text
stringlengths
56
1.16k
[2023-09-02 07:22:34,697::train::INFO] [train] Iter 07388 | loss 2.9122 | loss(rot) 2.1983 | loss(pos) 0.2960 | loss(seq) 0.4178 | grad 3.1364 | lr 0.0010 | time_forward 4.3780 | time_backward 5.8880
[2023-09-02 07:22:43,550::train::INFO] [train] Iter 07389 | loss 2.1454 | loss(rot) 1.8613 | loss(pos) 0.1905 | loss(seq) 0.0936 | grad 4.6266 | lr 0.0010 | time_forward 3.7450 | time_backward 5.1040
[2023-09-02 07:22:45,914::train::INFO] [train] Iter 07390 | loss 2.4028 | loss(rot) 2.1886 | loss(pos) 0.2130 | loss(seq) 0.0012 | grad 4.9216 | lr 0.0010 | time_forward 1.1730 | time_backward 1.1870
[2023-09-02 07:22:54,527::train::INFO] [train] Iter 07391 | loss 1.5822 | loss(rot) 1.4285 | loss(pos) 0.1091 | loss(seq) 0.0445 | grad 5.7992 | lr 0.0010 | time_forward 3.6720 | time_backward 4.9390
[2023-09-02 07:23:03,264::train::INFO] [train] Iter 07392 | loss 2.3635 | loss(rot) 2.1604 | loss(pos) 0.1426 | loss(seq) 0.0605 | grad 5.4162 | lr 0.0010 | time_forward 3.7070 | time_backward 5.0260
[2023-09-02 07:23:14,003::train::INFO] [train] Iter 07393 | loss 1.2989 | loss(rot) 0.4447 | loss(pos) 0.6351 | loss(seq) 0.2191 | grad 4.0982 | lr 0.0010 | time_forward 4.6130 | time_backward 6.1220
[2023-09-02 07:23:23,911::train::INFO] [train] Iter 07394 | loss 2.4838 | loss(rot) 1.6040 | loss(pos) 0.3286 | loss(seq) 0.5512 | grad 3.6181 | lr 0.0010 | time_forward 4.0750 | time_backward 5.8290
[2023-09-02 07:23:26,513::train::INFO] [train] Iter 07395 | loss 2.7459 | loss(rot) 1.6145 | loss(pos) 0.3764 | loss(seq) 0.7549 | grad 4.6192 | lr 0.0010 | time_forward 1.2830 | time_backward 1.3160
[2023-09-02 07:23:29,069::train::INFO] [train] Iter 07396 | loss 0.5961 | loss(rot) 0.2900 | loss(pos) 0.1982 | loss(seq) 0.1079 | grad 3.6795 | lr 0.0010 | time_forward 1.2500 | time_backward 1.2770
[2023-09-02 07:23:31,764::train::INFO] [train] Iter 07397 | loss 1.9960 | loss(rot) 1.3934 | loss(pos) 0.1895 | loss(seq) 0.4132 | grad 4.3811 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4150
[2023-09-02 07:23:41,675::train::INFO] [train] Iter 07398 | loss 2.2769 | loss(rot) 2.0040 | loss(pos) 0.1143 | loss(seq) 0.1586 | grad 3.2743 | lr 0.0010 | time_forward 3.9690 | time_backward 5.9390
[2023-09-02 07:23:51,223::train::INFO] [train] Iter 07399 | loss 1.0822 | loss(rot) 0.2001 | loss(pos) 0.8035 | loss(seq) 0.0785 | grad 5.6289 | lr 0.0010 | time_forward 3.9380 | time_backward 5.6070
[2023-09-02 07:24:01,387::train::INFO] [train] Iter 07400 | loss 1.9998 | loss(rot) 1.1006 | loss(pos) 0.3796 | loss(seq) 0.5195 | grad 3.8708 | lr 0.0010 | time_forward 4.4430 | time_backward 5.7160
[2023-09-02 07:24:04,155::train::INFO] [train] Iter 07401 | loss 1.5474 | loss(rot) 0.9507 | loss(pos) 0.1153 | loss(seq) 0.4814 | grad 3.1458 | lr 0.0010 | time_forward 1.3150 | time_backward 1.4490
