text
stringlengths
56
1.16k
[2023-09-02 07:46:58,911::train::INFO] [train] Iter 07588 | loss 1.0704 | loss(rot) 0.4425 | loss(pos) 0.3072 | loss(seq) 0.3207 | grad 3.7959 | lr 0.0010 | time_forward 1.3370 | time_backward 1.4360
[2023-09-02 07:47:09,357::train::INFO] [train] Iter 07589 | loss 1.5846 | loss(rot) 1.4203 | loss(pos) 0.1639 | loss(seq) 0.0003 | grad 5.1068 | lr 0.0010 | time_forward 4.2800 | time_backward 6.1610
[2023-09-02 07:47:12,327::train::INFO] [train] Iter 07590 | loss 1.4362 | loss(rot) 0.5692 | loss(pos) 0.5256 | loss(seq) 0.3414 | grad 4.7647 | lr 0.0010 | time_forward 1.5060 | time_backward 1.4600
[2023-09-02 07:47:20,804::train::INFO] [train] Iter 07591 | loss 2.1946 | loss(rot) 1.5600 | loss(pos) 0.2258 | loss(seq) 0.4087 | grad 3.0713 | lr 0.0010 | time_forward 3.6920 | time_backward 4.7580
[2023-09-02 07:47:30,068::train::INFO] [train] Iter 07592 | loss 2.5302 | loss(rot) 2.3067 | loss(pos) 0.2214 | loss(seq) 0.0021 | grad 3.9245 | lr 0.0010 | time_forward 3.8600 | time_backward 5.4010
[2023-09-02 07:47:32,706::train::INFO] [train] Iter 07593 | loss 2.6033 | loss(rot) 2.0828 | loss(pos) 0.3076 | loss(seq) 0.2129 | grad 4.1952 | lr 0.0010 | time_forward 1.2370 | time_backward 1.3950
[2023-09-02 07:47:35,399::train::INFO] [train] Iter 07594 | loss 2.8035 | loss(rot) 2.2142 | loss(pos) 0.1513 | loss(seq) 0.4380 | grad 2.9111 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4090
[2023-09-02 07:47:38,171::train::INFO] [train] Iter 07595 | loss 1.7190 | loss(rot) 1.0809 | loss(pos) 0.1841 | loss(seq) 0.4540 | grad 4.0893 | lr 0.0010 | time_forward 1.3910 | time_backward 1.3770
[2023-09-02 07:47:40,843::train::INFO] [train] Iter 07596 | loss 2.7027 | loss(rot) 0.4918 | loss(pos) 2.1692 | loss(seq) 0.0417 | grad 8.3333 | lr 0.0010 | time_forward 1.2700 | time_backward 1.3710
[2023-09-02 07:47:43,592::train::INFO] [train] Iter 07597 | loss 1.7694 | loss(rot) 1.4332 | loss(pos) 0.3142 | loss(seq) 0.0219 | grad 5.7647 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4200
[2023-09-02 07:47:52,992::train::INFO] [train] Iter 07598 | loss 1.1136 | loss(rot) 0.3881 | loss(pos) 0.1254 | loss(seq) 0.6001 | grad 3.0142 | lr 0.0010 | time_forward 3.9610 | time_backward 5.4360
[2023-09-02 07:48:01,783::train::INFO] [train] Iter 07599 | loss 1.7021 | loss(rot) 1.5775 | loss(pos) 0.1201 | loss(seq) 0.0045 | grad 4.4322 | lr 0.0010 | time_forward 3.7220 | time_backward 5.0440
[2023-09-02 07:48:04,447::train::INFO] [train] Iter 07600 | loss 1.9646 | loss(rot) 1.6668 | loss(pos) 0.1283 | loss(seq) 0.1695 | grad 4.0569 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4160
[2023-09-02 07:48:07,864::train::INFO] [train] Iter 07601 | loss 2.9803 | loss(rot) 2.4179 | loss(pos) 0.1510 | loss(seq) 0.4114 | grad 2.8728 | lr 0.0010 | time_forward 1.5640 | time_backward 1.8490
