text
stringlengths 56
1.16k
|
---|
[2023-09-02 07:57:57,221::train::INFO] [train] Iter 07688 | loss 1.5996 | loss(rot) 1.1743 | loss(pos) 0.2069 | loss(seq) 0.2184 | grad 5.0396 | lr 0.0010 | time_forward 1.4390 | time_backward 1.4450 |
[2023-09-02 07:58:02,026::train::INFO] [train] Iter 07689 | loss 2.2549 | loss(rot) 1.4577 | loss(pos) 0.3597 | loss(seq) 0.4375 | grad 7.5631 | lr 0.0010 | time_forward 2.1280 | time_backward 2.6740 |
[2023-09-02 07:58:10,694::train::INFO] [train] Iter 07690 | loss 1.1917 | loss(rot) 0.5322 | loss(pos) 0.3978 | loss(seq) 0.2617 | grad 3.6095 | lr 0.0010 | time_forward 3.6220 | time_backward 5.0430 |
[2023-09-02 07:58:15,266::train::INFO] [train] Iter 07691 | loss 2.3177 | loss(rot) 1.8850 | loss(pos) 0.2810 | loss(seq) 0.1517 | grad 6.0151 | lr 0.0010 | time_forward 2.0090 | time_backward 2.4840 |
[2023-09-02 07:58:23,849::train::INFO] [train] Iter 07692 | loss 1.4032 | loss(rot) 0.5507 | loss(pos) 0.3905 | loss(seq) 0.4620 | grad 6.4654 | lr 0.0010 | time_forward 3.6010 | time_backward 4.9780 |
[2023-09-02 07:58:32,215::train::INFO] [train] Iter 07693 | loss 1.3174 | loss(rot) 1.1720 | loss(pos) 0.1004 | loss(seq) 0.0450 | grad 4.5248 | lr 0.0010 | time_forward 3.4690 | time_backward 4.8300 |
[2023-09-02 07:58:42,346::train::INFO] [train] Iter 07694 | loss 2.2357 | loss(rot) 2.0043 | loss(pos) 0.1498 | loss(seq) 0.0816 | grad 3.8063 | lr 0.0010 | time_forward 4.2750 | time_backward 5.8520 |
[2023-09-02 07:58:51,696::train::INFO] [train] Iter 07695 | loss 1.2974 | loss(rot) 0.4205 | loss(pos) 0.8406 | loss(seq) 0.0362 | grad 4.7717 | lr 0.0010 | time_forward 3.9390 | time_backward 5.4070 |
[2023-09-02 07:59:00,592::train::INFO] [train] Iter 07696 | loss 1.6775 | loss(rot) 0.6829 | loss(pos) 0.4414 | loss(seq) 0.5532 | grad 4.0110 | lr 0.0010 | time_forward 3.9950 | time_backward 4.8970 |
[2023-09-02 07:59:08,530::train::INFO] [train] Iter 07697 | loss 2.7712 | loss(rot) 2.5212 | loss(pos) 0.2501 | loss(seq) 0.0000 | grad 4.7777 | lr 0.0010 | time_forward 3.3360 | time_backward 4.5980 |
[2023-09-02 07:59:11,237::train::INFO] [train] Iter 07698 | loss 1.3984 | loss(rot) 0.3162 | loss(pos) 1.0249 | loss(seq) 0.0573 | grad 6.3700 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4740 |
[2023-09-02 07:59:19,329::train::INFO] [train] Iter 07699 | loss 2.1767 | loss(rot) 1.1245 | loss(pos) 0.4824 | loss(seq) 0.5698 | grad 5.7458 | lr 0.0010 | time_forward 3.5060 | time_backward 4.5690 |
[2023-09-02 07:59:27,328::train::INFO] [train] Iter 07700 | loss 2.7512 | loss(rot) 2.0129 | loss(pos) 0.2927 | loss(seq) 0.4455 | grad 5.6024 | lr 0.0010 | time_forward 3.3900 | time_backward 4.6060 |
[2023-09-02 07:59:35,913::train::INFO] [train] Iter 07701 | loss 1.0929 | loss(rot) 0.1499 | loss(pos) 0.5407 | loss(seq) 0.4023 | grad 5.3878 | lr 0.0010 | time_forward 3.6180 | time_backward 4.9650 |