[2023-09-02 07:24:12,995::train::INFO] [train] Iter 07402 | loss 2.0613 | loss(rot) 1.4443 | loss(pos) 0.2223 | loss(seq) 0.3947 | grad 5.0462 | lr 0.0010 | time_forward 3.7430 | time_backward 5.0940
[2023-09-02 07:24:15,859::train::INFO] [train] Iter 07403 | loss 2.1026 | loss(rot) 1.3722 | loss(pos) 0.2028 | loss(seq) 0.5277 | grad 5.3878 | lr 0.0010 | time_forward 1.4080 | time_backward 1.4520
[2023-09-02 07:24:18,325::train::INFO] [train] Iter 07404 | loss 2.0894 | loss(rot) 1.6137 | loss(pos) 0.0621 | loss(seq) 0.4137 | grad 4.7553 | lr 0.0010 | time_forward 1.2100 | time_backward 1.2510
[2023-09-02 07:24:20,801::train::INFO] [train] Iter 07405 | loss 3.6438 | loss(rot) 3.4813 | loss(pos) 0.1546 | loss(seq) 0.0079 | grad 4.9388 | lr 0.0010 | time_forward 1.1780 | time_backward 1.2720
[2023-09-02 07:24:30,913::train::INFO] [train] Iter 07406 | loss 2.2021 | loss(rot) 1.5106 | loss(pos) 0.1883 | loss(seq) 0.5032 | grad 3.0048 | lr 0.0010 | time_forward 3.9910 | time_backward 6.0960
[2023-09-02 07:24:40,853::train::INFO] [train] Iter 07407 | loss 2.3465 | loss(rot) 1.5101 | loss(pos) 0.2970 | loss(seq) 0.5393 | grad 5.1485 | lr 0.0010 | time_forward 4.0550 | time_backward 5.8820
[2023-09-02 07:24:43,593::train::INFO] [train] Iter 07408 | loss 1.0101 | loss(rot) 0.4615 | loss(pos) 0.2716 | loss(seq) 0.2769 | grad 4.1040 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4520
[2023-09-02 07:24:53,474::train::INFO] [train] Iter 07409 | loss 1.1413 | loss(rot) 0.2124 | loss(pos) 0.5714 | loss(seq) 0.3575 | grad 5.2877 | lr 0.0010 | time_forward 4.0330 | time_backward 5.8450
[2023-09-02 07:25:03,459::train::INFO] [train] Iter 07410 | loss 1.6611 | loss(rot) 1.3506 | loss(pos) 0.2745 | loss(seq) 0.0360 | grad 4.5984 | lr 0.0010 | time_forward 3.9950 | time_backward 5.9660
[2023-09-02 07:25:13,632::train::INFO] [train] Iter 07411 | loss 2.1624 | loss(rot) 1.7457 | loss(pos) 0.1503 | loss(seq) 0.2664 | grad 4.3758 | lr 0.0010 | time_forward 4.2180 | time_backward 5.9350
[2023-09-02 07:25:16,373::train::INFO] [train] Iter 07412 | loss 2.7897 | loss(rot) 1.8852 | loss(pos) 0.3167 | loss(seq) 0.5878 | grad 3.4298 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4830
[2023-09-02 07:25:23,068::train::INFO] [train] Iter 07413 | loss 2.4905 | loss(rot) 1.8871 | loss(pos) 0.1342 | loss(seq) 0.4692 | grad 5.2028 | lr 0.0010 | time_forward 2.7060 | time_backward 3.9860
[2023-09-02 07:25:33,480::train::INFO] [train] Iter 07414 | loss 1.7642 | loss(rot) 1.0052 | loss(pos) 0.3094 | loss(seq) 0.4496 | grad 4.1526 | lr 0.0010 | time_forward 4.2350 | time_backward 6.1740
[2023-09-02 07:25:35,933::train::INFO] [train] Iter 07415 | loss 1.3602 | loss(rot) 1.1983 | loss(pos) 0.1422 | loss(seq) 0.0197 | grad 4.6428 | lr 0.0010 | time_forward 1.1650 | time_backward 1.2840