[2023-09-02 07:48:11,056::train::INFO] [train] Iter 07602 | loss 1.1781 | loss(rot) 0.2915 | loss(pos) 0.8300 | loss(seq) 0.0567 | grad 3.4362 | lr 0.0010 | time_forward 1.4210 | time_backward 1.7670
[2023-09-02 07:48:13,348::train::INFO] [train] Iter 07603 | loss 2.6959 | loss(rot) 2.0238 | loss(pos) 0.2078 | loss(seq) 0.4644 | grad 3.9864 | lr 0.0010 | time_forward 1.1030 | time_backward 1.1670
[2023-09-02 07:48:23,374::train::INFO] [train] Iter 07604 | loss 1.3488 | loss(rot) 0.5991 | loss(pos) 0.5296 | loss(seq) 0.2201 | grad 3.6390 | lr 0.0010 | time_forward 4.0620 | time_backward 5.9620
[2023-09-02 07:48:26,029::train::INFO] [train] Iter 07605 | loss 2.8927 | loss(rot) 0.0261 | loss(pos) 2.8661 | loss(seq) 0.0005 | grad 7.8178 | lr 0.0010 | time_forward 1.2520 | time_backward 1.3990
[2023-09-02 07:48:34,653::train::INFO] [train] Iter 07606 | loss 2.1156 | loss(rot) 1.5967 | loss(pos) 0.1501 | loss(seq) 0.3689 | grad 3.7419 | lr 0.0010 | time_forward 3.6590 | time_backward 4.9630
[2023-09-02 07:48:44,851::train::INFO] [train] Iter 07607 | loss 1.4831 | loss(rot) 0.2096 | loss(pos) 1.2524 | loss(seq) 0.0211 | grad 6.0352 | lr 0.0010 | time_forward 4.1720 | time_backward 6.0210
[2023-09-02 07:48:54,903::train::INFO] [train] Iter 07608 | loss 0.6650 | loss(rot) 0.1681 | loss(pos) 0.4138 | loss(seq) 0.0831 | grad 4.1409 | lr 0.0010 | time_forward 4.0450 | time_backward 6.0030
[2023-09-02 07:49:04,998::train::INFO] [train] Iter 07609 | loss 1.6995 | loss(rot) 1.0837 | loss(pos) 0.1600 | loss(seq) 0.4557 | grad 4.6967 | lr 0.0010 | time_forward 4.0570 | time_backward 6.0350
[2023-09-02 07:49:13,351::train::INFO] [train] Iter 07610 | loss 1.3467 | loss(rot) 0.1951 | loss(pos) 1.1093 | loss(seq) 0.0424 | grad 5.9767 | lr 0.0010 | time_forward 3.5050 | time_backward 4.8440
[2023-09-02 07:49:23,344::train::INFO] [train] Iter 07611 | loss 2.1983 | loss(rot) 1.8604 | loss(pos) 0.2908 | loss(seq) 0.0471 | grad 5.3266 | lr 0.0010 | time_forward 4.0720 | time_backward 5.9170
[2023-09-02 07:49:25,522::train::INFO] [train] Iter 07612 | loss 0.7163 | loss(rot) 0.2582 | loss(pos) 0.3551 | loss(seq) 0.1031 | grad 3.6529 | lr 0.0010 | time_forward 1.0310 | time_backward 1.1440
[2023-09-02 07:49:33,875::train::INFO] [train] Iter 07613 | loss 1.2545 | loss(rot) 0.0356 | loss(pos) 1.2161 | loss(seq) 0.0028 | grad 4.6811 | lr 0.0010 | time_forward 3.5810 | time_backward 4.7690
[2023-09-02 07:49:43,722::train::INFO] [train] Iter 07614 | loss 2.2194 | loss(rot) 1.5963 | loss(pos) 0.1776 | loss(seq) 0.4456 | grad 3.4011 | lr 0.0010 | time_forward 4.0200 | time_backward 5.8240
[2023-09-02 07:49:53,831::train::INFO] [train] Iter 07615 | loss 2.6417 | loss(rot) 2.4282 | loss(pos) 0.2124 | loss(seq) 0.0012 | grad 2.9967 | lr 0.0010 | time_forward 4.0480 | time_backward 6.0570
