | loss 1.6175 | loss(rot) 0.9999 | loss(pos) 0.3090 | loss(seq) 0.3086 | grad 4.3521 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4410
[2023-09-02 06:36:05,702::train::INFO] [train] Iter 07008 | loss 2.4182 | loss(rot) 2.0089 | loss(pos) 0.0769 | loss(seq) 0.3324 | grad 2.4747 | lr 0.0010 | time_forward 3.6780 | time_backward 5.0740
[2023-09-02 06:36:14,552::train::INFO] [train] Iter 07009 | loss 2.1032 | loss(rot) 1.8326 | loss(pos) 0.2270 | loss(seq) 0.0435 | grad 4.1056 | lr 0.0010 | time_forward 3.7370 | time_backward 5.1090
[2023-09-02 06:36:25,803::train::INFO] [train] Iter 07010 | loss 3.4274 | loss(rot) 0.1019 | loss(pos) 3.3256 | loss(seq) 0.0000 | grad 13.3230 | lr 0.0010 | time_forward 4.3280 | time_backward 6.9190
[2023-09-02 06:36:34,003::train::INFO] [train] Iter 07011 | loss 1.8930 | loss(rot) 1.0870 | loss(pos) 0.3490 | loss(seq) 0.4569 | grad 3.4483 | lr 0.0010 | time_forward 3.5120 | time_backward 4.6860
[2023-09-02 06:36:43,970::train::INFO] [train] Iter 07012 | loss 1.0739 | loss(rot) 0.4504 | loss(pos) 0.0989 | loss(seq) 0.5247 | grad 2.9120 | lr 0.0010 | time_forward 4.1370 | time_backward 5.8260
[2023-09-02 06:36:51,031::train::INFO] [train] Iter 07013 | loss 2.2679 | loss(rot) 1.6676 | loss(pos) 0.1124 | loss(seq) 0.4879 | grad 5.4600 | lr 0.0010 | time_forward 2.9920 | time_backward 4.0650
[2023-09-02 06:36:53,710::train::INFO] [train] Iter 07014 | loss 2.3265 | loss(rot) 2.0575 | loss(pos) 0.1523 | loss(seq) 0.1167 | grad 2.9521 | lr 0.0010 | time_forward 1.2900 | time_backward 1.3850
[2023-09-02 06:37:02,894::train::INFO] [train] Iter 07015 | loss 2.4843 | loss(rot) 1.8987 | loss(pos) 0.2250 | loss(seq) 0.3606 | grad 6.6526 | lr 0.0010 | time_forward 3.9380 | time_backward 5.2440
[2023-09-02 06:37:12,819::train::INFO] [train] Iter 07016 | loss 2.4255 | loss(rot) 2.2590 | loss(pos) 0.1506 | loss(seq) 0.0159 | grad 3.0421 | lr 0.0010 | time_forward 4.0110 | time_backward 5.9110
[2023-09-02 06:37:22,445::train::INFO] [train] Iter 07017 | loss 2.2842 | loss(rot) 1.7078 | loss(pos) 0.1673 | loss(seq) 0.4090 | grad 4.4397 | lr 0.0010 | time_forward 3.9110 | time_backward 5.7120
[2023-09-02 06:37:31,537::train::INFO] [train] Iter 07018 | loss 2.3337 | loss(rot) 1.7574 | loss(pos) 0.1163 | loss(seq) 0.4600 | grad 5.7947 | lr 0.0010 | time_forward 3.6730 | time_backward 5.3980
[2023-09-02 06:37:34,367::train::INFO] [train] Iter 07019 | loss 1.9641 | loss(rot) 1.0535 | loss(pos) 0.3766 | loss(seq) 0.5340 | grad 3.8972 | lr 0.0010 | time_forward 1.2850 | time_backward 1.5420
[2023-09-02 06:37:37,191::train::INFO] [train] Iter 07020 | loss 1.1462 | loss(rot) 0.3160 | loss(pos) 0.2411 | loss(seq) 0.5891 | grad 4.5326 | lr 0.0010 | time_forward 1.3360 | time_backward 1.4670