[2023-09-02 07:25:45,997::train::INFO] [train] Iter 07416 | loss 2.0209 | loss(rot) 0.0313 | loss(pos) 1.9857 | loss(seq) 0.0039 | grad 7.3957 | lr 0.0010 | time_forward 4.1400 | time_backward 5.9210
[2023-09-02 07:25:54,453::train::INFO] [train] Iter 07417 | loss 2.3428 | loss(rot) 1.8284 | loss(pos) 0.1645 | loss(seq) 0.3498 | grad 5.0225 | lr 0.0010 | time_forward 3.5990 | time_backward 4.8410
[2023-09-02 07:26:04,682::train::INFO] [train] Iter 07418 | loss 1.7426 | loss(rot) 0.0813 | loss(pos) 1.6558 | loss(seq) 0.0054 | grad 5.9966 | lr 0.0010 | time_forward 4.1030 | time_backward 6.1220
[2023-09-02 07:26:12,881::train::INFO] [train] Iter 07419 | loss 0.8116 | loss(rot) 0.1618 | loss(pos) 0.4028 | loss(seq) 0.2470 | grad 3.3132 | lr 0.0010 | time_forward 3.4820 | time_backward 4.7130
[2023-09-02 07:26:22,201::train::INFO] [train] Iter 07420 | loss 2.7053 | loss(rot) 2.3738 | loss(pos) 0.3268 | loss(seq) 0.0048 | grad 5.6356 | lr 0.0010 | time_forward 3.8990 | time_backward 5.4170
[2023-09-02 07:26:28,979::train::INFO] [train] Iter 07421 | loss 1.4519 | loss(rot) 0.7143 | loss(pos) 0.2962 | loss(seq) 0.4414 | grad 5.2458 | lr 0.0010 | time_forward 2.8980 | time_backward 3.8760
[2023-09-02 07:26:38,364::train::INFO] [train] Iter 07422 | loss 1.1281 | loss(rot) 0.3962 | loss(pos) 0.4748 | loss(seq) 0.2571 | grad 3.8526 | lr 0.0010 | time_forward 4.0380 | time_backward 5.3440
[2023-09-02 07:26:45,513::train::INFO] [train] Iter 07423 | loss 1.7522 | loss(rot) 0.3840 | loss(pos) 1.3668 | loss(seq) 0.0013 | grad 6.9337 | lr 0.0010 | time_forward 3.0690 | time_backward 4.0760
[2023-09-02 07:26:55,787::train::INFO] [train] Iter 07424 | loss 2.5602 | loss(rot) 2.2623 | loss(pos) 0.2117 | loss(seq) 0.0862 | grad 4.1029 | lr 0.0010 | time_forward 4.2810 | time_backward 5.9890
[2023-09-02 07:27:05,894::train::INFO] [train] Iter 07425 | loss 1.2783 | loss(rot) 0.3097 | loss(pos) 0.6248 | loss(seq) 0.3437 | grad 5.4964 | lr 0.0010 | time_forward 4.2420 | time_backward 5.8610
[2023-09-02 07:27:15,964::train::INFO] [train] Iter 07426 | loss 2.0731 | loss(rot) 1.9681 | loss(pos) 0.1050 | loss(seq) 0.0000 | grad 4.5765 | lr 0.0010 | time_forward 4.0270 | time_backward 6.0400
[2023-09-02 07:27:27,734::train::INFO] [train] Iter 07427 | loss 2.8043 | loss(rot) 0.0100 | loss(pos) 2.7937 | loss(seq) 0.0006 | grad 7.4247 | lr 0.0010 | time_forward 5.6580 | time_backward 6.1080
[2023-09-02 07:27:37,936::train::INFO] [train] Iter 07428 | loss 1.1828 | loss(rot) 0.1176 | loss(pos) 1.0458 | loss(seq) 0.0194 | grad 5.8050 | lr 0.0010 | time_forward 4.0830 | time_backward 6.1150
[2023-09-02 07:27:40,647::train::INFO] [train] Iter 07429 | loss 3.0151 | loss(rot) 2.6227 | loss(pos) 0.2381 | loss(seq) 0.1542 | grad 4.1381 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4280
[2023-09-02 07:27:51,020::train::INFO] [train] Iter 07430 | loss 1.2134 | loss(rot) 0.1404 | loss(pos) 0.6313 | loss(seq) 0.4417 | grad 3.9972 | lr 0.0010 | time_forward 4.3380 | time_backward 6.0320
