text
stringlengths 56
1.16k
|
---|
[2023-09-02 06:57:45,330::train::INFO] [train] Iter 07188 | loss 1.3305 | loss(rot) 0.7322 | loss(pos) 0.1134 | loss(seq) 0.4849 | grad 3.8657 | lr 0.0010 | time_forward 3.0870 | time_backward 4.3440 |
[2023-09-02 06:57:54,544::train::INFO] [train] Iter 07189 | loss 1.3931 | loss(rot) 0.9784 | loss(pos) 0.1545 | loss(seq) 0.2601 | grad 7.1011 | lr 0.0010 | time_forward 3.9170 | time_backward 5.2940 |
[2023-09-02 06:58:03,324::train::INFO] [train] Iter 07190 | loss 1.5738 | loss(rot) 0.9195 | loss(pos) 0.2238 | loss(seq) 0.4305 | grad 5.0934 | lr 0.0010 | time_forward 3.7760 | time_backward 5.0010 |
[2023-09-02 06:58:13,363::train::INFO] [train] Iter 07191 | loss 1.0425 | loss(rot) 0.4630 | loss(pos) 0.5033 | loss(seq) 0.0761 | grad 4.1176 | lr 0.0010 | time_forward 4.0810 | time_backward 5.9550 |
[2023-09-02 06:58:22,171::train::INFO] [train] Iter 07192 | loss 2.5593 | loss(rot) 2.1979 | loss(pos) 0.1787 | loss(seq) 0.1826 | grad 6.0233 | lr 0.0010 | time_forward 3.7970 | time_backward 5.0070 |
[2023-09-02 06:58:32,288::train::INFO] [train] Iter 07193 | loss 2.0606 | loss(rot) 1.8325 | loss(pos) 0.1787 | loss(seq) 0.0493 | grad 3.7776 | lr 0.0010 | time_forward 4.0980 | time_backward 6.0150 |
[2023-09-02 06:58:41,008::train::INFO] [train] Iter 07194 | loss 1.2066 | loss(rot) 1.0700 | loss(pos) 0.1308 | loss(seq) 0.0058 | grad 5.1743 | lr 0.0010 | time_forward 3.7230 | time_backward 4.9940 |
[2023-09-02 06:58:43,717::train::INFO] [train] Iter 07195 | loss 1.6956 | loss(rot) 0.8788 | loss(pos) 0.3656 | loss(seq) 0.4512 | grad 3.9619 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4400 |
[2023-09-02 06:58:53,567::train::INFO] [train] Iter 07196 | loss 2.2020 | loss(rot) 1.9358 | loss(pos) 0.1070 | loss(seq) 0.1592 | grad 4.1124 | lr 0.0010 | time_forward 4.0720 | time_backward 5.7750 |
[2023-09-02 06:59:03,761::train::INFO] [train] Iter 07197 | loss 1.2947 | loss(rot) 0.3357 | loss(pos) 0.8634 | loss(seq) 0.0956 | grad 5.8519 | lr 0.0010 | time_forward 4.1690 | time_backward 6.0220 |
[2023-09-02 06:59:12,004::train::INFO] [train] Iter 07198 | loss 0.8625 | loss(rot) 0.2127 | loss(pos) 0.6326 | loss(seq) 0.0172 | grad 3.9559 | lr 0.0010 | time_forward 3.4170 | time_backward 4.8030 |
[2023-09-02 06:59:14,694::train::INFO] [train] Iter 07199 | loss 2.0693 | loss(rot) 1.9354 | loss(pos) 0.1214 | loss(seq) 0.0124 | grad 4.1881 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4310 |
[2023-09-02 06:59:22,733::train::INFO] [train] Iter 07200 | loss 1.4836 | loss(rot) 0.7855 | loss(pos) 0.2309 | loss(seq) 0.4672 | grad 4.3998 | lr 0.0010 | time_forward 3.3330 | time_backward 4.6910 |
[2023-09-02 06:59:31,178::train::INFO] [train] Iter 07201 | loss 1.7944 | loss(rot) 1.6629 | loss(pos) 0.1180 | loss(seq) 0.0134 | grad 7.3988 | lr 0.0010 | time_forward 3.5270 | time_backward 4.9140 |