[2023-09-02 07:49:57,090::train::INFO] [train] Iter 07616 | loss 1.5393 | loss(rot) 0.5801 | loss(pos) 0.5690 | loss(seq) 0.3902 | grad 4.0163 | lr 0.0010 | time_forward 1.4290 | time_backward 1.8260
[2023-09-02 07:49:59,769::train::INFO] [train] Iter 07617 | loss 2.2573 | loss(rot) 1.6539 | loss(pos) 0.2385 | loss(seq) 0.3649 | grad 4.5301 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4100
[2023-09-02 07:50:02,019::train::INFO] [train] Iter 07618 | loss 1.9159 | loss(rot) 0.4542 | loss(pos) 1.4377 | loss(seq) 0.0240 | grad 5.9732 | lr 0.0010 | time_forward 1.0840 | time_backward 1.1630
[2023-09-02 07:50:10,749::train::INFO] [train] Iter 07619 | loss 1.7046 | loss(rot) 0.9330 | loss(pos) 0.2555 | loss(seq) 0.5162 | grad 5.2043 | lr 0.0010 | time_forward 3.7470 | time_backward 4.9800
[2023-09-02 07:50:14,136::train::INFO] [train] Iter 07620 | loss 1.9293 | loss(rot) 1.6651 | loss(pos) 0.2374 | loss(seq) 0.0268 | grad 3.9212 | lr 0.0010 | time_forward 1.4460 | time_backward 1.9380
[2023-09-02 07:50:15,895::train::INFO] [train] Iter 07621 | loss 1.7077 | loss(rot) 0.6404 | loss(pos) 0.6351 | loss(seq) 0.4322 | grad 8.9817 | lr 0.0010 | time_forward 0.8170 | time_backward 0.9380
[2023-09-02 07:50:25,846::train::INFO] [train] Iter 07622 | loss 2.7505 | loss(rot) 2.5577 | loss(pos) 0.1485 | loss(seq) 0.0443 | grad 5.4342 | lr 0.0010 | time_forward 4.0360 | time_backward 5.9130
[2023-09-02 07:50:28,561::train::INFO] [train] Iter 07623 | loss 1.3988 | loss(rot) 0.0859 | loss(pos) 1.2981 | loss(seq) 0.0148 | grad 6.4724 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4130
[2023-09-02 07:50:31,010::train::INFO] [train] Iter 07624 | loss 1.9525 | loss(rot) 1.2707 | loss(pos) 0.2749 | loss(seq) 0.4068 | grad 4.1235 | lr 0.0010 | time_forward 1.3080 | time_backward 1.1380
[2023-09-02 07:50:38,733::train::INFO] [train] Iter 07625 | loss 1.3897 | loss(rot) 0.0712 | loss(pos) 1.3070 | loss(seq) 0.0115 | grad 8.2078 | lr 0.0010 | time_forward 3.5060 | time_backward 4.2130
[2023-09-02 07:50:41,562::train::INFO] [train] Iter 07626 | loss 2.1053 | loss(rot) 1.8782 | loss(pos) 0.2265 | loss(seq) 0.0006 | grad 4.2075 | lr 0.0010 | time_forward 1.4330 | time_backward 1.3930
[2023-09-02 07:50:51,567::train::INFO] [train] Iter 07627 | loss 1.2719 | loss(rot) 0.5557 | loss(pos) 0.5412 | loss(seq) 0.1750 | grad 5.1890 | lr 0.0010 | time_forward 4.0750 | time_backward 5.9260
[2023-09-02 07:50:54,238::train::INFO] [train] Iter 07628 | loss 1.9712 | loss(rot) 1.5488 | loss(pos) 0.1351 | loss(seq) 0.2874 | grad 7.8693 | lr 0.0010 | time_forward 1.2850 | time_backward 1.3820
[2023-09-02 07:51:04,388::train::INFO] [train] Iter 07629 | loss 2.0276 | loss(rot) 1.8389 | loss(pos) 0.1616 | loss(seq) 0.0270 | grad 6.3989 | lr 0.0010 | time_forward 4.0890 | time_backward 6.0580
[2023-09-02 07:51:14,273::train::INFO] [train] Iter 07630 | loss 1.2911 | loss(rot) 0.5517 | loss(pos) 0.2974 | loss(seq) 0.4420 | grad 5.0101 | lr 0.0010 | time_forward 4.0670 | time_backward 5.8150