[2023-09-02 07:27:53,681::train::INFO] [train] Iter 07431 | loss 0.9003 | loss(rot) 0.4393 | loss(pos) 0.4257 | loss(seq) 0.0353 | grad 3.8916 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4050
[2023-09-02 07:27:56,400::train::INFO] [train] Iter 07432 | loss 0.5856 | loss(rot) 0.2177 | loss(pos) 0.2987 | loss(seq) 0.0692 | grad 3.4668 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4150
[2023-09-02 07:27:58,700::train::INFO] [train] Iter 07433 | loss 2.7214 | loss(rot) 1.9203 | loss(pos) 0.3532 | loss(seq) 0.4480 | grad 5.9198 | lr 0.0010 | time_forward 1.1290 | time_backward 1.1670
[2023-09-02 07:28:08,135::train::INFO] [train] Iter 07434 | loss 1.9617 | loss(rot) 1.7157 | loss(pos) 0.2460 | loss(seq) 0.0000 | grad 6.7941 | lr 0.0010 | time_forward 4.0660 | time_backward 5.3650
[2023-09-02 07:28:14,799::train::INFO] [train] Iter 07435 | loss 0.7211 | loss(rot) 0.3265 | loss(pos) 0.3119 | loss(seq) 0.0827 | grad 3.9612 | lr 0.0010 | time_forward 2.8630 | time_backward 3.7970
[2023-09-02 07:28:17,462::train::INFO] [train] Iter 07436 | loss 1.5623 | loss(rot) 0.8409 | loss(pos) 0.2331 | loss(seq) 0.4882 | grad 4.0732 | lr 0.0010 | time_forward 1.2710 | time_backward 1.3890
[2023-09-02 07:28:26,318::train::INFO] [train] Iter 07437 | loss 0.9405 | loss(rot) 0.1317 | loss(pos) 0.5101 | loss(seq) 0.2988 | grad 3.7752 | lr 0.0010 | time_forward 3.8030 | time_backward 5.0500
[2023-09-02 07:28:33,729::train::INFO] [train] Iter 07438 | loss 1.7316 | loss(rot) 1.2270 | loss(pos) 0.0831 | loss(seq) 0.4215 | grad 4.3530 | lr 0.0010 | time_forward 3.1170 | time_backward 4.2900
[2023-09-02 07:28:43,016::train::INFO] [train] Iter 07439 | loss 2.4622 | loss(rot) 2.0820 | loss(pos) 0.3328 | loss(seq) 0.0474 | grad 3.5834 | lr 0.0010 | time_forward 3.9150 | time_backward 5.3690
[2023-09-02 07:28:51,610::train::INFO] [train] Iter 07440 | loss 2.4514 | loss(rot) 2.2409 | loss(pos) 0.2045 | loss(seq) 0.0060 | grad 7.2394 | lr 0.0010 | time_forward 3.6490 | time_backward 4.9420
[2023-09-02 07:28:54,318::train::INFO] [train] Iter 07441 | loss 1.5163 | loss(rot) 0.4566 | loss(pos) 0.5019 | loss(seq) 0.5577 | grad 4.9118 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4260
[2023-09-02 07:29:01,846::train::INFO] [train] Iter 07442 | loss 1.6249 | loss(rot) 1.0149 | loss(pos) 0.1469 | loss(seq) 0.4632 | grad 3.9836 | lr 0.0010 | time_forward 3.1730 | time_backward 4.3520
[2023-09-02 07:29:10,627::train::INFO] [train] Iter 07443 | loss 1.5777 | loss(rot) 1.0187 | loss(pos) 0.1246 | loss(seq) 0.4343 | grad 3.4732 | lr 0.0010 | time_forward 3.6510 | time_backward 5.1260
[2023-09-02 07:29:12,850::train::INFO] [train] Iter 07444 | loss 2.8512 | loss(rot) 2.5130 | loss(pos) 0.1752 | loss(seq) 0.1629 | grad 5.4051 | lr 0.0010 | time_forward 1.0500 | time_backward 1.1710