[2023-09-02 06:59:33,864::train::INFO] [train] Iter 07202 | loss 1.4566 | loss(rot) 0.9757 | loss(pos) 0.1947 | loss(seq) 0.2862 | grad 3.7908 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4500 |
[2023-09-02 06:59:42,444::train::INFO] [train] Iter 07203 | loss 1.5319 | loss(rot) 0.8940 | loss(pos) 0.1416 | loss(seq) 0.4963 | grad 3.6484 | lr 0.0010 | time_forward 3.6490 | time_backward 4.9150 |
[2023-09-02 06:59:50,821::train::INFO] [train] Iter 07204 | loss 2.6825 | loss(rot) 2.0163 | loss(pos) 0.2229 | loss(seq) 0.4433 | grad 3.3333 | lr 0.0010 | time_forward 3.4710 | time_backward 4.9020 |
[2023-09-02 07:00:00,049::train::INFO] [train] Iter 07205 | loss 2.4539 | loss(rot) 2.2913 | loss(pos) 0.1626 | loss(seq) 0.0000 | grad 7.5669 | lr 0.0010 | time_forward 3.8250 | time_backward 5.4000 |
[2023-09-02 07:00:10,102::train::INFO] [train] Iter 07206 | loss 1.8924 | loss(rot) 1.1723 | loss(pos) 0.2198 | loss(seq) 0.5003 | grad 3.7403 | lr 0.0010 | time_forward 4.0100 | time_backward 6.0390 |
[2023-09-02 07:00:19,208::train::INFO] [train] Iter 07207 | loss 1.3530 | loss(rot) 0.0392 | loss(pos) 1.3080 | loss(seq) 0.0058 | grad 4.9239 | lr 0.0010 | time_forward 3.8730 | time_backward 5.2300 |
[2023-09-02 07:00:27,356::train::INFO] [train] Iter 07208 | loss 1.6628 | loss(rot) 1.2808 | loss(pos) 0.0676 | loss(seq) 0.3144 | grad 4.8638 | lr 0.0010 | time_forward 3.4130 | time_backward 4.7310 |
[2023-09-02 07:00:35,982::train::INFO] [train] Iter 07209 | loss 1.4085 | loss(rot) 0.8711 | loss(pos) 0.1740 | loss(seq) 0.3634 | grad 4.8946 | lr 0.0010 | time_forward 3.6650 | time_backward 4.9570 |
[2023-09-02 07:00:44,389::train::INFO] [train] Iter 07210 | loss 4.8186 | loss(rot) 0.2594 | loss(pos) 4.5572 | loss(seq) 0.0020 | grad 7.9073 | lr 0.0010 | time_forward 3.6340 | time_backward 4.7700 |
[2023-09-02 07:00:54,472::train::INFO] [train] Iter 07211 | loss 2.4677 | loss(rot) 2.1664 | loss(pos) 0.2421 | loss(seq) 0.0592 | grad 5.1372 | lr 0.0010 | time_forward 4.0710 | time_backward 6.0090 |
[2023-09-02 07:01:03,482::train::INFO] [train] Iter 07212 | loss 1.6445 | loss(rot) 1.1740 | loss(pos) 0.1446 | loss(seq) 0.3260 | grad 4.6586 | lr 0.0010 | time_forward 3.8420 | time_backward 5.1640 |
[2023-09-02 07:01:12,920::train::INFO] [train] Iter 07213 | loss 0.6413 | loss(rot) 0.0895 | loss(pos) 0.5359 | loss(seq) 0.0160 | grad 5.0036 | lr 0.0010 | time_forward 4.0870 | time_backward 5.3480 |
[2023-09-02 07:01:15,615::train::INFO] [train] Iter 07214 | loss 1.3847 | loss(rot) 0.6796 | loss(pos) 0.2916 | loss(seq) 0.4135 | grad 3.1783 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4300 |
[2023-09-02 07:01:18,464::train::INFO] [train] Iter 07215 | loss 2.4905 | loss(rot) 2.2835 | loss(pos) 0.2037 | loss(seq) 0.0033 | grad 4.1933 | lr 0.0010 | time_forward 1.3640 | time_backward 1.4820 |
[2023-09-02 07:01:28,997::train::INFO] [train] Iter 07216 | loss 2.1474 | loss(rot) 1.9224 | loss(pos) 0.2203 | loss(seq) 0.0047 | grad 4.9834 | lr 0.0010 | time_forward 4.4150 | time_backward 6.1140 |