[2023-09-02 07:59:44,629::train::INFO] [train] Iter 07702 | loss 1.6237 | loss(rot) 1.4934 | loss(pos) 0.1167 | loss(seq) 0.0136 | grad 4.6901 | lr 0.0010 | time_forward 3.7700 | time_backward 4.9420 |
[2023-09-02 07:59:52,709::train::INFO] [train] Iter 07703 | loss 1.9506 | loss(rot) 1.8509 | loss(pos) 0.0706 | loss(seq) 0.0291 | grad 5.7770 | lr 0.0010 | time_forward 3.3870 | time_backward 4.6890 |
[2023-09-02 07:59:55,409::train::INFO] [train] Iter 07704 | loss 2.3009 | loss(rot) 2.1742 | loss(pos) 0.1197 | loss(seq) 0.0071 | grad 5.6545 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4500 |
[2023-09-02 08:00:05,435::train::INFO] [train] Iter 07705 | loss 1.2462 | loss(rot) 0.2087 | loss(pos) 0.9988 | loss(seq) 0.0387 | grad 6.1312 | lr 0.0010 | time_forward 4.2420 | time_backward 5.7640 |
[2023-09-02 08:00:08,118::train::INFO] [train] Iter 07706 | loss 2.6055 | loss(rot) 2.4832 | loss(pos) 0.1220 | loss(seq) 0.0003 | grad 3.5848 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4300 |
[2023-09-02 08:00:17,047::train::INFO] [train] Iter 07707 | loss 1.9204 | loss(rot) 1.6481 | loss(pos) 0.2582 | loss(seq) 0.0140 | grad 5.4650 | lr 0.0010 | time_forward 3.7900 | time_backward 5.1350 |
[2023-09-02 08:00:25,127::train::INFO] [train] Iter 07708 | loss 0.6499 | loss(rot) 0.2497 | loss(pos) 0.2593 | loss(seq) 0.1409 | grad 3.0473 | lr 0.0010 | time_forward 3.4640 | time_backward 4.6120 |
[2023-09-02 08:00:33,505::train::INFO] [train] Iter 07709 | loss 2.1506 | loss(rot) 1.7099 | loss(pos) 0.1375 | loss(seq) 0.3033 | grad 5.7376 | lr 0.0010 | time_forward 3.6130 | time_backward 4.7620 |
[2023-09-02 08:00:42,921::train::INFO] [train] Iter 07710 | loss 3.5714 | loss(rot) 0.0856 | loss(pos) 3.4858 | loss(seq) 0.0000 | grad 9.4667 | lr 0.0010 | time_forward 4.3800 | time_backward 5.0330 |
[2023-09-02 08:00:51,719::train::INFO] [train] Iter 07711 | loss 0.8852 | loss(rot) 0.3888 | loss(pos) 0.3754 | loss(seq) 0.1210 | grad 3.9645 | lr 0.0010 | time_forward 3.7560 | time_backward 5.0390 |
[2023-09-02 08:00:54,379::train::INFO] [train] Iter 07712 | loss 3.1251 | loss(rot) 1.8842 | loss(pos) 0.6691 | loss(seq) 0.5718 | grad 6.6241 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4000 |
[2023-09-02 08:01:04,969::train::INFO] [train] Iter 07713 | loss 3.3841 | loss(rot) 0.0225 | loss(pos) 3.3616 | loss(seq) 0.0000 | grad 9.2791 | lr 0.0010 | time_forward 4.5230 | time_backward 6.0640 |
[2023-09-02 08:01:11,780::train::INFO] [train] Iter 07714 | loss 2.0126 | loss(rot) 1.3929 | loss(pos) 0.1475 | loss(seq) 0.4722 | grad 4.6106 | lr 0.0010 | time_forward 2.9530 | time_backward 3.8540 |
[2023-09-02 08:01:20,199::train::INFO] [train] Iter 07715 | loss 2.6754 | loss(rot) 2.1138 | loss(pos) 0.3119 | loss(seq) 0.2497 | grad 4.7926 | lr 0.0010 | time_forward 3.5910 | time_backward 4.8240 |
[2023-09-02 08:01:22,691::train::INFO] [train] Iter 07716 | loss 2.9083 | loss(rot) 2.7987 | loss(pos) 0.0993 | loss(seq) 0.0103 | grad 4.2453 | lr 0.0010 | time_forward 1.1700 | time_backward 1.3180 |