[2023-09-02 07:51:23,986::train::INFO] [train] Iter 07631 | loss 0.9338 | loss(rot) 0.1450 | loss(pos) 0.7490 | loss(seq) 0.0397 | grad 5.5634 | lr 0.0010 | time_forward 3.9700 | time_backward 5.7390
[2023-09-02 07:51:32,572::train::INFO] [train] Iter 07632 | loss 2.1010 | loss(rot) 1.7891 | loss(pos) 0.3113 | loss(seq) 0.0006 | grad 8.4512 | lr 0.0010 | time_forward 3.6820 | time_backward 4.8830
[2023-09-02 07:51:41,068::train::INFO] [train] Iter 07633 | loss 1.7981 | loss(rot) 0.7719 | loss(pos) 0.2351 | loss(seq) 0.7911 | grad 3.6175 | lr 0.0010 | time_forward 3.6550 | time_backward 4.8370
[2023-09-02 07:51:50,383::train::INFO] [train] Iter 07634 | loss 1.5012 | loss(rot) 0.1487 | loss(pos) 0.9646 | loss(seq) 0.3879 | grad 4.3828 | lr 0.0010 | time_forward 4.0210 | time_backward 5.2910
[2023-09-02 07:51:59,855::train::INFO] [train] Iter 07635 | loss 2.2864 | loss(rot) 2.0842 | loss(pos) 0.0932 | loss(seq) 0.1091 | grad 5.1112 | lr 0.0010 | time_forward 4.1280 | time_backward 5.3380
[2023-09-02 07:52:06,308::train::INFO] [train] Iter 07636 | loss 0.8962 | loss(rot) 0.5354 | loss(pos) 0.1433 | loss(seq) 0.2174 | grad 6.8773 | lr 0.0010 | time_forward 2.7390 | time_backward 3.7120
[2023-09-02 07:52:08,979::train::INFO] [train] Iter 07637 | loss 1.7537 | loss(rot) 0.3207 | loss(pos) 1.4268 | loss(seq) 0.0061 | grad 5.6611 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4150
[2023-09-02 07:52:18,201::train::INFO] [train] Iter 07638 | loss 2.0196 | loss(rot) 1.4617 | loss(pos) 0.5576 | loss(seq) 0.0003 | grad 8.3158 | lr 0.0010 | time_forward 3.9380 | time_backward 5.2800
[2023-09-02 07:52:20,871::train::INFO] [train] Iter 07639 | loss 1.8765 | loss(rot) 1.6261 | loss(pos) 0.2472 | loss(seq) 0.0033 | grad 8.0387 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4140
[2023-09-02 07:52:23,572::train::INFO] [train] Iter 07640 | loss 1.4440 | loss(rot) 0.3211 | loss(pos) 0.8886 | loss(seq) 0.2342 | grad 5.3845 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4450
[2023-09-02 07:52:26,262::train::INFO] [train] Iter 07641 | loss 2.1256 | loss(rot) 1.8793 | loss(pos) 0.1243 | loss(seq) 0.1221 | grad 4.0594 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4300
[2023-09-02 07:52:35,402::train::INFO] [train] Iter 07642 | loss 2.9560 | loss(rot) 2.3482 | loss(pos) 0.2027 | loss(seq) 0.4052 | grad 4.5811 | lr 0.0010 | time_forward 3.8590 | time_backward 5.2780
[2023-09-02 07:52:45,340::train::INFO] [train] Iter 07643 | loss 1.2568 | loss(rot) 0.4751 | loss(pos) 0.5899 | loss(seq) 0.1918 | grad 3.8745 | lr 0.0010 | time_forward 4.1910 | time_backward 5.7430
[2023-09-02 07:52:47,989::train::INFO] [train] Iter 07644 | loss 2.1840 | loss(rot) 1.6138 | loss(pos) 0.1781 | loss(seq) 0.3921 | grad 5.5121 | lr 0.0010 | time_forward 1.2180 | time_backward 1.4280