[2023-09-02 07:01:36,582::train::INFO] [train] Iter 07217 | loss 1.4111 | loss(rot) 1.2878 | loss(pos) 0.1223 | loss(seq) 0.0010 | grad 4.5241 | lr 0.0010 | time_forward 3.2300 | time_backward 4.3520 |
[2023-09-02 07:01:39,290::train::INFO] [train] Iter 07218 | loss 2.4955 | loss(rot) 1.9599 | loss(pos) 0.1739 | loss(seq) 0.3617 | grad 4.9603 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4090 |
[2023-09-02 07:01:47,981::train::INFO] [train] Iter 07219 | loss 1.7856 | loss(rot) 1.6439 | loss(pos) 0.1414 | loss(seq) 0.0003 | grad 5.5342 | lr 0.0010 | time_forward 3.7300 | time_backward 4.9560 |
[2023-09-02 07:01:56,026::train::INFO] [train] Iter 07220 | loss 1.7908 | loss(rot) 1.5804 | loss(pos) 0.0535 | loss(seq) 0.1568 | grad 5.4063 | lr 0.0010 | time_forward 3.4330 | time_backward 4.6090 |
[2023-09-02 07:02:03,520::train::INFO] [train] Iter 07221 | loss 2.0498 | loss(rot) 1.9318 | loss(pos) 0.1179 | loss(seq) 0.0001 | grad 14.9057 | lr 0.0010 | time_forward 3.2190 | time_backward 4.2710 |
[2023-09-02 07:02:12,248::train::INFO] [train] Iter 07222 | loss 3.0863 | loss(rot) 2.8948 | loss(pos) 0.1517 | loss(seq) 0.0398 | grad 3.9052 | lr 0.0010 | time_forward 3.6950 | time_backward 5.0300 |
[2023-09-02 07:02:25,535::train::INFO] [train] Iter 07223 | loss 1.6163 | loss(rot) 0.7939 | loss(pos) 0.4944 | loss(seq) 0.3280 | grad 6.3794 | lr 0.0010 | time_forward 7.9310 | time_backward 5.3520 |
[2023-09-02 07:02:28,872::train::INFO] [train] Iter 07224 | loss 2.8059 | loss(rot) 2.6373 | loss(pos) 0.1039 | loss(seq) 0.0646 | grad 3.4459 | lr 0.0010 | time_forward 1.4090 | time_backward 1.9240 |
[2023-09-02 07:02:31,621::train::INFO] [train] Iter 07225 | loss 2.5810 | loss(rot) 2.4565 | loss(pos) 0.0897 | loss(seq) 0.0349 | grad 4.4294 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4330 |
[2023-09-02 07:02:34,405::train::INFO] [train] Iter 07226 | loss 1.8249 | loss(rot) 0.4871 | loss(pos) 1.1605 | loss(seq) 0.1774 | grad 5.4951 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4750 |
[2023-09-02 07:02:43,472::train::INFO] [train] Iter 07227 | loss 2.9296 | loss(rot) 2.8054 | loss(pos) 0.1236 | loss(seq) 0.0007 | grad 3.6031 | lr 0.0010 | time_forward 3.8050 | time_backward 5.2580 |
[2023-09-02 07:02:53,544::train::INFO] [train] Iter 07228 | loss 1.6133 | loss(rot) 1.3484 | loss(pos) 0.0601 | loss(seq) 0.2047 | grad 2.8746 | lr 0.0010 | time_forward 4.0760 | time_backward 5.9920 |
[2023-09-02 07:03:03,948::train::INFO] [train] Iter 07229 | loss 1.9924 | loss(rot) 1.3676 | loss(pos) 0.2081 | loss(seq) 0.4168 | grad 3.5402 | lr 0.0010 | time_forward 4.1860 | time_backward 6.2140 |
[2023-09-02 07:03:14,113::train::INFO] [train] Iter 07230 | loss 2.1992 | loss(rot) 1.7629 | loss(pos) 0.1343 | loss(seq) 0.3020 | grad 5.6459 | lr 0.0010 | time_forward 3.9850 | time_backward 6.1770 |