[2023-09-02 08:01:32,979::train::INFO] [train] Iter 07717 | loss 1.8191 | loss(rot) 1.0843 | loss(pos) 0.2637 | loss(seq) 0.4711 | grad 6.2204 | lr 0.0010 | time_forward 4.1490 | time_backward 6.1350 |
[2023-09-02 08:01:41,824::train::INFO] [train] Iter 07718 | loss 2.3722 | loss(rot) 1.7917 | loss(pos) 0.2832 | loss(seq) 0.2974 | grad 5.1593 | lr 0.0010 | time_forward 3.6660 | time_backward 5.1750 |
[2023-09-02 08:01:50,994::train::INFO] [train] Iter 07719 | loss 1.5070 | loss(rot) 0.6249 | loss(pos) 0.4012 | loss(seq) 0.4808 | grad 5.2300 | lr 0.0010 | time_forward 3.7100 | time_backward 5.4560 |
[2023-09-02 08:02:00,442::train::INFO] [train] Iter 07720 | loss 1.9858 | loss(rot) 1.6395 | loss(pos) 0.0599 | loss(seq) 0.2864 | grad 4.4733 | lr 0.0010 | time_forward 4.1710 | time_backward 5.2740 |
[2023-09-02 08:02:10,423::train::INFO] [train] Iter 07721 | loss 2.4055 | loss(rot) 1.6604 | loss(pos) 0.3074 | loss(seq) 0.4377 | grad 5.1142 | lr 0.0010 | time_forward 4.3900 | time_backward 5.5880 |
[2023-09-02 08:02:13,309::train::INFO] [train] Iter 07722 | loss 1.3585 | loss(rot) 1.1061 | loss(pos) 0.0789 | loss(seq) 0.1735 | grad 2.8103 | lr 0.0010 | time_forward 1.3570 | time_backward 1.5240 |
[2023-09-02 08:02:20,762::train::INFO] [train] Iter 07723 | loss 1.9451 | loss(rot) 1.8484 | loss(pos) 0.0585 | loss(seq) 0.0382 | grad 5.1489 | lr 0.0010 | time_forward 3.0980 | time_backward 4.3510 |
[2023-09-02 08:02:23,541::train::INFO] [train] Iter 07724 | loss 1.8770 | loss(rot) 1.6640 | loss(pos) 0.1960 | loss(seq) 0.0170 | grad 6.7492 | lr 0.0010 | time_forward 1.3440 | time_backward 1.4320 |
[2023-09-02 08:02:26,433::train::INFO] [train] Iter 07725 | loss 2.2949 | loss(rot) 0.0191 | loss(pos) 2.2727 | loss(seq) 0.0031 | grad 6.4702 | lr 0.0010 | time_forward 1.4050 | time_backward 1.4830 |
[2023-09-02 08:02:36,176::train::INFO] [train] Iter 07726 | loss 1.3657 | loss(rot) 0.1113 | loss(pos) 1.2282 | loss(seq) 0.0261 | grad 3.9297 | lr 0.0010 | time_forward 4.7770 | time_backward 4.9620 |
[2023-09-02 08:02:44,620::train::INFO] [train] Iter 07727 | loss 1.7829 | loss(rot) 1.5189 | loss(pos) 0.1122 | loss(seq) 0.1518 | grad 4.9322 | lr 0.0010 | time_forward 3.4250 | time_backward 5.0150 |
[2023-09-02 08:02:51,517::train::INFO] [train] Iter 07728 | loss 1.8630 | loss(rot) 1.6446 | loss(pos) 0.1715 | loss(seq) 0.0468 | grad 5.6629 | lr 0.0010 | time_forward 2.9650 | time_backward 3.9280 |
[2023-09-02 08:02:54,267::train::INFO] [train] Iter 07729 | loss 1.2768 | loss(rot) 0.8759 | loss(pos) 0.0836 | loss(seq) 0.3173 | grad 4.1813 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4700 |
[2023-09-02 08:03:04,447::train::INFO] [train] Iter 07730 | loss 2.0095 | loss(rot) 1.8867 | loss(pos) 0.1180 | loss(seq) 0.0049 | grad 4.5955 | lr 0.0010 | time_forward 4.1820 | time_backward 5.9940 |