[2023-09-02 06:37:47,715::train::INFO] [train] Iter 07021 | loss 1.3974 | loss(rot) 0.7845 | loss(pos) 0.2051 | loss(seq) 0.4078 | grad 4.4322 | lr 0.0010 | time_forward 4.3430 | time_backward 6.1460
[2023-09-02 06:37:57,159::train::INFO] [train] Iter 07022 | loss 1.4978 | loss(rot) 0.9082 | loss(pos) 0.0908 | loss(seq) 0.4989 | grad 4.0475 | lr 0.0010 | time_forward 3.8820 | time_backward 5.5580
[2023-09-02 06:38:05,523::train::INFO] [train] Iter 07023 | loss 0.8848 | loss(rot) 0.1493 | loss(pos) 0.6865 | loss(seq) 0.0490 | grad 4.5883 | lr 0.0010 | time_forward 3.5620 | time_backward 4.7980
[2023-09-02 06:38:08,325::train::INFO] [train] Iter 07024 | loss 2.6720 | loss(rot) 2.4087 | loss(pos) 0.1792 | loss(seq) 0.0841 | grad 4.2475 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4590
[2023-09-02 06:38:18,403::train::INFO] [train] Iter 07025 | loss 0.8521 | loss(rot) 0.2922 | loss(pos) 0.4613 | loss(seq) 0.0985 | grad 3.3980 | lr 0.0010 | time_forward 4.2270 | time_backward 5.8460
[2023-09-02 06:38:27,589::train::INFO] [train] Iter 07026 | loss 2.2452 | loss(rot) 0.0265 | loss(pos) 2.2182 | loss(seq) 0.0004 | grad 6.3269 | lr 0.0010 | time_forward 3.8600 | time_backward 5.3220
[2023-09-02 06:38:35,009::train::INFO] [train] Iter 07027 | loss 1.6349 | loss(rot) 0.8531 | loss(pos) 0.3149 | loss(seq) 0.4668 | grad 3.7029 | lr 0.0010 | time_forward 3.1640 | time_backward 4.2530
[2023-09-02 06:38:43,206::train::INFO] [train] Iter 07028 | loss 2.5093 | loss(rot) 1.9911 | loss(pos) 0.1446 | loss(seq) 0.3735 | grad 4.3360 | lr 0.0010 | time_forward 3.4340 | time_backward 4.7600
[2023-09-02 06:38:52,940::train::INFO] [train] Iter 07029 | loss 2.6062 | loss(rot) 2.2554 | loss(pos) 0.1559 | loss(seq) 0.1950 | grad 4.7532 | lr 0.0010 | time_forward 3.9360 | time_backward 5.7960
[2023-09-02 06:38:55,727::train::INFO] [train] Iter 07030 | loss 1.1318 | loss(rot) 0.1972 | loss(pos) 0.3555 | loss(seq) 0.5791 | grad 4.7249 | lr 0.0010 | time_forward 1.3300 | time_backward 1.4530
[2023-09-02 06:39:04,860::train::INFO] [train] Iter 07031 | loss 1.6623 | loss(rot) 0.9663 | loss(pos) 0.3462 | loss(seq) 0.3498 | grad 3.6061 | lr 0.0010 | time_forward 3.9140 | time_backward 5.2160
[2023-09-02 06:39:07,804::train::INFO] [train] Iter 07032 | loss 1.5588 | loss(rot) 1.2348 | loss(pos) 0.1589 | loss(seq) 0.1651 | grad 5.4108 | lr 0.0010 | time_forward 1.4960 | time_backward 1.4450
[2023-09-02 06:39:18,282::train::INFO] [train] Iter 07033 | loss 1.5693 | loss(rot) 0.4843 | loss(pos) 0.6190 | loss(seq) 0.4660 | grad 3.9160 | lr 0.0010 | time_forward 4.3590 | time_backward 6.1150