[2023-09-02 07:03:16,825::train::INFO] [train] Iter 07231 | loss 2.3252 | loss(rot) 2.0538 | loss(pos) 0.1786 | loss(seq) 0.0928 | grad 3.8575 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4060 |
[2023-09-02 07:03:26,075::train::INFO] [train] Iter 07232 | loss 2.4361 | loss(rot) 2.2830 | loss(pos) 0.1524 | loss(seq) 0.0007 | grad 5.7084 | lr 0.0010 | time_forward 3.9370 | time_backward 5.3100 |
[2023-09-02 07:03:36,003::train::INFO] [train] Iter 07233 | loss 2.0302 | loss(rot) 1.6154 | loss(pos) 0.1287 | loss(seq) 0.2862 | grad 3.4050 | lr 0.0010 | time_forward 4.0110 | time_backward 5.9120 |
[2023-09-02 07:03:44,489::train::INFO] [train] Iter 07234 | loss 3.0813 | loss(rot) 2.8390 | loss(pos) 0.1540 | loss(seq) 0.0884 | grad 4.0034 | lr 0.0010 | time_forward 3.5780 | time_backward 4.9040 |
[2023-09-02 07:03:53,450::train::INFO] [train] Iter 07235 | loss 1.3527 | loss(rot) 0.3876 | loss(pos) 0.7452 | loss(seq) 0.2199 | grad 4.6106 | lr 0.0010 | time_forward 3.7220 | time_backward 5.2360 |
[2023-09-02 07:03:56,216::train::INFO] [train] Iter 07236 | loss 1.9337 | loss(rot) 1.8197 | loss(pos) 0.0523 | loss(seq) 0.0617 | grad 4.1252 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4850 |
[2023-09-02 07:04:04,298::train::INFO] [train] Iter 07237 | loss 1.1455 | loss(rot) 0.5325 | loss(pos) 0.3164 | loss(seq) 0.2966 | grad 4.4572 | lr 0.0010 | time_forward 3.4340 | time_backward 4.6450 |
[2023-09-02 07:04:13,069::train::INFO] [train] Iter 07238 | loss 1.3695 | loss(rot) 1.1645 | loss(pos) 0.1041 | loss(seq) 0.1009 | grad 4.2317 | lr 0.0010 | time_forward 3.7050 | time_backward 5.0630 |
[2023-09-02 07:04:16,370::train::INFO] [train] Iter 07239 | loss 1.8285 | loss(rot) 1.0847 | loss(pos) 0.1974 | loss(seq) 0.5464 | grad 3.5339 | lr 0.0010 | time_forward 1.4520 | time_backward 1.8450 |
[2023-09-02 07:04:25,136::train::INFO] [train] Iter 07240 | loss 1.6420 | loss(rot) 0.9844 | loss(pos) 0.2033 | loss(seq) 0.4543 | grad 4.1901 | lr 0.0010 | time_forward 3.7690 | time_backward 4.9940 |
[2023-09-02 07:04:33,701::train::INFO] [train] Iter 07241 | loss 2.4290 | loss(rot) 2.0721 | loss(pos) 0.1918 | loss(seq) 0.1650 | grad 4.7295 | lr 0.0010 | time_forward 3.6190 | time_backward 4.9430 |
[2023-09-02 07:04:43,905::train::INFO] [train] Iter 07242 | loss 2.5117 | loss(rot) 1.2374 | loss(pos) 0.6660 | loss(seq) 0.6083 | grad 4.1993 | lr 0.0010 | time_forward 4.2830 | time_backward 5.9120 |
[2023-09-02 07:04:46,548::train::INFO] [train] Iter 07243 | loss 1.8387 | loss(rot) 0.8975 | loss(pos) 0.5370 | loss(seq) 0.4042 | grad 4.4707 | lr 0.0010 | time_forward 1.2460 | time_backward 1.3940 |
[2023-09-02 07:04:51,000::train::INFO] [train] Iter 07244 | loss 1.5416 | loss(rot) 0.2034 | loss(pos) 1.3291 | loss(seq) 0.0091 | grad 4.6892 | lr 0.0010 | time_forward 2.0240 | time_backward 2.4250 |