[2023-09-02 08:03:12,735::train::INFO] [train] Iter 07731 | loss 3.8265 | loss(rot) 0.1527 | loss(pos) 3.6738 | loss(seq) 0.0000 | grad 6.1858 | lr 0.0010 | time_forward 3.3460 | time_backward 4.9380 |
[2023-09-02 08:03:23,252::train::INFO] [train] Iter 07732 | loss 1.7591 | loss(rot) 0.9282 | loss(pos) 0.3209 | loss(seq) 0.5099 | grad 5.5871 | lr 0.0010 | time_forward 4.0230 | time_backward 6.4910 |
[2023-09-02 08:03:26,033::train::INFO] [train] Iter 07733 | loss 1.8320 | loss(rot) 0.9107 | loss(pos) 0.4457 | loss(seq) 0.4756 | grad 4.9976 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4370 |
[2023-09-02 08:03:28,840::train::INFO] [train] Iter 07734 | loss 1.7375 | loss(rot) 1.2888 | loss(pos) 0.1224 | loss(seq) 0.3262 | grad 4.8587 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4780 |
[2023-09-02 08:03:38,274::train::INFO] [train] Iter 07735 | loss 1.1674 | loss(rot) 0.1667 | loss(pos) 0.7294 | loss(seq) 0.2713 | grad 3.2554 | lr 0.0010 | time_forward 3.8860 | time_backward 5.5440 |
[2023-09-02 08:03:48,602::train::INFO] [train] Iter 07736 | loss 2.1153 | loss(rot) 0.4414 | loss(pos) 1.4144 | loss(seq) 0.2595 | grad 8.8018 | lr 0.0010 | time_forward 4.1270 | time_backward 6.1980 |
[2023-09-02 08:03:59,262::train::INFO] [train] Iter 07737 | loss 2.3235 | loss(rot) 1.9484 | loss(pos) 0.1444 | loss(seq) 0.2307 | grad 3.2487 | lr 0.0010 | time_forward 4.2280 | time_backward 6.4280 |
[2023-09-02 08:04:07,876::train::INFO] [train] Iter 07738 | loss 2.2883 | loss(rot) 2.1059 | loss(pos) 0.1818 | loss(seq) 0.0007 | grad 6.9585 | lr 0.0010 | time_forward 3.6060 | time_backward 5.0040 |
[2023-09-02 08:04:10,769::train::INFO] [train] Iter 07739 | loss 1.7424 | loss(rot) 1.5815 | loss(pos) 0.1514 | loss(seq) 0.0095 | grad 5.0286 | lr 0.0010 | time_forward 1.4250 | time_backward 1.4660 |
[2023-09-02 08:04:19,875::train::INFO] [train] Iter 07740 | loss 0.8599 | loss(rot) 0.1912 | loss(pos) 0.5059 | loss(seq) 0.1629 | grad 2.5392 | lr 0.0010 | time_forward 3.8480 | time_backward 5.2530 |
[2023-09-02 08:04:29,994::train::INFO] [train] Iter 07741 | loss 2.5820 | loss(rot) 2.3674 | loss(pos) 0.2007 | loss(seq) 0.0140 | grad 4.0434 | lr 0.0010 | time_forward 4.2270 | time_backward 5.8900 |
[2023-09-02 08:04:40,216::train::INFO] [train] Iter 07742 | loss 1.2834 | loss(rot) 0.4725 | loss(pos) 0.2928 | loss(seq) 0.5181 | grad 3.3133 | lr 0.0010 | time_forward 4.2460 | time_backward 5.9720 |
[2023-09-02 08:04:49,284::train::INFO] [train] Iter 07743 | loss 1.6467 | loss(rot) 0.2771 | loss(pos) 0.9455 | loss(seq) 0.4241 | grad 7.3299 | lr 0.0010 | time_forward 3.8910 | time_backward 5.1730 |
[2023-09-02 08:04:58,751::train::INFO] [train] Iter 07744 | loss 1.2922 | loss(rot) 0.6616 | loss(pos) 0.2610 | loss(seq) 0.3697 | grad 4.1419 | lr 0.0010 | time_forward 4.0820 | time_backward 5.3810 |