[2023-09-02 06:39:27,517::train::INFO] [train] Iter 07034 | loss 2.4080 | loss(rot) 2.1916 | loss(pos) 0.2045 | loss(seq) 0.0118 | grad 5.6090 | lr 0.0010 | time_forward 3.9550 | time_backward 5.2780
[2023-09-02 06:39:36,191::train::INFO] [train] Iter 07035 | loss 1.4247 | loss(rot) 0.6778 | loss(pos) 0.4228 | loss(seq) 0.3240 | grad 2.6529 | lr 0.0010 | time_forward 3.6730 | time_backward 4.9970
[2023-09-02 06:39:38,915::train::INFO] [train] Iter 07036 | loss 0.6257 | loss(rot) 0.2306 | loss(pos) 0.2518 | loss(seq) 0.1433 | grad 2.6260 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4710
[2023-09-02 06:39:47,323::train::INFO] [train] Iter 07037 | loss 1.5167 | loss(rot) 0.8144 | loss(pos) 0.3009 | loss(seq) 0.4014 | grad 3.5454 | lr 0.0010 | time_forward 3.5190 | time_backward 4.8860
[2023-09-02 06:39:55,739::train::INFO] [train] Iter 07038 | loss 1.8384 | loss(rot) 1.4474 | loss(pos) 0.1398 | loss(seq) 0.2511 | grad 4.5136 | lr 0.0010 | time_forward 3.5710 | time_backward 4.8420
[2023-09-02 06:39:58,483::train::INFO] [train] Iter 07039 | loss 1.3372 | loss(rot) 1.2281 | loss(pos) 0.1027 | loss(seq) 0.0065 | grad 7.6963 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4550
[2023-09-02 06:40:01,041::train::INFO] [train] Iter 07040 | loss 0.8014 | loss(rot) 0.3501 | loss(pos) 0.1858 | loss(seq) 0.2654 | grad 2.8287 | lr 0.0010 | time_forward 1.2420 | time_backward 1.3120
[2023-09-02 06:40:03,835::train::INFO] [train] Iter 07041 | loss 2.3562 | loss(rot) 1.9796 | loss(pos) 0.2141 | loss(seq) 0.1625 | grad 4.4147 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4930
[2023-09-02 06:40:06,624::train::INFO] [train] Iter 07042 | loss 1.4071 | loss(rot) 0.8163 | loss(pos) 0.0873 | loss(seq) 0.5035 | grad 4.6501 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4900
[2023-09-02 06:40:09,474::train::INFO] [train] Iter 07043 | loss 2.0633 | loss(rot) 1.5051 | loss(pos) 0.0900 | loss(seq) 0.4682 | grad 4.4674 | lr 0.0010 | time_forward 1.3450 | time_backward 1.5010
[2023-09-02 06:40:17,772::train::INFO] [train] Iter 07044 | loss 1.6008 | loss(rot) 0.9342 | loss(pos) 0.1594 | loss(seq) 0.5072 | grad 4.1552 | lr 0.0010 | time_forward 3.4410 | time_backward 4.8540
[2023-09-02 06:40:20,578::train::INFO] [train] Iter 07045 | loss 2.1120 | loss(rot) 1.9596 | loss(pos) 0.1105 | loss(seq) 0.0419 | grad 4.0602 | lr 0.0010 | time_forward 1.2960 | time_backward 1.5070
[2023-09-02 06:40:30,064::train::INFO] [train] Iter 07046 | loss 2.6732 | loss(rot) 2.2143 | loss(pos) 0.1536 | loss(seq) 0.3054 | grad 4.9585 | lr 0.0010 | time_forward 4.2450 | time_backward 5.2370
[2023-09-02 06:40:39,115::train::INFO] [train] Iter 07047 | loss 2.4075 | loss(rot) 2.1546 | loss(pos) 0.1292 | loss(seq) 0.1237 | grad 4.7932 | lr 0.0010 | time_forward 3.8330 | time_backward 5.2150