[2023-09-02 07:04:58,365::train::INFO] [train] Iter 07245 | loss 0.7463 | loss(rot) 0.2051 | loss(pos) 0.2562 | loss(seq) 0.2851 | grad 3.6935 | lr 0.0010 | time_forward 3.1070 | time_backward 4.2540 |
[2023-09-02 07:05:02,212::train::INFO] [train] Iter 07246 | loss 1.9356 | loss(rot) 0.6547 | loss(pos) 0.7486 | loss(seq) 0.5324 | grad 5.2560 | lr 0.0010 | time_forward 1.6110 | time_backward 2.2320 |
[2023-09-02 07:05:12,397::train::INFO] [train] Iter 07247 | loss 2.6394 | loss(rot) 0.0238 | loss(pos) 2.6150 | loss(seq) 0.0006 | grad 7.1974 | lr 0.0010 | time_forward 4.1480 | time_backward 6.0170 |
[2023-09-02 07:05:22,510::train::INFO] [train] Iter 07248 | loss 0.8719 | loss(rot) 0.2421 | loss(pos) 0.5682 | loss(seq) 0.0615 | grad 4.6253 | lr 0.0010 | time_forward 4.2390 | time_backward 5.8570 |
[2023-09-02 07:05:33,230::train::INFO] [train] Iter 07249 | loss 2.7856 | loss(rot) 1.8967 | loss(pos) 0.3030 | loss(seq) 0.5859 | grad 3.7861 | lr 0.0010 | time_forward 4.1390 | time_backward 6.5770 |
[2023-09-02 07:05:42,341::train::INFO] [train] Iter 07250 | loss 2.8105 | loss(rot) 2.1048 | loss(pos) 0.3982 | loss(seq) 0.3075 | grad 7.4301 | lr 0.0010 | time_forward 3.9160 | time_backward 5.1910 |
[2023-09-02 07:05:45,021::train::INFO] [train] Iter 07251 | loss 2.9487 | loss(rot) 2.2672 | loss(pos) 0.3527 | loss(seq) 0.3287 | grad 6.4312 | lr 0.0010 | time_forward 1.2840 | time_backward 1.3920 |
[2023-09-02 07:05:54,843::train::INFO] [train] Iter 07252 | loss 2.1238 | loss(rot) 1.6278 | loss(pos) 0.2695 | loss(seq) 0.2264 | grad 5.4774 | lr 0.0010 | time_forward 4.1270 | time_backward 5.6930 |
[2023-09-02 07:06:04,125::train::INFO] [train] Iter 07253 | loss 0.7318 | loss(rot) 0.1662 | loss(pos) 0.4791 | loss(seq) 0.0866 | grad 4.6416 | lr 0.0010 | time_forward 3.9270 | time_backward 5.3520 |
[2023-09-02 07:06:06,823::train::INFO] [train] Iter 07254 | loss 1.6825 | loss(rot) 1.3952 | loss(pos) 0.1810 | loss(seq) 0.1063 | grad 6.1538 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4170 |
[2023-09-02 07:06:17,134::train::INFO] [train] Iter 07255 | loss 1.0683 | loss(rot) 0.3467 | loss(pos) 0.3953 | loss(seq) 0.3264 | grad 3.7325 | lr 0.0010 | time_forward 4.2380 | time_backward 6.0300 |
[2023-09-02 07:06:27,136::train::INFO] [train] Iter 07256 | loss 2.8258 | loss(rot) 1.9969 | loss(pos) 0.3874 | loss(seq) 0.4415 | grad 5.3544 | lr 0.0010 | time_forward 4.0270 | time_backward 5.9710 |
[2023-09-02 07:06:29,466::train::INFO] [train] Iter 07257 | loss 4.7428 | loss(rot) 0.3034 | loss(pos) 4.4386 | loss(seq) 0.0007 | grad 8.7714 | lr 0.0010 | time_forward 1.0810 | time_backward 1.2460 |
[2023-09-02 07:06:36,734::train::INFO] [train] Iter 07258 | loss 1.5306 | loss(rot) 0.0953 | loss(pos) 1.4214 | loss(seq) 0.0139 | grad 7.7101 | lr 0.0010 | time_forward 3.0040 | time_backward 4.2600 |
[2023-09-02 07:06:46,075::train::INFO] [train] Iter 07259 | loss 1.7166 | loss(rot) 1.2314 | loss(pos) 0.1408 | loss(seq) 0.3443 | grad 5.2247 | lr 0.0010 | time_forward 3.8430 | time_backward 5.4940 |