[2023-09-02 07:52:56,715::train::INFO] [train] Iter 07645 | loss 1.2524 | loss(rot) 0.4083 | loss(pos) 0.3760 | loss(seq) 0.4681 | grad 4.6292 | lr 0.0010 | time_forward 3.7690 | time_backward 4.9540
[2023-09-02 07:53:06,549::train::INFO] [train] Iter 07646 | loss 1.0825 | loss(rot) 0.0928 | loss(pos) 0.9628 | loss(seq) 0.0269 | grad 5.6497 | lr 0.0010 | time_forward 3.9630 | time_backward 5.8670
[2023-09-02 07:53:16,208::train::INFO] [train] Iter 07647 | loss 2.0879 | loss(rot) 1.4421 | loss(pos) 0.1231 | loss(seq) 0.5227 | grad 5.1742 | lr 0.0010 | time_forward 3.9820 | time_backward 5.6740
[2023-09-02 07:53:25,336::train::INFO] [train] Iter 07648 | loss 2.8843 | loss(rot) 2.5288 | loss(pos) 0.3548 | loss(seq) 0.0007 | grad 7.0272 | lr 0.0010 | time_forward 3.8130 | time_backward 5.3020
[2023-09-02 07:53:27,996::train::INFO] [train] Iter 07649 | loss 2.5788 | loss(rot) 1.8729 | loss(pos) 0.2125 | loss(seq) 0.4934 | grad 5.2193 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4140
[2023-09-02 07:53:37,984::train::INFO] [train] Iter 07650 | loss 3.0827 | loss(rot) 2.7221 | loss(pos) 0.3480 | loss(seq) 0.0127 | grad 5.6579 | lr 0.0010 | time_forward 4.2090 | time_backward 5.7750
[2023-09-02 07:53:47,930::train::INFO] [train] Iter 07651 | loss 1.8488 | loss(rot) 0.9983 | loss(pos) 0.3357 | loss(seq) 0.5148 | grad 4.3932 | lr 0.0010 | time_forward 4.0220 | time_backward 5.9200
[2023-09-02 07:53:50,155::train::INFO] [train] Iter 07652 | loss 2.4060 | loss(rot) 1.8987 | loss(pos) 0.4539 | loss(seq) 0.0534 | grad 5.9884 | lr 0.0010 | time_forward 1.0530 | time_backward 1.1700
[2023-09-02 07:53:52,891::train::INFO] [train] Iter 07653 | loss 2.8591 | loss(rot) 2.2750 | loss(pos) 0.4520 | loss(seq) 0.1322 | grad 10.4957 | lr 0.0010 | time_forward 1.3090 | time_backward 1.4220
[2023-09-02 07:54:01,414::train::INFO] [train] Iter 07654 | loss 0.9693 | loss(rot) 0.4321 | loss(pos) 0.2380 | loss(seq) 0.2991 | grad 4.5945 | lr 0.0010 | time_forward 3.6510 | time_backward 4.8680
[2023-09-02 07:54:04,057::train::INFO] [train] Iter 07655 | loss 1.3333 | loss(rot) 0.5600 | loss(pos) 0.3340 | loss(seq) 0.4394 | grad 3.7163 | lr 0.0010 | time_forward 1.2600 | time_backward 1.3800
[2023-09-02 07:54:06,787::train::INFO] [train] Iter 07656 | loss 2.5217 | loss(rot) 2.2554 | loss(pos) 0.1474 | loss(seq) 0.1189 | grad 3.3589 | lr 0.0010 | time_forward 1.3090 | time_backward 1.4170
[2023-09-02 07:54:09,273::train::INFO] [train] Iter 07657 | loss 3.2467 | loss(rot) 2.1745 | loss(pos) 0.6590 | loss(seq) 0.4132 | grad 5.4453 | lr 0.0010 | time_forward 1.2240 | time_backward 1.2580
[2023-09-02 07:54:18,168::train::INFO] [train] Iter 07658 | loss 1.3767 | loss(rot) 1.1398 | loss(pos) 0.1900 | loss(seq) 0.0469 | grad 4.4450 | lr 0.0010 | time_forward 3.8200 | time_backward 5.0730
