text
stringlengths
56
1.16k
[2023-09-02 07:10:38,646::train::INFO] [train] Iter 07288 | loss 2.9656 | loss(rot) 2.2087 | loss(pos) 0.2810 | loss(seq) 0.4760 | grad 4.9645 | lr 0.0010 | time_forward 2.5620 | time_backward 3.3360
[2023-09-02 07:10:41,793::train::INFO] [train] Iter 07289 | loss 2.2446 | loss(rot) 2.0362 | loss(pos) 0.1831 | loss(seq) 0.0252 | grad 6.3331 | lr 0.0010 | time_forward 1.5970 | time_backward 1.5470
[2023-09-02 07:10:52,129::train::INFO] [train] Iter 07290 | loss 2.1039 | loss(rot) 1.5057 | loss(pos) 0.1936 | loss(seq) 0.4046 | grad 5.5583 | lr 0.0010 | time_forward 4.2820 | time_backward 6.0280
[2023-09-02 07:11:01,188::train::INFO] [train] Iter 07291 | loss 1.9122 | loss(rot) 0.9089 | loss(pos) 0.5757 | loss(seq) 0.4275 | grad 7.2078 | lr 0.0010 | time_forward 3.7400 | time_backward 5.3170
[2023-09-02 07:11:04,051::train::INFO] [train] Iter 07292 | loss 1.9513 | loss(rot) 1.1506 | loss(pos) 0.2583 | loss(seq) 0.5425 | grad 4.7585 | lr 0.0010 | time_forward 1.3760 | time_backward 1.4840
[2023-09-02 07:11:14,451::train::INFO] [train] Iter 07293 | loss 1.3545 | loss(rot) 0.1026 | loss(pos) 1.2329 | loss(seq) 0.0191 | grad 6.4616 | lr 0.0010 | time_forward 4.0340 | time_backward 6.3620
[2023-09-02 07:11:24,090::train::INFO] [train] Iter 07294 | loss 2.4737 | loss(rot) 2.3384 | loss(pos) 0.1237 | loss(seq) 0.0115 | grad 4.6006 | lr 0.0010 | time_forward 3.9510 | time_backward 5.6860
[2023-09-02 07:11:34,395::train::INFO] [train] Iter 07295 | loss 2.6385 | loss(rot) 2.4412 | loss(pos) 0.1961 | loss(seq) 0.0013 | grad 4.2758 | lr 0.0010 | time_forward 4.4100 | time_backward 5.8910
[2023-09-02 07:11:37,658::train::INFO] [train] Iter 07296 | loss 3.1106 | loss(rot) 2.9001 | loss(pos) 0.2056 | loss(seq) 0.0049 | grad 3.5811 | lr 0.0010 | time_forward 1.8050 | time_backward 1.4540
[2023-09-02 07:11:40,319::train::INFO] [train] Iter 07297 | loss 1.7075 | loss(rot) 0.8795 | loss(pos) 0.3915 | loss(seq) 0.4365 | grad 3.3594 | lr 0.0010 | time_forward 1.3880 | time_backward 1.2370
[2023-09-02 07:11:48,710::train::INFO] [train] Iter 07298 | loss 0.9102 | loss(rot) 0.2395 | loss(pos) 0.5564 | loss(seq) 0.1143 | grad 5.3249 | lr 0.0010 | time_forward 3.5850 | time_backward 4.8030
[2023-09-02 07:11:53,721::train::INFO] [train] Iter 07299 | loss 2.6503 | loss(rot) 0.2328 | loss(pos) 2.4145 | loss(seq) 0.0029 | grad 5.2340 | lr 0.0010 | time_forward 2.2230 | time_backward 2.7840
[2023-09-02 07:12:06,905::train::INFO] [train] Iter 07300 | loss 1.8338 | loss(rot) 1.5281 | loss(pos) 0.2826 | loss(seq) 0.0231 | grad 6.2422 | lr 0.0010 | time_forward 7.0120 | time_backward 6.1680
[2023-09-02 07:12:17,519::train::INFO] [train] Iter 07301 | loss 2.2749 | loss(rot) 2.0061 | loss(pos) 0.2675 | loss(seq) 0.0012 | grad 5.2018 | lr 0.0010 | time_forward 4.2870 | time_backward 6.2900