[2023-09-02 07:29:21,800::train::INFO] [train] Iter 07445 | loss 1.2121 | loss(rot) 0.0510 | loss(pos) 1.1470 | loss(seq) 0.0140 | grad 6.4219 | lr 0.0010 | time_forward 3.9540 | time_backward 4.9920
[2023-09-02 07:29:31,853::train::INFO] [train] Iter 07446 | loss 1.2879 | loss(rot) 0.3976 | loss(pos) 0.3927 | loss(seq) 0.4976 | grad 3.8919 | lr 0.0010 | time_forward 4.3990 | time_backward 5.6510
[2023-09-02 07:29:40,817::train::INFO] [train] Iter 07447 | loss 1.6014 | loss(rot) 1.2039 | loss(pos) 0.0726 | loss(seq) 0.3248 | grad 4.7918 | lr 0.0010 | time_forward 3.7830 | time_backward 5.1780
[2023-09-02 07:29:50,085::train::INFO] [train] Iter 07448 | loss 1.6550 | loss(rot) 1.1723 | loss(pos) 0.2170 | loss(seq) 0.2657 | grad 3.3409 | lr 0.0010 | time_forward 3.9720 | time_backward 5.2930
[2023-09-02 07:29:57,999::train::INFO] [train] Iter 07449 | loss 2.2728 | loss(rot) 0.9645 | loss(pos) 0.5745 | loss(seq) 0.7339 | grad 5.0624 | lr 0.0010 | time_forward 3.4410 | time_backward 4.4700
[2023-09-02 07:30:07,544::train::INFO] [train] Iter 07450 | loss 1.1724 | loss(rot) 0.5201 | loss(pos) 0.2245 | loss(seq) 0.4278 | grad 4.2277 | lr 0.0010 | time_forward 4.0820 | time_backward 5.4600
[2023-09-02 07:30:15,551::train::INFO] [train] Iter 07451 | loss 2.6526 | loss(rot) 2.4107 | loss(pos) 0.1046 | loss(seq) 0.1374 | grad 6.1168 | lr 0.0010 | time_forward 3.3180 | time_backward 4.6860
[2023-09-02 07:30:25,541::train::INFO] [train] Iter 07452 | loss 0.8187 | loss(rot) 0.3243 | loss(pos) 0.2195 | loss(seq) 0.2749 | grad 4.2165 | lr 0.0010 | time_forward 3.9630 | time_backward 6.0240
[2023-09-02 07:30:34,317::train::INFO] [train] Iter 07453 | loss 1.8368 | loss(rot) 1.4451 | loss(pos) 0.0973 | loss(seq) 0.2943 | grad 5.5357 | lr 0.0010 | time_forward 3.6660 | time_backward 5.1060
[2023-09-02 07:30:44,788::train::INFO] [train] Iter 07454 | loss 1.0982 | loss(rot) 0.5937 | loss(pos) 0.2697 | loss(seq) 0.2348 | grad 4.2140 | lr 0.0010 | time_forward 4.0760 | time_backward 6.3920
[2023-09-02 07:30:55,715::train::INFO] [train] Iter 07455 | loss 1.7935 | loss(rot) 0.0613 | loss(pos) 1.7307 | loss(seq) 0.0016 | grad 6.5742 | lr 0.0010 | time_forward 4.6090 | time_backward 6.3140
[2023-09-02 07:31:06,372::train::INFO] [train] Iter 07456 | loss 1.3337 | loss(rot) 0.0437 | loss(pos) 1.0169 | loss(seq) 0.2731 | grad 4.1024 | lr 0.0010 | time_forward 4.4090 | time_backward 6.2450
[2023-09-02 07:31:16,438::train::INFO] [train] Iter 07457 | loss 2.2829 | loss(rot) 1.8424 | loss(pos) 0.1139 | loss(seq) 0.3265 | grad 3.6321 | lr 0.0010 | time_forward 4.0820 | time_backward 5.9800
[2023-09-02 07:31:25,186::train::INFO] [train] Iter 07458 | loss 1.0148 | loss(rot) 0.5036 | loss(pos) 0.2590 | loss(seq) 0.2522 | grad 3.9710 | lr 0.0010 | time_forward 3.6840 | time_backward 5.0600