[2023-09-02 07:54:26,661::train::INFO] [train] Iter 07659 | loss 0.8835 | loss(rot) 0.1970 | loss(pos) 0.6200 | loss(seq) 0.0665 | grad 3.9872 | lr 0.0010 | time_forward 3.7020 | time_backward 4.7860
[2023-09-02 07:54:33,183::train::INFO] [train] Iter 07660 | loss 2.4712 | loss(rot) 1.8503 | loss(pos) 0.3105 | loss(seq) 0.3104 | grad 4.0845 | lr 0.0010 | time_forward 2.7500 | time_backward 3.7680
[2023-09-02 07:54:43,621::train::INFO] [train] Iter 07661 | loss 1.5624 | loss(rot) 0.7090 | loss(pos) 0.4735 | loss(seq) 0.3799 | grad 5.0513 | lr 0.0010 | time_forward 4.2900 | time_backward 6.1450
[2023-09-02 07:54:51,745::train::INFO] [train] Iter 07662 | loss 2.1420 | loss(rot) 1.0197 | loss(pos) 0.8791 | loss(seq) 0.2432 | grad 7.9362 | lr 0.0010 | time_forward 3.4590 | time_backward 4.6440
[2023-09-02 07:55:00,302::train::INFO] [train] Iter 07663 | loss 2.4696 | loss(rot) 2.0488 | loss(pos) 0.2066 | loss(seq) 0.2142 | grad 4.6363 | lr 0.0010 | time_forward 3.6160 | time_backward 4.9370
[2023-09-02 07:55:07,959::train::INFO] [train] Iter 07664 | loss 1.1985 | loss(rot) 0.4548 | loss(pos) 0.6281 | loss(seq) 0.1156 | grad 5.3928 | lr 0.0010 | time_forward 3.3260 | time_backward 4.3270
[2023-09-02 07:55:15,964::train::INFO] [train] Iter 07665 | loss 1.7131 | loss(rot) 1.0876 | loss(pos) 0.1697 | loss(seq) 0.4558 | grad 4.8803 | lr 0.0010 | time_forward 3.3790 | time_backward 4.6230
[2023-09-02 07:55:18,937::train::INFO] [train] Iter 07666 | loss 0.8591 | loss(rot) 0.1083 | loss(pos) 0.4335 | loss(seq) 0.3173 | grad 3.0498 | lr 0.0010 | time_forward 1.4820 | time_backward 1.4880
[2023-09-02 07:55:27,863::train::INFO] [train] Iter 07667 | loss 2.3535 | loss(rot) 1.7258 | loss(pos) 0.1625 | loss(seq) 0.4653 | grad 4.2885 | lr 0.0010 | time_forward 3.7800 | time_backward 5.1400
[2023-09-02 07:55:30,607::train::INFO] [train] Iter 07668 | loss 2.8668 | loss(rot) 2.7027 | loss(pos) 0.1143 | loss(seq) 0.0498 | grad 3.4159 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4930
[2023-09-02 07:55:38,462::train::INFO] [train] Iter 07669 | loss 3.0400 | loss(rot) 2.2706 | loss(pos) 0.3509 | loss(seq) 0.4185 | grad 5.6749 | lr 0.0010 | time_forward 3.2970 | time_backward 4.5550
[2023-09-02 07:55:48,060::train::INFO] [train] Iter 07670 | loss 2.2663 | loss(rot) 0.4997 | loss(pos) 1.1717 | loss(seq) 0.5950 | grad 5.9523 | lr 0.0010 | time_forward 3.9170 | time_backward 5.6770
[2023-09-02 07:55:57,862::train::INFO] [train] Iter 07671 | loss 1.3056 | loss(rot) 0.5000 | loss(pos) 0.5709 | loss(seq) 0.2347 | grad 3.1333 | lr 0.0010 | time_forward 3.9480 | time_backward 5.8500
[2023-09-02 07:56:00,579::train::INFO] [train] Iter 07672 | loss 2.3394 | loss(rot) 1.4701 | loss(pos) 0.3761 | loss(seq) 0.4931 | grad 5.5104 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4240
[2023-09-02 07:56:09,535::train::INFO] [train] Iter 07673 | loss 2.3221 | loss(rot) 1.6350 | loss(pos) 0.2678 | loss(seq) 0.4193 | grad 5.1700 | lr 0.0010 | time_forward 3.7380 | time_backward 5.2140