[2023-09-02 06:40:49,115::train::INFO] [train] Iter 07048 | loss 2.8050 | loss(rot) 0.0646 | loss(pos) 2.7404 | loss(seq) 0.0000 | grad 4.8460 | lr 0.0010 | time_forward 4.0460 | time_backward 5.9510
[2023-09-02 06:40:57,819::train::INFO] [train] Iter 07049 | loss 1.8599 | loss(rot) 0.5478 | loss(pos) 0.5092 | loss(seq) 0.8028 | grad 5.4555 | lr 0.0010 | time_forward 3.6440 | time_backward 5.0570
[2023-09-02 06:41:07,891::train::INFO] [train] Iter 07050 | loss 1.7290 | loss(rot) 1.4029 | loss(pos) 0.0786 | loss(seq) 0.2475 | grad 3.0840 | lr 0.0010 | time_forward 4.0370 | time_backward 6.0320
[2023-09-02 06:41:12,325::train::INFO] [train] Iter 07051 | loss 2.2268 | loss(rot) 1.6992 | loss(pos) 0.1229 | loss(seq) 0.4047 | grad 5.1852 | lr 0.0010 | time_forward 1.9740 | time_backward 2.4570
[2023-09-02 06:41:22,187::train::INFO] [train] Iter 07052 | loss 1.8552 | loss(rot) 1.7859 | loss(pos) 0.0681 | loss(seq) 0.0012 | grad 3.9845 | lr 0.0010 | time_forward 3.9350 | time_backward 5.9240
[2023-09-02 06:41:30,226::train::INFO] [train] Iter 07053 | loss 2.0670 | loss(rot) 1.1831 | loss(pos) 0.5445 | loss(seq) 0.3393 | grad 5.3119 | lr 0.0010 | time_forward 3.3890 | time_backward 4.6460
[2023-09-02 06:41:39,896::train::INFO] [train] Iter 07054 | loss 2.8147 | loss(rot) 2.4393 | loss(pos) 0.0952 | loss(seq) 0.2802 | grad 7.2000 | lr 0.0010 | time_forward 3.8610 | time_backward 5.8060
[2023-09-02 06:41:49,972::train::INFO] [train] Iter 07055 | loss 2.3644 | loss(rot) 2.1501 | loss(pos) 0.1978 | loss(seq) 0.0165 | grad 3.8426 | lr 0.0010 | time_forward 4.2740 | time_backward 5.7580
[2023-09-02 06:41:58,282::train::INFO] [train] Iter 07056 | loss 1.1176 | loss(rot) 0.5367 | loss(pos) 0.4382 | loss(seq) 0.1427 | grad 3.2788 | lr 0.0010 | time_forward 3.6420 | time_backward 4.6650
[2023-09-02 06:42:06,566::train::INFO] [train] Iter 07057 | loss 2.6836 | loss(rot) 2.5416 | loss(pos) 0.1408 | loss(seq) 0.0012 | grad 11.2030 | lr 0.0010 | time_forward 3.4940 | time_backward 4.7850
[2023-09-02 06:42:14,974::train::INFO] [train] Iter 07058 | loss 0.9870 | loss(rot) 0.4240 | loss(pos) 0.1256 | loss(seq) 0.4375 | grad 3.5796 | lr 0.0010 | time_forward 3.5950 | time_backward 4.8110
[2023-09-02 06:42:24,820::train::INFO] [train] Iter 07059 | loss 0.7560 | loss(rot) 0.3924 | loss(pos) 0.2858 | loss(seq) 0.0778 | grad 2.8795 | lr 0.0010 | time_forward 4.0490 | time_backward 5.7940
[2023-09-02 06:42:34,576::train::INFO] [train] Iter 07060 | loss 3.2097 | loss(rot) 2.9923 | loss(pos) 0.1311 | loss(seq) 0.0862 | grad 3.1153 | lr 0.0010 | time_forward 4.0770 | time_backward 5.6590