[2023-09-02 07:12:20,464::train::INFO] [train] Iter 07302 | loss 2.4111 | loss(rot) 1.0713 | loss(pos) 0.7805 | loss(seq) 0.5593 | grad 6.8259 | lr 0.0010 | time_forward 1.4530 | time_backward 1.4890
[2023-09-02 07:12:28,352::train::INFO] [train] Iter 07303 | loss 1.4126 | loss(rot) 0.5455 | loss(pos) 0.4757 | loss(seq) 0.3914 | grad 4.1286 | lr 0.0010 | time_forward 3.3740 | time_backward 4.5100
[2023-09-02 07:12:37,563::train::INFO] [train] Iter 07304 | loss 1.9689 | loss(rot) 1.0984 | loss(pos) 0.3776 | loss(seq) 0.4929 | grad 5.6092 | lr 0.0010 | time_forward 3.9650 | time_backward 5.2430
[2023-09-02 07:12:40,389::train::INFO] [train] Iter 07305 | loss 2.6235 | loss(rot) 1.8475 | loss(pos) 0.2613 | loss(seq) 0.5147 | grad 5.8741 | lr 0.0010 | time_forward 1.3490 | time_backward 1.4740
[2023-09-02 07:12:43,161::train::INFO] [train] Iter 07306 | loss 2.9677 | loss(rot) 0.0149 | loss(pos) 2.9522 | loss(seq) 0.0007 | grad 6.2159 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4550
[2023-09-02 07:12:46,001::train::INFO] [train] Iter 07307 | loss 0.7804 | loss(rot) 0.2552 | loss(pos) 0.4449 | loss(seq) 0.0803 | grad 4.1271 | lr 0.0010 | time_forward 1.3690 | time_backward 1.4670
[2023-09-02 07:12:48,729::train::INFO] [train] Iter 07308 | loss 0.7218 | loss(rot) 0.3281 | loss(pos) 0.2439 | loss(seq) 0.1497 | grad 3.6806 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4570
[2023-09-02 07:12:57,340::train::INFO] [train] Iter 07309 | loss 1.1062 | loss(rot) 0.5104 | loss(pos) 0.3557 | loss(seq) 0.2401 | grad 4.5587 | lr 0.0010 | time_forward 3.6430 | time_backward 4.9650
[2023-09-02 07:13:00,241::train::INFO] [train] Iter 07310 | loss 2.1941 | loss(rot) 1.4283 | loss(pos) 0.1851 | loss(seq) 0.5807 | grad 3.0162 | lr 0.0010 | time_forward 1.4460 | time_backward 1.4360
[2023-09-02 07:13:09,615::train::INFO] [train] Iter 07311 | loss 1.3874 | loss(rot) 1.2599 | loss(pos) 0.1065 | loss(seq) 0.0210 | grad 9.4780 | lr 0.0010 | time_forward 3.9620 | time_backward 5.4080
[2023-09-02 07:13:20,537::train::INFO] [train] Iter 07312 | loss 2.8460 | loss(rot) 2.5430 | loss(pos) 0.2291 | loss(seq) 0.0739 | grad 2.4033 | lr 0.0010 | time_forward 4.5600 | time_backward 6.3590
[2023-09-02 07:13:28,877::train::INFO] [train] Iter 07313 | loss 1.8646 | loss(rot) 1.1117 | loss(pos) 0.2273 | loss(seq) 0.5255 | grad 4.4516 | lr 0.0010 | time_forward 3.5720 | time_backward 4.7630
[2023-09-02 07:13:39,149::train::INFO] [train] Iter 07314 | loss 1.6407 | loss(rot) 1.2714 | loss(pos) 0.0976 | loss(seq) 0.2717 | grad 5.0997 | lr 0.0010 | time_forward 4.1640 | time_backward 6.1050
[2023-09-02 07:13:47,490::train::INFO] [train] Iter 07315 | loss 1.2133 | loss(rot) 0.6160 | loss(pos) 0.2430 | loss(seq) 0.3542 | grad 5.6294 | lr 0.0010 | time_forward 3.7930 | time_backward 4.5440