[2023-09-02 07:56:18,284::train::INFO] [train] Iter 07674 | loss 1.3792 | loss(rot) 0.8456 | loss(pos) 0.2016 | loss(seq) 0.3320 | grad 4.3517 | lr 0.0010 | time_forward 3.5690 | time_backward 5.1770
[2023-09-02 07:56:29,054::train::INFO] [train] Iter 07675 | loss 1.3221 | loss(rot) 0.1037 | loss(pos) 0.9886 | loss(seq) 0.2297 | grad 5.3768 | lr 0.0010 | time_forward 4.4960 | time_backward 6.2700
[2023-09-02 07:56:39,356::train::INFO] [train] Iter 07676 | loss 1.9433 | loss(rot) 0.0876 | loss(pos) 1.8482 | loss(seq) 0.0075 | grad 5.0259 | lr 0.0010 | time_forward 4.2410 | time_backward 6.0570
[2023-09-02 07:56:49,431::train::INFO] [train] Iter 07677 | loss 0.8858 | loss(rot) 0.3892 | loss(pos) 0.4598 | loss(seq) 0.0368 | grad 3.9945 | lr 0.0010 | time_forward 4.1100 | time_backward 5.9610
[2023-09-02 07:56:52,120::train::INFO] [train] Iter 07678 | loss 1.2120 | loss(rot) 0.6832 | loss(pos) 0.2821 | loss(seq) 0.2468 | grad 4.3280 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4140
[2023-09-02 07:57:02,384::train::INFO] [train] Iter 07679 | loss 1.4195 | loss(rot) 0.5561 | loss(pos) 0.3227 | loss(seq) 0.5407 | grad 2.7324 | lr 0.0010 | time_forward 4.1360 | time_backward 6.1250
[2023-09-02 07:57:09,635::train::INFO] [train] Iter 07680 | loss 1.0512 | loss(rot) 0.4901 | loss(pos) 0.2126 | loss(seq) 0.3485 | grad 3.6820 | lr 0.0010 | time_forward 3.0460 | time_backward 4.2020
[2023-09-02 07:57:12,328::train::INFO] [train] Iter 07681 | loss 0.8242 | loss(rot) 0.0765 | loss(pos) 0.7264 | loss(seq) 0.0213 | grad 5.6012 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4380
[2023-09-02 07:57:23,669::train::INFO] [train] Iter 07682 | loss 1.9227 | loss(rot) 0.5394 | loss(pos) 1.0973 | loss(seq) 0.2860 | grad 5.6266 | lr 0.0010 | time_forward 5.3800 | time_backward 5.9570
[2023-09-02 07:57:33,738::train::INFO] [train] Iter 07683 | loss 1.9263 | loss(rot) 1.1670 | loss(pos) 0.2385 | loss(seq) 0.5208 | grad 4.5014 | lr 0.0010 | time_forward 4.2670 | time_backward 5.7990
[2023-09-02 07:57:40,806::train::INFO] [train] Iter 07684 | loss 1.0130 | loss(rot) 0.3035 | loss(pos) 0.2082 | loss(seq) 0.5013 | grad 5.2468 | lr 0.0010 | time_forward 3.0030 | time_backward 4.0610
[2023-09-02 07:57:43,295::train::INFO] [train] Iter 07685 | loss 2.9588 | loss(rot) 2.8396 | loss(pos) 0.0994 | loss(seq) 0.0198 | grad 3.9072 | lr 0.0010 | time_forward 1.2130 | time_backward 1.2730
[2023-09-02 07:57:51,600::train::INFO] [train] Iter 07686 | loss 2.3203 | loss(rot) 0.0355 | loss(pos) 2.2841 | loss(seq) 0.0007 | grad 6.2983 | lr 0.0010 | time_forward 3.5150 | time_backward 4.7860
[2023-09-02 07:57:54,333::train::INFO] [train] Iter 07687 | loss 1.5593 | loss(rot) 0.6372 | loss(pos) 0.4543 | loss(seq) 0.4678 | grad 3.9530 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4400