[2023-09-02 06:42:41,005::train::INFO] [train] Iter 07061 | loss 1.8575 | loss(rot) 0.1404 | loss(pos) 1.7149 | loss(seq) 0.0022 | grad 7.4002 | lr 0.0010 | time_forward 2.7270 | time_backward 3.6990
[2023-09-02 06:42:49,673::train::INFO] [train] Iter 07062 | loss 1.3002 | loss(rot) 0.7380 | loss(pos) 0.3713 | loss(seq) 0.1909 | grad 3.8084 | lr 0.0010 | time_forward 3.6310 | time_backward 5.0340
[2023-09-02 06:42:59,580::train::INFO] [train] Iter 07063 | loss 0.7115 | loss(rot) 0.3705 | loss(pos) 0.2586 | loss(seq) 0.0824 | grad 3.2809 | lr 0.0010 | time_forward 3.9720 | time_backward 5.9320
[2023-09-02 06:43:09,214::train::INFO] [train] Iter 07064 | loss 2.6923 | loss(rot) 2.5232 | loss(pos) 0.1467 | loss(seq) 0.0224 | grad 4.6305 | lr 0.0010 | time_forward 3.9710 | time_backward 5.6460
[2023-09-02 06:43:17,416::train::INFO] [train] Iter 07065 | loss 1.6197 | loss(rot) 1.1786 | loss(pos) 0.2152 | loss(seq) 0.2258 | grad 5.6552 | lr 0.0010 | time_forward 3.4630 | time_backward 4.7350
[2023-09-02 06:43:20,095::train::INFO] [train] Iter 07066 | loss 1.2554 | loss(rot) 0.5938 | loss(pos) 0.3860 | loss(seq) 0.2756 | grad 5.8405 | lr 0.0010 | time_forward 1.2690 | time_backward 1.4060
[2023-09-02 06:43:30,163::train::INFO] [train] Iter 07067 | loss 2.8988 | loss(rot) 2.1651 | loss(pos) 0.2312 | loss(seq) 0.5025 | grad 4.0982 | lr 0.0010 | time_forward 4.1370 | time_backward 5.9280
[2023-09-02 06:43:32,411::train::INFO] [train] Iter 07068 | loss 1.0148 | loss(rot) 0.3590 | loss(pos) 0.5187 | loss(seq) 0.1371 | grad 4.8966 | lr 0.0010 | time_forward 1.0570 | time_backward 1.1880
[2023-09-02 06:43:42,136::train::INFO] [train] Iter 07069 | loss 2.0177 | loss(rot) 1.7056 | loss(pos) 0.2700 | loss(seq) 0.0421 | grad 4.9170 | lr 0.0010 | time_forward 4.0420 | time_backward 5.6800
[2023-09-02 06:43:51,940::train::INFO] [train] Iter 07070 | loss 1.9658 | loss(rot) 1.6566 | loss(pos) 0.2542 | loss(seq) 0.0550 | grad 4.6440 | lr 0.0010 | time_forward 4.1150 | time_backward 5.6850
[2023-09-02 06:43:55,334::train::INFO] [train] Iter 07071 | loss 1.1169 | loss(rot) 0.4450 | loss(pos) 0.5213 | loss(seq) 0.1505 | grad 3.4334 | lr 0.0010 | time_forward 1.4420 | time_backward 1.9490
[2023-09-02 06:43:58,025::train::INFO] [train] Iter 07072 | loss 1.7152 | loss(rot) 1.5476 | loss(pos) 0.1676 | loss(seq) 0.0000 | grad 4.5455 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4030
[2023-09-02 06:44:06,720::train::INFO] [train] Iter 07073 | loss 2.4997 | loss(rot) 2.1632 | loss(pos) 0.2282 | loss(seq) 0.1083 | grad 7.8237 | lr 0.0010 | time_forward 3.6480 | time_backward 5.0430
[2023-09-02 06:44:15,360::train::INFO] [train] Iter 07074 | loss 1.8141 | loss(rot) 0.0154 | loss(pos) 1.7975 | loss(seq) 0.0012 | grad 5.1970 | lr 0.0010 | time_forward 3.6980 | time_backward 4.9390