[2023-09-02 08:05:09,181::train::INFO] [train] Iter 07745 | loss 1.0308 | loss(rot) 0.1985 | loss(pos) 0.5987 | loss(seq) 0.2336 | grad 3.4058 | lr 0.0010 | time_forward 4.2810 | time_backward 6.1450 |
[2023-09-02 08:05:19,448::train::INFO] [train] Iter 07746 | loss 1.6350 | loss(rot) 0.8029 | loss(pos) 0.2554 | loss(seq) 0.5767 | grad 3.5891 | lr 0.0010 | time_forward 4.2060 | time_backward 6.0570 |
[2023-09-02 08:05:22,531::train::INFO] [train] Iter 07747 | loss 1.1161 | loss(rot) 0.5452 | loss(pos) 0.2237 | loss(seq) 0.3472 | grad 4.7157 | lr 0.0010 | time_forward 1.5400 | time_backward 1.5170 |
[2023-09-02 08:05:31,411::train::INFO] [train] Iter 07748 | loss 1.1643 | loss(rot) 0.3467 | loss(pos) 0.3436 | loss(seq) 0.4740 | grad 3.8150 | lr 0.0010 | time_forward 3.8360 | time_backward 5.0400 |
[2023-09-02 08:05:42,482::train::INFO] [train] Iter 07749 | loss 1.8424 | loss(rot) 1.3118 | loss(pos) 0.2080 | loss(seq) 0.3226 | grad 5.1567 | lr 0.0010 | time_forward 4.5630 | time_backward 6.5040 |
[2023-09-02 08:05:51,905::train::INFO] [train] Iter 07750 | loss 2.4484 | loss(rot) 1.6261 | loss(pos) 0.3593 | loss(seq) 0.4629 | grad 5.8003 | lr 0.0010 | time_forward 4.1200 | time_backward 5.2780 |
[2023-09-02 08:05:54,731::train::INFO] [train] Iter 07751 | loss 1.2711 | loss(rot) 0.6562 | loss(pos) 0.3982 | loss(seq) 0.2168 | grad 5.3960 | lr 0.0010 | time_forward 1.3510 | time_backward 1.4710 |
[2023-09-02 08:06:04,300::train::INFO] [train] Iter 07752 | loss 1.6756 | loss(rot) 1.4020 | loss(pos) 0.2269 | loss(seq) 0.0466 | grad 5.2073 | lr 0.0010 | time_forward 4.1900 | time_backward 5.3750 |
[2023-09-02 08:06:13,960::train::INFO] [train] Iter 07753 | loss 1.2499 | loss(rot) 0.3067 | loss(pos) 0.9260 | loss(seq) 0.0172 | grad 4.9556 | lr 0.0010 | time_forward 4.0030 | time_backward 5.6540 |
[2023-09-02 08:06:16,685::train::INFO] [train] Iter 07754 | loss 2.0239 | loss(rot) 1.2104 | loss(pos) 0.2444 | loss(seq) 0.5691 | grad 4.0872 | lr 0.0010 | time_forward 1.3030 | time_backward 1.4070 |
[2023-09-02 08:06:25,188::train::INFO] [train] Iter 07755 | loss 1.2655 | loss(rot) 0.5222 | loss(pos) 0.2605 | loss(seq) 0.4828 | grad 4.3427 | lr 0.0010 | time_forward 3.6700 | time_backward 4.8300 |
[2023-09-02 08:06:27,936::train::INFO] [train] Iter 07756 | loss 1.6950 | loss(rot) 1.2117 | loss(pos) 0.1934 | loss(seq) 0.2899 | grad 4.9890 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4060 |
[2023-09-02 08:06:31,438::train::INFO] [train] Iter 07757 | loss 1.1094 | loss(rot) 0.4724 | loss(pos) 0.4376 | loss(seq) 0.1994 | grad 2.7247 | lr 0.0010 | time_forward 1.4970 | time_backward 2.0010 |
[2023-09-02 08:06:39,630::train::INFO] [train] Iter 07758 | loss 0.9165 | loss(rot) 0.1450 | loss(pos) 0.4150 | loss(seq) 0.3565 | grad 3.2496 | lr 0.0010 | time_forward 3.5350 | time_backward 4.6540 |
[2023-09-02 08:06:48,031::train::INFO] [train] Iter 07759 | loss 2.6047 | loss(rot) 2.4377 | loss(pos) 0.1664 | loss(seq) 0.0007 | grad 3.3053 | lr 0.0010 | time_forward 3.5950 | time_backward 4.8030 |