[2023-09-02 07:06:48,410::train::INFO] [train] Iter 07260 | loss 1.6991 | loss(rot) 0.0218 | loss(pos) 1.6716 | loss(seq) 0.0057 | grad 4.6946 | lr 0.0010 | time_forward 1.1280 | time_backward 1.2030 |
[2023-09-02 07:06:58,530::train::INFO] [train] Iter 07261 | loss 1.7665 | loss(rot) 0.0197 | loss(pos) 1.7453 | loss(seq) 0.0015 | grad 5.1820 | lr 0.0010 | time_forward 4.2080 | time_backward 5.9080 |
[2023-09-02 07:07:07,911::train::INFO] [train] Iter 07262 | loss 2.4126 | loss(rot) 2.0044 | loss(pos) 0.3636 | loss(seq) 0.0445 | grad 5.3229 | lr 0.0010 | time_forward 4.1340 | time_backward 5.2440 |
[2023-09-02 07:07:10,554::train::INFO] [train] Iter 07263 | loss 1.9617 | loss(rot) 0.4858 | loss(pos) 1.4552 | loss(seq) 0.0207 | grad 6.4909 | lr 0.0010 | time_forward 1.2420 | time_backward 1.3980 |
[2023-09-02 07:07:18,991::train::INFO] [train] Iter 07264 | loss 2.2211 | loss(rot) 1.9773 | loss(pos) 0.2437 | loss(seq) 0.0000 | grad 8.3760 | lr 0.0010 | time_forward 3.5600 | time_backward 4.8740 |
[2023-09-02 07:07:21,693::train::INFO] [train] Iter 07265 | loss 1.9414 | loss(rot) 1.2104 | loss(pos) 0.2827 | loss(seq) 0.4483 | grad 4.7601 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4260 |
[2023-09-02 07:07:31,605::train::INFO] [train] Iter 07266 | loss 2.5805 | loss(rot) 2.1981 | loss(pos) 0.3777 | loss(seq) 0.0047 | grad 6.1392 | lr 0.0010 | time_forward 4.1920 | time_backward 5.7170 |
[2023-09-02 07:07:40,498::train::INFO] [train] Iter 07267 | loss 0.6967 | loss(rot) 0.1118 | loss(pos) 0.5489 | loss(seq) 0.0360 | grad 4.5254 | lr 0.0010 | time_forward 3.7770 | time_backward 5.1120 |
[2023-09-02 07:07:42,731::train::INFO] [train] Iter 07268 | loss 1.3714 | loss(rot) 0.0699 | loss(pos) 1.2939 | loss(seq) 0.0076 | grad 8.0306 | lr 0.0010 | time_forward 1.0510 | time_backward 1.1780 |
[2023-09-02 07:07:51,573::train::INFO] [train] Iter 07269 | loss 2.1257 | loss(rot) 1.8369 | loss(pos) 0.2884 | loss(seq) 0.0003 | grad 8.7143 | lr 0.0010 | time_forward 3.9410 | time_backward 4.8980 |
[2023-09-02 07:08:00,815::train::INFO] [train] Iter 07270 | loss 2.0885 | loss(rot) 1.6906 | loss(pos) 0.2981 | loss(seq) 0.0998 | grad 7.1456 | lr 0.0010 | time_forward 3.9970 | time_backward 5.2420 |
[2023-09-02 07:08:09,525::train::INFO] [train] Iter 07271 | loss 1.1625 | loss(rot) 0.4912 | loss(pos) 0.3832 | loss(seq) 0.2881 | grad 4.0698 | lr 0.0010 | time_forward 3.6850 | time_backward 5.0220 |
[2023-09-02 07:08:19,875::train::INFO] [train] Iter 07272 | loss 1.2013 | loss(rot) 0.5015 | loss(pos) 0.2648 | loss(seq) 0.4350 | grad 3.6400 | lr 0.0010 | time_forward 4.0850 | time_backward 6.2610 |
[2023-09-02 07:08:31,539::train::INFO] [train] Iter 07273 | loss 2.5391 | loss(rot) 2.0326 | loss(pos) 0.4849 | loss(seq) 0.0216 | grad 5.7084 | lr 0.0010 | time_forward 4.6940 | time_backward 6.9660 |