[2023-09-02 07:13:55,584::train::INFO] [train] Iter 07316 | loss 2.9557 | loss(rot) 2.6922 | loss(pos) 0.1725 | loss(seq) 0.0910 | grad 4.8081 | lr 0.0010 | time_forward 3.4160 | time_backward 4.6750
[2023-09-02 07:14:05,540::train::INFO] [train] Iter 07317 | loss 1.9008 | loss(rot) 1.7651 | loss(pos) 0.1294 | loss(seq) 0.0063 | grad 4.0761 | lr 0.0010 | time_forward 3.9560 | time_backward 5.9960
[2023-09-02 07:14:15,260::train::INFO] [train] Iter 07318 | loss 2.3265 | loss(rot) 1.6381 | loss(pos) 0.1910 | loss(seq) 0.4974 | grad 3.9609 | lr 0.0010 | time_forward 4.0340 | time_backward 5.6820
[2023-09-02 07:14:24,128::train::INFO] [train] Iter 07319 | loss 1.0094 | loss(rot) 0.0731 | loss(pos) 0.9188 | loss(seq) 0.0174 | grad 6.4657 | lr 0.0010 | time_forward 3.8280 | time_backward 5.0360
[2023-09-02 07:14:33,071::train::INFO] [train] Iter 07320 | loss 1.1367 | loss(rot) 0.1855 | loss(pos) 0.9390 | loss(seq) 0.0122 | grad 7.2629 | lr 0.0010 | time_forward 3.7460 | time_backward 5.1940
[2023-09-02 07:14:43,368::train::INFO] [train] Iter 07321 | loss 3.3043 | loss(rot) 0.0296 | loss(pos) 3.2747 | loss(seq) 0.0000 | grad 9.2514 | lr 0.0010 | time_forward 4.2960 | time_backward 5.9970
[2023-09-02 07:14:46,160::train::INFO] [train] Iter 07322 | loss 1.0618 | loss(rot) 0.2030 | loss(pos) 0.3921 | loss(seq) 0.4667 | grad 3.8272 | lr 0.0010 | time_forward 1.3540 | time_backward 1.4340
[2023-09-02 07:14:56,404::train::INFO] [train] Iter 07323 | loss 2.1455 | loss(rot) 0.0183 | loss(pos) 2.1266 | loss(seq) 0.0007 | grad 6.6315 | lr 0.0010 | time_forward 4.1530 | time_backward 6.0590
[2023-09-02 07:15:06,435::train::INFO] [train] Iter 07324 | loss 1.7153 | loss(rot) 1.1087 | loss(pos) 0.2289 | loss(seq) 0.3777 | grad 4.2125 | lr 0.0010 | time_forward 4.0340 | time_backward 5.9920
[2023-09-02 07:15:09,166::train::INFO] [train] Iter 07325 | loss 1.8955 | loss(rot) 1.6519 | loss(pos) 0.2075 | loss(seq) 0.0362 | grad 4.4800 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4490
[2023-09-02 07:15:18,358::train::INFO] [train] Iter 07326 | loss 2.2661 | loss(rot) 1.9818 | loss(pos) 0.2843 | loss(seq) 0.0000 | grad 6.2694 | lr 0.0010 | time_forward 4.0040 | time_backward 5.1840
[2023-09-02 07:15:21,732::train::INFO] [train] Iter 07327 | loss 1.8461 | loss(rot) 0.8355 | loss(pos) 0.5308 | loss(seq) 0.4798 | grad 5.4702 | lr 0.0010 | time_forward 1.4650 | time_backward 1.9060
[2023-09-02 07:15:30,712::train::INFO] [train] Iter 07328 | loss 1.3605 | loss(rot) 0.1163 | loss(pos) 1.1972 | loss(seq) 0.0470 | grad 7.6420 | lr 0.0010 | time_forward 3.8450 | time_backward 5.1300
[2023-09-02 07:15:38,354::train::INFO] [train] Iter 07329 | loss 1.1226 | loss(rot) 0.2819 | loss(pos) 0.8052 | loss(seq) 0.0355 | grad 6.5969 | lr 0.0010 | time_forward 3.2330 | time_backward 4.4050
[2023-09-02 07:15:41,119::train::INFO] [train] Iter 07330 | loss 2.4064 | loss(rot) 2.2685 | loss(pos) 0.1034 | loss(seq) 0.0345 | grad 3.5262 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4740