[2023-09-02 08:06:57,194::train::INFO] [train] Iter 07760 | loss 2.0321 | loss(rot) 1.2825 | loss(pos) 0.0962 | loss(seq) 0.6534 | grad 3.2844 | lr 0.0010 | time_forward 3.9160 | time_backward 5.2430 |
[2023-09-02 08:06:59,852::train::INFO] [train] Iter 07761 | loss 2.0167 | loss(rot) 1.8441 | loss(pos) 0.1029 | loss(seq) 0.0697 | grad 3.5565 | lr 0.0010 | time_forward 1.2850 | time_backward 1.3710 |
[2023-09-02 08:07:08,444::train::INFO] [train] Iter 07762 | loss 2.2271 | loss(rot) 0.0212 | loss(pos) 2.2059 | loss(seq) 0.0000 | grad 6.9082 | lr 0.0010 | time_forward 3.6060 | time_backward 4.9830 |
[2023-09-02 08:07:17,541::train::INFO] [train] Iter 07763 | loss 1.7536 | loss(rot) 1.4127 | loss(pos) 0.1199 | loss(seq) 0.2210 | grad 8.8964 | lr 0.0010 | time_forward 3.8450 | time_backward 5.2480 |
[2023-09-02 08:07:27,861::train::INFO] [train] Iter 07764 | loss 2.8884 | loss(rot) 2.4134 | loss(pos) 0.1564 | loss(seq) 0.3187 | grad 4.2150 | lr 0.0010 | time_forward 4.3120 | time_backward 6.0040 |
[2023-09-02 08:07:30,631::train::INFO] [train] Iter 07765 | loss 2.0849 | loss(rot) 1.7628 | loss(pos) 0.2340 | loss(seq) 0.0882 | grad 4.8062 | lr 0.0010 | time_forward 1.3370 | time_backward 1.4290 |
[2023-09-02 08:07:39,720::train::INFO] [train] Iter 07766 | loss 2.5467 | loss(rot) 0.4427 | loss(pos) 1.8375 | loss(seq) 0.2666 | grad 6.0772 | lr 0.0010 | time_forward 3.8420 | time_backward 5.2440 |
[2023-09-02 08:07:47,376::train::INFO] [train] Iter 07767 | loss 0.7139 | loss(rot) 0.0779 | loss(pos) 0.6204 | loss(seq) 0.0157 | grad 3.2778 | lr 0.0010 | time_forward 3.2440 | time_backward 4.4080 |
[2023-09-02 08:07:50,132::train::INFO] [train] Iter 07768 | loss 2.2435 | loss(rot) 2.1224 | loss(pos) 0.1135 | loss(seq) 0.0076 | grad 3.0670 | lr 0.0010 | time_forward 1.3030 | time_backward 1.4480 |
[2023-09-02 08:08:00,041::train::INFO] [train] Iter 07769 | loss 2.1919 | loss(rot) 1.7754 | loss(pos) 0.1700 | loss(seq) 0.2465 | grad 4.4367 | lr 0.0010 | time_forward 4.1050 | time_backward 5.8010 |
[2023-09-02 08:08:09,201::train::INFO] [train] Iter 07770 | loss 2.8574 | loss(rot) 2.6925 | loss(pos) 0.1642 | loss(seq) 0.0007 | grad 5.3421 | lr 0.0010 | time_forward 3.9490 | time_backward 5.2070 |
[2023-09-02 08:08:11,927::train::INFO] [train] Iter 07771 | loss 2.2914 | loss(rot) 1.7951 | loss(pos) 0.1853 | loss(seq) 0.3110 | grad 4.6442 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4450 |
[2023-09-02 08:08:14,704::train::INFO] [train] Iter 07772 | loss 2.9472 | loss(rot) 2.2944 | loss(pos) 0.2747 | loss(seq) 0.3781 | grad 5.3885 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4170 |
[2023-09-02 08:08:17,359::train::INFO] [train] Iter 07773 | loss 1.2718 | loss(rot) 0.2830 | loss(pos) 0.5648 | loss(seq) 0.4240 | grad 6.5285 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4030 |