[2023-09-02 07:08:40,809::train::INFO] [train] Iter 07274 | loss 3.1649 | loss(rot) 0.0434 | loss(pos) 3.1215 | loss(seq) 0.0000 | grad 8.4579 | lr 0.0010 | time_forward 3.7620 | time_backward 5.5050 |
[2023-09-02 07:08:52,504::train::INFO] [train] Iter 07275 | loss 2.4514 | loss(rot) 1.4653 | loss(pos) 0.4220 | loss(seq) 0.5641 | grad 3.4172 | lr 0.0010 | time_forward 4.8030 | time_backward 6.8890 |
[2023-09-02 07:08:55,253::train::INFO] [train] Iter 07276 | loss 2.3344 | loss(rot) 2.0845 | loss(pos) 0.2499 | loss(seq) 0.0000 | grad 3.8965 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4990 |
[2023-09-02 07:09:06,383::train::INFO] [train] Iter 07277 | loss 2.6481 | loss(rot) 2.4126 | loss(pos) 0.2349 | loss(seq) 0.0007 | grad 4.6849 | lr 0.0010 | time_forward 4.3600 | time_backward 6.7660 |
[2023-09-02 07:09:17,894::train::INFO] [train] Iter 07278 | loss 1.4321 | loss(rot) 0.1141 | loss(pos) 1.3006 | loss(seq) 0.0174 | grad 5.9486 | lr 0.0010 | time_forward 4.6210 | time_backward 6.8880 |
[2023-09-02 07:09:29,381::train::INFO] [train] Iter 07279 | loss 1.2805 | loss(rot) 0.2602 | loss(pos) 0.6584 | loss(seq) 0.3619 | grad 5.7108 | lr 0.0010 | time_forward 5.4490 | time_backward 6.0340 |
[2023-09-02 07:09:38,852::train::INFO] [train] Iter 07280 | loss 2.3838 | loss(rot) 2.1981 | loss(pos) 0.1013 | loss(seq) 0.0844 | grad 3.1947 | lr 0.0010 | time_forward 3.8130 | time_backward 5.6540 |
[2023-09-02 07:09:46,813::train::INFO] [train] Iter 07281 | loss 3.4779 | loss(rot) 0.0334 | loss(pos) 3.4440 | loss(seq) 0.0005 | grad 8.5895 | lr 0.0010 | time_forward 3.2880 | time_backward 4.6710 |
[2023-09-02 07:09:55,520::train::INFO] [train] Iter 07282 | loss 1.0158 | loss(rot) 0.1372 | loss(pos) 0.8578 | loss(seq) 0.0208 | grad 5.8913 | lr 0.0010 | time_forward 3.6490 | time_backward 5.0520 |
[2023-09-02 07:10:03,610::train::INFO] [train] Iter 07283 | loss 1.9858 | loss(rot) 1.2960 | loss(pos) 0.4608 | loss(seq) 0.2290 | grad 4.8665 | lr 0.0010 | time_forward 3.3720 | time_backward 4.7140 |
[2023-09-02 07:10:06,523::train::INFO] [train] Iter 07284 | loss 0.8836 | loss(rot) 0.2280 | loss(pos) 0.3920 | loss(seq) 0.2637 | grad 3.7832 | lr 0.0010 | time_forward 1.4080 | time_backward 1.5010 |
[2023-09-02 07:10:15,176::train::INFO] [train] Iter 07285 | loss 2.1287 | loss(rot) 1.9143 | loss(pos) 0.1395 | loss(seq) 0.0748 | grad 4.8775 | lr 0.0010 | time_forward 3.6000 | time_backward 5.0500 |
[2023-09-02 07:10:23,724::train::INFO] [train] Iter 07286 | loss 2.5093 | loss(rot) 1.6079 | loss(pos) 0.4107 | loss(seq) 0.4908 | grad 5.0572 | lr 0.0010 | time_forward 3.4740 | time_backward 5.0710 |
[2023-09-02 07:10:32,745::train::INFO] [train] Iter 07287 | loss 2.0879 | loss(rot) 1.2844 | loss(pos) 0.2675 | loss(seq) 0.5360 | grad 5.2376 | lr 0.0010 | time_forward 3.7300 | time_backward 5.2870 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.