[2023-09-02 07:15:51,212::train::INFO] [train] Iter 07331 | loss 1.8108 | loss(rot) 1.6062 | loss(pos) 0.2043 | loss(seq) 0.0003 | grad 6.6228 | lr 0.0010 | time_forward 4.0250 | time_backward 6.0630
[2023-09-02 07:16:01,101::train::INFO] [train] Iter 07332 | loss 2.5736 | loss(rot) 2.3036 | loss(pos) 0.2699 | loss(seq) 0.0000 | grad 4.4542 | lr 0.0010 | time_forward 4.0540 | time_backward 5.8300
[2023-09-02 07:16:03,483::train::INFO] [train] Iter 07333 | loss 2.7144 | loss(rot) 2.5139 | loss(pos) 0.1986 | loss(seq) 0.0019 | grad 7.5329 | lr 0.0010 | time_forward 1.1210 | time_backward 1.2360
[2023-09-02 07:16:10,379::train::INFO] [train] Iter 07334 | loss 1.6261 | loss(rot) 0.9880 | loss(pos) 0.1411 | loss(seq) 0.4970 | grad 3.2607 | lr 0.0010 | time_forward 2.8670 | time_backward 4.0250
[2023-09-02 07:16:19,884::train::INFO] [train] Iter 07335 | loss 1.6352 | loss(rot) 0.8770 | loss(pos) 0.3065 | loss(seq) 0.4517 | grad 3.3714 | lr 0.0010 | time_forward 4.1320 | time_backward 5.3690
[2023-09-02 07:16:23,317::train::INFO] [train] Iter 07336 | loss 2.8274 | loss(rot) 2.6535 | loss(pos) 0.1689 | loss(seq) 0.0050 | grad 3.3299 | lr 0.0010 | time_forward 1.4530 | time_backward 1.9770
[2023-09-02 07:16:26,039::train::INFO] [train] Iter 07337 | loss 2.9425 | loss(rot) 2.4824 | loss(pos) 0.3012 | loss(seq) 0.1590 | grad 4.6421 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4380
[2023-09-02 07:16:35,124::train::INFO] [train] Iter 07338 | loss 1.4730 | loss(rot) 0.7355 | loss(pos) 0.2123 | loss(seq) 0.5252 | grad 3.5165 | lr 0.0010 | time_forward 3.8750 | time_backward 5.2070
[2023-09-02 07:16:43,662::train::INFO] [train] Iter 07339 | loss 2.2456 | loss(rot) 1.9198 | loss(pos) 0.1352 | loss(seq) 0.1907 | grad 5.1312 | lr 0.0010 | time_forward 3.6200 | time_backward 4.9150
[2023-09-02 07:16:53,695::train::INFO] [train] Iter 07340 | loss 2.4960 | loss(rot) 0.0603 | loss(pos) 2.4334 | loss(seq) 0.0023 | grad 4.6071 | lr 0.0010 | time_forward 4.0670 | time_backward 5.9630
[2023-09-02 07:16:56,484::train::INFO] [train] Iter 07341 | loss 2.1294 | loss(rot) 0.0230 | loss(pos) 2.1027 | loss(seq) 0.0037 | grad 3.9879 | lr 0.0010 | time_forward 1.4030 | time_backward 1.3820
[2023-09-02 07:16:59,365::train::INFO] [train] Iter 07342 | loss 2.2210 | loss(rot) 2.0369 | loss(pos) 0.1830 | loss(seq) 0.0012 | grad 5.1013 | lr 0.0010 | time_forward 1.3380 | time_backward 1.5230
[2023-09-02 07:17:07,102::train::INFO] [train] Iter 07343 | loss 2.0487 | loss(rot) 1.5962 | loss(pos) 0.1405 | loss(seq) 0.3120 | grad 5.6525 | lr 0.0010 | time_forward 3.2610 | time_backward 4.4720
[2023-09-02 07:17:17,275::train::INFO] [train] Iter 07344 | loss 1.1621 | loss(rot) 0.7731 | loss(pos) 0.1294 | loss(seq) 0.2596 | grad 3.9961 | lr 0.0010 | time_forward 4.1920 | time_backward 5.9770