[2023-09-02 07:31:33,586::train::INFO] [train] Iter 07459 | loss 2.6122 | loss(rot) 2.1667 | loss(pos) 0.1752 | loss(seq) 0.2703 | grad 4.7545 | lr 0.0010 | time_forward 3.5680 | time_backward 4.8290
[2023-09-02 07:31:42,136::train::INFO] [train] Iter 07460 | loss 1.4372 | loss(rot) 0.9062 | loss(pos) 0.2441 | loss(seq) 0.2869 | grad 3.1404 | lr 0.0010 | time_forward 3.7050 | time_backward 4.8410
[2023-09-02 07:31:51,834::train::INFO] [train] Iter 07461 | loss 1.9719 | loss(rot) 1.1637 | loss(pos) 0.4939 | loss(seq) 0.3143 | grad 4.3278 | lr 0.0010 | time_forward 3.9960 | time_backward 5.6990
[2023-09-02 07:32:01,761::train::INFO] [train] Iter 07462 | loss 2.1845 | loss(rot) 1.7680 | loss(pos) 0.2061 | loss(seq) 0.2105 | grad 7.5221 | lr 0.0010 | time_forward 4.0500 | time_backward 5.8740
[2023-09-02 07:32:11,172::train::INFO] [train] Iter 07463 | loss 1.6437 | loss(rot) 1.2109 | loss(pos) 0.1073 | loss(seq) 0.3255 | grad 4.9861 | lr 0.0010 | time_forward 3.9630 | time_backward 5.4450
[2023-09-02 07:32:20,047::train::INFO] [train] Iter 07464 | loss 2.6788 | loss(rot) 2.4785 | loss(pos) 0.1727 | loss(seq) 0.0276 | grad 4.4501 | lr 0.0010 | time_forward 3.7100 | time_backward 5.1610
[2023-09-02 07:32:22,766::train::INFO] [train] Iter 07465 | loss 2.0255 | loss(rot) 1.8616 | loss(pos) 0.0588 | loss(seq) 0.1050 | grad 5.6724 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4270
[2023-09-02 07:32:32,655::train::INFO] [train] Iter 07466 | loss 1.5813 | loss(rot) 0.2580 | loss(pos) 0.8654 | loss(seq) 0.4579 | grad 5.7218 | lr 0.0010 | time_forward 4.1420 | time_backward 5.7430
[2023-09-02 07:32:41,044::train::INFO] [train] Iter 07467 | loss 1.8808 | loss(rot) 1.3081 | loss(pos) 0.1366 | loss(seq) 0.4361 | grad 4.4974 | lr 0.0010 | time_forward 3.5900 | time_backward 4.7850
[2023-09-02 07:32:43,541::train::INFO] [train] Iter 07468 | loss 2.1047 | loss(rot) 1.4430 | loss(pos) 0.2145 | loss(seq) 0.4473 | grad 4.6643 | lr 0.0010 | time_forward 1.2290 | time_backward 1.2540
[2023-09-02 07:32:52,119::train::INFO] [train] Iter 07469 | loss 1.4819 | loss(rot) 1.3403 | loss(pos) 0.1330 | loss(seq) 0.0085 | grad 3.6148 | lr 0.0010 | time_forward 3.5710 | time_backward 5.0030
[2023-09-02 07:33:00,111::train::INFO] [train] Iter 07470 | loss 1.5175 | loss(rot) 0.6024 | loss(pos) 0.8604 | loss(seq) 0.0546 | grad 6.0902 | lr 0.0010 | time_forward 3.3080 | time_backward 4.6810
[2023-09-02 07:33:02,740::train::INFO] [train] Iter 07471 | loss 2.0723 | loss(rot) 1.5419 | loss(pos) 0.1008 | loss(seq) 0.4296 | grad 4.1399 | lr 0.0010 | time_forward 1.2290 | time_backward 1.3960
[2023-09-02 07:33:11,884::train::INFO] [train] Iter 07472 | loss 1.5074 | loss(rot) 0.8029 | loss(pos) 0.3286 | loss(seq) 0.3759 | grad 4.0813 | lr 0.0010 | time_forward 3.8870 | time_backward 5.2530
[2023-09-02 07:33:22,012::train::INFO] [train] Iter 07473 | loss 1.6665 | loss(rot) 1.2915 | loss(pos) 0.3620 | loss(seq) 0.0130 | grad 4.8829 | lr 0.0010 | time_forward 4.1420 | time_backward 5.9830