[2023-09-02 08:08:27,707::train::INFO] [train] Iter 07774 | loss 2.7479 | loss(rot) 2.1263 | loss(pos) 0.2616 | loss(seq) 0.3600 | grad 4.6376 | lr 0.0010 | time_forward 4.3930 | time_backward 5.9500 |
[2023-09-02 08:08:37,555::train::INFO] [train] Iter 07775 | loss 0.9105 | loss(rot) 0.1596 | loss(pos) 0.7346 | loss(seq) 0.0163 | grad 6.5015 | lr 0.0010 | time_forward 3.9710 | time_backward 5.8730 |
[2023-09-02 08:08:40,326::train::INFO] [train] Iter 07776 | loss 2.2669 | loss(rot) 2.0934 | loss(pos) 0.1192 | loss(seq) 0.0543 | grad 4.4041 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4820 |
[2023-09-02 08:08:43,179::train::INFO] [train] Iter 07777 | loss 1.0867 | loss(rot) 0.4787 | loss(pos) 0.3165 | loss(seq) 0.2914 | grad 3.9580 | lr 0.0010 | time_forward 1.3540 | time_backward 1.4630 |
[2023-09-02 08:08:52,546::train::INFO] [train] Iter 07778 | loss 2.4910 | loss(rot) 1.4809 | loss(pos) 0.4178 | loss(seq) 0.5923 | grad 5.9991 | lr 0.0010 | time_forward 3.9710 | time_backward 5.3930 |
[2023-09-02 08:09:02,330::train::INFO] [train] Iter 07779 | loss 2.7355 | loss(rot) 2.3571 | loss(pos) 0.3623 | loss(seq) 0.0162 | grad 6.4765 | lr 0.0010 | time_forward 4.3920 | time_backward 5.3890 |
[2023-09-02 08:09:05,003::train::INFO] [train] Iter 07780 | loss 1.8634 | loss(rot) 0.8476 | loss(pos) 0.4887 | loss(seq) 0.5271 | grad 7.1415 | lr 0.0010 | time_forward 1.2730 | time_backward 1.3960 |
[2023-09-02 08:09:14,843::train::INFO] [train] Iter 07781 | loss 2.1038 | loss(rot) 0.7742 | loss(pos) 0.9864 | loss(seq) 0.3432 | grad 6.2953 | lr 0.0010 | time_forward 4.0970 | time_backward 5.7050 |
[2023-09-02 08:09:17,555::train::INFO] [train] Iter 07782 | loss 2.5319 | loss(rot) 1.9804 | loss(pos) 0.5353 | loss(seq) 0.0162 | grad 9.6606 | lr 0.0010 | time_forward 1.3080 | time_backward 1.4000 |
[2023-09-02 08:09:26,028::train::INFO] [train] Iter 07783 | loss 2.7214 | loss(rot) 2.5172 | loss(pos) 0.2036 | loss(seq) 0.0006 | grad 6.5605 | lr 0.0010 | time_forward 3.6820 | time_backward 4.7600 |
[2023-09-02 08:09:28,776::train::INFO] [train] Iter 07784 | loss 2.5381 | loss(rot) 2.3287 | loss(pos) 0.1304 | loss(seq) 0.0790 | grad 5.2847 | lr 0.0010 | time_forward 1.3150 | time_backward 1.4300 |
[2023-09-02 08:09:31,506::train::INFO] [train] Iter 07785 | loss 1.3412 | loss(rot) 0.8072 | loss(pos) 0.1025 | loss(seq) 0.4315 | grad 3.0567 | lr 0.0010 | time_forward 1.3190 | time_backward 1.4060 |
[2023-09-02 08:09:41,482::train::INFO] [train] Iter 07786 | loss 1.0905 | loss(rot) 0.5506 | loss(pos) 0.4928 | loss(seq) 0.0471 | grad 3.7523 | lr 0.0010 | time_forward 4.1240 | time_backward 5.8490 |
[2023-09-02 08:09:44,159::train::INFO] [train] Iter 07787 | loss 1.8202 | loss(rot) 1.5575 | loss(pos) 0.1257 | loss(seq) 0.1370 | grad 3.9426 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4380 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.