[2023-09-02 07:17:19,966::train::INFO] [train] Iter 07345 | loss 1.9660 | loss(rot) 1.3478 | loss(pos) 0.2009 | loss(seq) 0.4173 | grad 4.1661 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4070
[2023-09-02 07:17:27,763::train::INFO] [train] Iter 07346 | loss 1.4247 | loss(rot) 0.8082 | loss(pos) 0.1066 | loss(seq) 0.5099 | grad 5.8815 | lr 0.0010 | time_forward 3.2900 | time_backward 4.5030
[2023-09-02 07:17:38,200::train::INFO] [train] Iter 07347 | loss 2.3132 | loss(rot) 1.2815 | loss(pos) 0.3876 | loss(seq) 0.6442 | grad 4.2483 | lr 0.0010 | time_forward 4.3880 | time_backward 6.0450
[2023-09-02 07:17:46,456::train::INFO] [train] Iter 07348 | loss 3.0514 | loss(rot) 2.4370 | loss(pos) 0.1159 | loss(seq) 0.4985 | grad 5.0488 | lr 0.0010 | time_forward 3.4000 | time_backward 4.8540
[2023-09-02 07:17:49,144::train::INFO] [train] Iter 07349 | loss 1.7936 | loss(rot) 1.2589 | loss(pos) 0.2006 | loss(seq) 0.3341 | grad 4.0473 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4110
[2023-09-02 07:17:59,459::train::INFO] [train] Iter 07350 | loss 2.4015 | loss(rot) 2.2309 | loss(pos) 0.1703 | loss(seq) 0.0003 | grad 3.3332 | lr 0.0010 | time_forward 4.3410 | time_backward 5.9700
[2023-09-02 07:18:09,060::train::INFO] [train] Iter 07351 | loss 2.1719 | loss(rot) 1.2850 | loss(pos) 0.3386 | loss(seq) 0.5483 | grad 3.7616 | lr 0.0010 | time_forward 3.9650 | time_backward 5.6320
[2023-09-02 07:18:11,775::train::INFO] [train] Iter 07352 | loss 4.0685 | loss(rot) 0.2327 | loss(pos) 3.8318 | loss(seq) 0.0040 | grad 6.2109 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4390
[2023-09-02 07:18:21,982::train::INFO] [train] Iter 07353 | loss 0.8727 | loss(rot) 0.2656 | loss(pos) 0.1455 | loss(seq) 0.4617 | grad 2.6565 | lr 0.0010 | time_forward 4.1590 | time_backward 6.0440
[2023-09-02 07:18:24,499::train::INFO] [train] Iter 07354 | loss 2.3538 | loss(rot) 2.1007 | loss(pos) 0.2519 | loss(seq) 0.0012 | grad 6.7747 | lr 0.0010 | time_forward 1.1960 | time_backward 1.3040
[2023-09-02 07:18:27,247::train::INFO] [train] Iter 07355 | loss 1.9992 | loss(rot) 1.9344 | loss(pos) 0.0580 | loss(seq) 0.0068 | grad 8.2829 | lr 0.0010 | time_forward 1.3250 | time_backward 1.4190
[2023-09-02 07:18:35,727::train::INFO] [train] Iter 07356 | loss 2.8044 | loss(rot) 2.4419 | loss(pos) 0.2074 | loss(seq) 0.1551 | grad 4.0349 | lr 0.0010 | time_forward 3.6460 | time_backward 4.8310
[2023-09-02 07:18:44,310::train::INFO] [train] Iter 07357 | loss 1.0356 | loss(rot) 0.1482 | loss(pos) 0.6156 | loss(seq) 0.2719 | grad 5.2543 | lr 0.0010 | time_forward 3.6570 | time_backward 4.9230
[2023-09-02 07:18:54,325::train::INFO] [train] Iter 07358 | loss 2.5383 | loss(rot) 2.2804 | loss(pos) 0.1080 | loss(seq) 0.1500 | grad 4.7596 | lr 0.0010 | time_forward 4.0930 | time_backward 5.9180