[2023-09-02 07:33:24,711::train::INFO] [train] Iter 07474 | loss 1.2295 | loss(rot) 0.6205 | loss(pos) 0.2245 | loss(seq) 0.3845 | grad 3.7157 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4370
[2023-09-02 07:33:27,484::train::INFO] [train] Iter 07475 | loss 1.1005 | loss(rot) 0.4355 | loss(pos) 0.3652 | loss(seq) 0.2997 | grad 4.9463 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4540
[2023-09-02 07:33:37,505::train::INFO] [train] Iter 07476 | loss 2.4478 | loss(rot) 2.1028 | loss(pos) 0.2019 | loss(seq) 0.1431 | grad 6.1468 | lr 0.0010 | time_forward 4.1010 | time_backward 5.9140
[2023-09-02 07:33:40,191::train::INFO] [train] Iter 07477 | loss 2.3701 | loss(rot) 1.6797 | loss(pos) 0.1528 | loss(seq) 0.5375 | grad 3.6476 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4200
[2023-09-02 07:33:50,258::train::INFO] [train] Iter 07478 | loss 1.9942 | loss(rot) 0.9211 | loss(pos) 0.4481 | loss(seq) 0.6250 | grad 5.1626 | lr 0.0010 | time_forward 4.1220 | time_backward 5.9410
[2023-09-02 07:33:52,923::train::INFO] [train] Iter 07479 | loss 1.9656 | loss(rot) 1.4960 | loss(pos) 0.0880 | loss(seq) 0.3815 | grad 4.7003 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4040
[2023-09-02 07:33:57,686::train::INFO] [train] Iter 07480 | loss 2.3657 | loss(rot) 1.8172 | loss(pos) 0.1578 | loss(seq) 0.3906 | grad 4.5374 | lr 0.0010 | time_forward 2.1270 | time_backward 2.6330
[2023-09-02 07:34:00,221::train::INFO] [train] Iter 07481 | loss 2.7799 | loss(rot) 2.6624 | loss(pos) 0.1107 | loss(seq) 0.0068 | grad 5.4747 | lr 0.0010 | time_forward 1.1420 | time_backward 1.3890
[2023-09-02 07:34:09,092::train::INFO] [train] Iter 07482 | loss 2.8103 | loss(rot) 0.0647 | loss(pos) 2.7456 | loss(seq) 0.0000 | grad 9.1976 | lr 0.0010 | time_forward 3.9210 | time_backward 4.9470
[2023-09-02 07:34:17,970::train::INFO] [train] Iter 07483 | loss 1.2401 | loss(rot) 0.2116 | loss(pos) 0.9220 | loss(seq) 0.1065 | grad 3.9618 | lr 0.0010 | time_forward 3.8840 | time_backward 4.9910
[2023-09-02 07:34:20,733::train::INFO] [train] Iter 07484 | loss 1.8699 | loss(rot) 1.3278 | loss(pos) 0.1387 | loss(seq) 0.4034 | grad 5.8257 | lr 0.0010 | time_forward 1.3410 | time_backward 1.4190
[2023-09-02 07:34:29,507::train::INFO] [train] Iter 07485 | loss 1.6910 | loss(rot) 1.5901 | loss(pos) 0.1003 | loss(seq) 0.0006 | grad 8.3404 | lr 0.0010 | time_forward 3.7370 | time_backward 5.0340
[2023-09-02 07:34:31,756::train::INFO] [train] Iter 07486 | loss 1.5033 | loss(rot) 1.2318 | loss(pos) 0.1134 | loss(seq) 0.1582 | grad 5.0748 | lr 0.0010 | time_forward 1.0630 | time_backward 1.1830
[2023-09-02 07:34:34,166::train::INFO] [train] Iter 07487 | loss 2.2797 | loss(rot) 2.1922 | loss(pos) 0.0808 | loss(seq) 0.0068 | grad 4.1374 | lr 0.0010 | time_forward 1.1770 | time_backward 1.1990