[2023-09-02 06:44:21,251::train::INFO] [train] Iter 07075 | loss 2.5477 | loss(rot) 2.2851 | loss(pos) 0.2537 | loss(seq) 0.0090 | grad 5.6362 | lr 0.0010 | time_forward 2.5350 | time_backward 3.3520
[2023-09-02 06:44:23,914::train::INFO] [train] Iter 07076 | loss 1.1801 | loss(rot) 0.5595 | loss(pos) 0.2857 | loss(seq) 0.3348 | grad 4.6165 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4180
[2023-09-02 06:44:30,932::train::INFO] [train] Iter 07077 | loss 1.7202 | loss(rot) 1.0277 | loss(pos) 0.1582 | loss(seq) 0.5343 | grad 4.4974 | lr 0.0010 | time_forward 3.0390 | time_backward 3.9770
[2023-09-02 06:44:33,715::train::INFO] [train] Iter 07078 | loss 2.6497 | loss(rot) 2.3191 | loss(pos) 0.1326 | loss(seq) 0.1980 | grad 3.7197 | lr 0.0010 | time_forward 1.3840 | time_backward 1.3960
[2023-09-02 06:44:42,743::train::INFO] [train] Iter 07079 | loss 3.2010 | loss(rot) 2.6400 | loss(pos) 0.2269 | loss(seq) 0.3341 | grad 3.4283 | lr 0.0010 | time_forward 3.8840 | time_backward 5.1400
[2023-09-02 06:44:45,137::train::INFO] [train] Iter 07080 | loss 1.5285 | loss(rot) 1.2237 | loss(pos) 0.1587 | loss(seq) 0.1460 | grad 5.9027 | lr 0.0010 | time_forward 1.1480 | time_backward 1.2420
[2023-09-02 06:44:55,006::train::INFO] [train] Iter 07081 | loss 1.2957 | loss(rot) 0.5520 | loss(pos) 0.2198 | loss(seq) 0.5239 | grad 2.7877 | lr 0.0010 | time_forward 4.0070 | time_backward 5.8440
[2023-09-02 06:45:04,264::train::INFO] [train] Iter 07082 | loss 1.2977 | loss(rot) 0.1532 | loss(pos) 1.1208 | loss(seq) 0.0237 | grad 6.5503 | lr 0.0010 | time_forward 3.9220 | time_backward 5.3330
[2023-09-02 06:45:13,933::train::INFO] [train] Iter 07083 | loss 2.8022 | loss(rot) 2.5597 | loss(pos) 0.2421 | loss(seq) 0.0003 | grad 5.6468 | lr 0.0010 | time_forward 3.9660 | time_backward 5.7000
[2023-09-02 06:45:16,214::train::INFO] [train] Iter 07084 | loss 2.4081 | loss(rot) 2.1698 | loss(pos) 0.2352 | loss(seq) 0.0031 | grad 3.4983 | lr 0.0010 | time_forward 1.0520 | time_backward 1.2250
[2023-09-02 06:45:19,014::train::INFO] [train] Iter 07085 | loss 2.5904 | loss(rot) 2.3833 | loss(pos) 0.1782 | loss(seq) 0.0289 | grad 4.0888 | lr 0.0010 | time_forward 1.3960 | time_backward 1.4000
[2023-09-02 06:45:27,358::train::INFO] [train] Iter 07086 | loss 2.3071 | loss(rot) 2.1670 | loss(pos) 0.1382 | loss(seq) 0.0019 | grad 8.5068 | lr 0.0010 | time_forward 3.5340 | time_backward 4.7660
[2023-09-02 06:45:36,608::train::INFO] [train] Iter 07087 | loss 1.9158 | loss(rot) 0.8408 | loss(pos) 0.3810 | loss(seq) 0.6941 | grad 5.2572 | lr 0.0010 | time_forward 3.8460 | time_backward 5.4000