[2023-09-02 07:19:01,789::train::INFO] [train] Iter 07359 | loss 2.6700 | loss(rot) 2.1270 | loss(pos) 0.1317 | loss(seq) 0.4114 | grad 3.3315 | lr 0.0010 | time_forward 3.1880 | time_backward 4.2730
[2023-09-02 07:19:11,617::train::INFO] [train] Iter 07360 | loss 2.3875 | loss(rot) 1.7173 | loss(pos) 0.2068 | loss(seq) 0.4634 | grad 3.8741 | lr 0.0010 | time_forward 4.0280 | time_backward 5.7970
[2023-09-02 07:19:14,357::train::INFO] [train] Iter 07361 | loss 1.7778 | loss(rot) 1.2693 | loss(pos) 0.2058 | loss(seq) 0.3027 | grad 4.7645 | lr 0.0010 | time_forward 1.3090 | time_backward 1.4280
[2023-09-02 07:19:22,472::train::INFO] [train] Iter 07362 | loss 2.4514 | loss(rot) 1.9442 | loss(pos) 0.1483 | loss(seq) 0.3589 | grad 5.4560 | lr 0.0010 | time_forward 3.4830 | time_backward 4.6290
[2023-09-02 07:19:32,915::train::INFO] [train] Iter 07363 | loss 1.7652 | loss(rot) 0.2377 | loss(pos) 1.5044 | loss(seq) 0.0232 | grad 5.1767 | lr 0.0010 | time_forward 4.2420 | time_backward 6.1980
[2023-09-02 07:19:36,501::train::INFO] [train] Iter 07364 | loss 2.3908 | loss(rot) 1.3214 | loss(pos) 0.5053 | loss(seq) 0.5641 | grad 6.3757 | lr 0.0010 | time_forward 1.5850 | time_backward 1.9970
[2023-09-02 07:19:45,705::train::INFO] [train] Iter 07365 | loss 2.9676 | loss(rot) 2.7904 | loss(pos) 0.1771 | loss(seq) 0.0000 | grad 4.1136 | lr 0.0010 | time_forward 3.8720 | time_backward 5.3290
[2023-09-02 07:19:56,026::train::INFO] [train] Iter 07366 | loss 2.9220 | loss(rot) 2.5438 | loss(pos) 0.3769 | loss(seq) 0.0012 | grad 4.9315 | lr 0.0010 | time_forward 4.2100 | time_backward 6.1080
[2023-09-02 07:19:58,874::train::INFO] [train] Iter 07367 | loss 1.2158 | loss(rot) 0.0601 | loss(pos) 1.1503 | loss(seq) 0.0053 | grad 6.5442 | lr 0.0010 | time_forward 1.3650 | time_backward 1.4780
[2023-09-02 07:20:07,098::train::INFO] [train] Iter 07368 | loss 0.9987 | loss(rot) 0.4329 | loss(pos) 0.0919 | loss(seq) 0.4739 | grad 3.3348 | lr 0.0010 | time_forward 3.5060 | time_backward 4.7140
[2023-09-02 07:20:16,048::train::INFO] [train] Iter 07369 | loss 1.7996 | loss(rot) 1.0315 | loss(pos) 0.1973 | loss(seq) 0.5707 | grad 4.0695 | lr 0.0010 | time_forward 3.8130 | time_backward 5.1330
[2023-09-02 07:20:18,805::train::INFO] [train] Iter 07370 | loss 1.8245 | loss(rot) 0.9676 | loss(pos) 0.4421 | loss(seq) 0.4148 | grad 5.0249 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4820
[2023-09-02 07:20:21,578::train::INFO] [train] Iter 07371 | loss 1.4855 | loss(rot) 1.3755 | loss(pos) 0.1099 | loss(seq) 0.0000 | grad 5.0963 | lr 0.0010 | time_forward 1.3080 | time_backward 1.4600
[2023-09-02 07:20:31,234::train::INFO] [train] Iter 07372 | loss 1.8254 | loss(rot) 0.5990 | loss(pos) 1.1754 | loss(seq) 0.0510 | grad 5.6474 | lr 0.0010 | time_forward 4.0160 | time_backward 5.6370
[2023-09-02 07:20:40,164::train::INFO] [train] Iter 07373 | loss 1.7778 | loss(rot) 1.6900 | loss(pos) 0.0877 | loss(seq) 0.0001 | grad 5.4956 | lr 0.0010 | time_forward 3.8550 | time_backward 5.0720
[2023-09-02 07:20:50,057::train::INFO] [train] Iter 07374 | loss 1.1966 | loss(rot) 0.3634 | loss(pos) 0.3229 | loss(seq) 0.5103 | grad 4.2684 | lr 0.0010 | time_forward 3.6400 | time_backward 6.2470
[2023-09-02 07:20:52,535::train::INFO] [train] Iter 07375 | loss 1.3916 | loss(rot) 1.1851 | loss(pos) 0.1880 | loss(seq) 0.0185 | grad 6.4056 | lr 0.0010 | time_forward 1.1970 | time_backward 1.2780
[2023-09-02 07:21:03,082::train::INFO] [train] Iter 07376 | loss 1.0437 | loss(rot) 0.2698 | loss(pos) 0.2744 | loss(seq) 0.4995 | grad 3.4838 | lr 0.0010 | time_forward 4.9430 | time_backward 5.5990
[2023-09-02 07:21:13,823::train::INFO] [train] Iter 07377 | loss 3.0675 | loss(rot) 2.7729 | loss(pos) 0.1882 | loss(seq) 0.1064 | grad 3.2903 | lr 0.0010 | time_forward 4.5560 | time_backward 6.1810
[2023-09-02 07:21:22,970::train::INFO] [train] Iter 07378 | loss 2.1345 | loss(rot) 1.5430 | loss(pos) 0.1902 | loss(seq) 0.4014 | grad 3.0667 | lr 0.0010 | time_forward 3.9100 | time_backward 5.2350
[2023-09-02 07:21:25,618::train::INFO] [train] Iter 07379 | loss 1.9226 | loss(rot) 1.4237 | loss(pos) 0.1136 | loss(seq) 0.3852 | grad 3.5133 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4000
[2023-09-02 07:21:34,664::train::INFO] [train] Iter 07380 | loss 1.1430 | loss(rot) 0.5066 | loss(pos) 0.1712 | loss(seq) 0.4652 | grad 4.1264 | lr 0.0010 | time_forward 3.9080 | time_backward 5.1350
[2023-09-02 07:21:37,303::train::INFO] [train] Iter 07381 | loss 1.8874 | loss(rot) 1.2212 | loss(pos) 0.1954 | loss(seq) 0.4708 | grad 3.1521 | lr 0.0010 | time_forward 1.2540 | time_backward 1.3810
[2023-09-02 07:21:39,548::train::INFO] [train] Iter 07382 | loss 2.0263 | loss(rot) 1.8197 | loss(pos) 0.1607 | loss(seq) 0.0459 | grad 4.9677 | lr 0.0010 | time_forward 1.0850 | time_backward 1.1580
[2023-09-02 07:21:46,933::train::INFO] [train] Iter 07383 | loss 2.1964 | loss(rot) 1.5408 | loss(pos) 0.1534 | loss(seq) 0.5022 | grad 3.7070 | lr 0.0010 | time_forward 3.1650 | time_backward 4.2160
[2023-09-02 07:21:55,481::train::INFO] [train] Iter 07384 | loss 2.4087 | loss(rot) 2.0014 | loss(pos) 0.3886 | loss(seq) 0.0187 | grad 5.1954 | lr 0.0010 | time_forward 3.5910 | time_backward 4.9540
[2023-09-02 07:22:05,998::train::INFO] [train] Iter 07385 | loss 1.1446 | loss(rot) 0.0704 | loss(pos) 1.0686 | loss(seq) 0.0057 | grad 4.6213 | lr 0.0010 | time_forward 4.3210 | time_backward 6.1930
[2023-09-02 07:22:14,951::train::INFO] [train] Iter 07386 | loss 2.6909 | loss(rot) 2.4294 | loss(pos) 0.1919 | loss(seq) 0.0696 | grad 3.3102 | lr 0.0010 | time_forward 3.7840 | time_backward 5.1650
[2023-09-02 07:22:24,428::train::INFO] [train] Iter 07387 | loss 2.6401 | loss(rot) 2.2862 | loss(pos) 0.2230 | loss(seq) 0.1310 | grad 2.7825 | lr 0.0010 | time_forward 4.1250 | time_backward 5.3480