text
stringlengths
56
1.16k
[2023-09-02 08:22:07,593::train::INFO] [train] Iter 07888 | loss 2.2330 | loss(rot) 1.9240 | loss(pos) 0.2554 | loss(seq) 0.0537 | grad 4.8723 | lr 0.0010 | time_forward 1.4140 | time_backward 1.8770
[2023-09-02 08:22:16,665::train::INFO] [train] Iter 07889 | loss 2.0477 | loss(rot) 1.0384 | loss(pos) 0.4074 | loss(seq) 0.6020 | grad 5.6062 | lr 0.0010 | time_forward 3.7960 | time_backward 5.2730
[2023-09-02 08:22:26,459::train::INFO] [train] Iter 07890 | loss 2.8280 | loss(rot) 2.3097 | loss(pos) 0.2209 | loss(seq) 0.2975 | grad 4.6347 | lr 0.0010 | time_forward 3.9270 | time_backward 5.8630
[2023-09-02 08:22:29,291::train::INFO] [train] Iter 07891 | loss 0.9365 | loss(rot) 0.2827 | loss(pos) 0.5573 | loss(seq) 0.0965 | grad 5.1606 | lr 0.0010 | time_forward 1.3890 | time_backward 1.4390
[2023-09-02 08:22:32,270::train::INFO] [train] Iter 07892 | loss 1.8403 | loss(rot) 1.0844 | loss(pos) 0.2921 | loss(seq) 0.4639 | grad 3.2801 | lr 0.0010 | time_forward 1.7700 | time_backward 1.2050
[2023-09-02 08:22:41,648::train::INFO] [train] Iter 07893 | loss 1.7144 | loss(rot) 1.3660 | loss(pos) 0.1467 | loss(seq) 0.2018 | grad 4.0258 | lr 0.0010 | time_forward 4.0920 | time_backward 5.2820
[2023-09-02 08:22:51,811::train::INFO] [train] Iter 07894 | loss 1.9352 | loss(rot) 1.7823 | loss(pos) 0.1479 | loss(seq) 0.0049 | grad 5.0495 | lr 0.0010 | time_forward 4.1480 | time_backward 6.0120
[2023-09-02 08:22:59,603::train::INFO] [train] Iter 07895 | loss 1.3096 | loss(rot) 0.6259 | loss(pos) 0.2255 | loss(seq) 0.4582 | grad 4.4193 | lr 0.0010 | time_forward 3.5360 | time_backward 4.2530
[2023-09-02 08:23:07,700::train::INFO] [train] Iter 07896 | loss 1.6344 | loss(rot) 1.5113 | loss(pos) 0.1158 | loss(seq) 0.0073 | grad 6.5359 | lr 0.0010 | time_forward 3.3580 | time_backward 4.7350
[2023-09-02 08:23:17,741::train::INFO] [train] Iter 07897 | loss 1.9246 | loss(rot) 0.9250 | loss(pos) 0.4543 | loss(seq) 0.5453 | grad 2.7580 | lr 0.0010 | time_forward 4.1520 | time_backward 5.8850
[2023-09-02 08:23:26,167::train::INFO] [train] Iter 07898 | loss 2.3101 | loss(rot) 1.9873 | loss(pos) 0.1286 | loss(seq) 0.1942 | grad 4.5605 | lr 0.0010 | time_forward 3.5210 | time_backward 4.9020
[2023-09-02 08:23:28,650::train::INFO] [train] Iter 07899 | loss 1.3344 | loss(rot) 0.6718 | loss(pos) 0.2218 | loss(seq) 0.4408 | grad 4.1379 | lr 0.0010 | time_forward 1.1710 | time_backward 1.3090
[2023-09-02 08:23:35,112::train::INFO] [train] Iter 07900 | loss 2.6249 | loss(rot) 2.0491 | loss(pos) 0.2155 | loss(seq) 0.3603 | grad 4.3638 | lr 0.0010 | time_forward 2.6760 | time_backward 3.7820
[2023-09-02 08:23:44,844::train::INFO] [train] Iter 07901 | loss 1.0410 | loss(rot) 0.9061 | loss(pos) 0.1329 | loss(seq) 0.0020 | grad 4.5176 | lr 0.0010 | time_forward 3.9530 | time_backward 5.7750
[2023-09-02 08:23:47,652::train::INFO] [train] Iter 07902 | loss 2.0407 | loss(rot) 1.9574 | loss(pos) 0.0561 | loss(seq) 0.0272 | grad 4.0542 | lr 0.0010 | time_forward 1.3090 | time_backward 1.4950
[2023-09-02 08:23:56,838::train::INFO] [train] Iter 07903 | loss 0.6752 | loss(rot) 0.1709 | loss(pos) 0.2989 | loss(seq) 0.2054 | grad 3.0433 | lr 0.0010 | time_forward 3.8710 | time_backward 5.3120
[2023-09-02 08:24:05,629::train::INFO] [train] Iter 07904 | loss 2.2961 | loss(rot) 2.1288 | loss(pos) 0.1437 | loss(seq) 0.0236 | grad 3.2545 | lr 0.0010 | time_forward 3.6560 | time_backward 5.1310
[2023-09-02 08:24:07,911::train::INFO] [train] Iter 07905 | loss 1.8177 | loss(rot) 1.7377 | loss(pos) 0.0552 | loss(seq) 0.0249 | grad 4.9174 | lr 0.0010 | time_forward 1.0610 | time_backward 1.2170
[2023-09-02 08:24:10,666::train::INFO] [train] Iter 07906 | loss 0.7350 | loss(rot) 0.2021 | loss(pos) 0.1553 | loss(seq) 0.3776 | grad 2.3958 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4650
[2023-09-02 08:24:20,799::train::INFO] [train] Iter 07907 | loss 1.7152 | loss(rot) 1.5388 | loss(pos) 0.1432 | loss(seq) 0.0332 | grad 4.3855 | lr 0.0010 | time_forward 4.1690 | time_backward 5.9610
[2023-09-02 08:24:26,467::train::INFO] [train] Iter 07908 | loss 2.9077 | loss(rot) 2.0477 | loss(pos) 0.3366 | loss(seq) 0.5234 | grad 3.9006 | lr 0.0010 | time_forward 2.3890 | time_backward 3.2750
[2023-09-02 08:24:35,788::train::INFO] [train] Iter 07909 | loss 1.7150 | loss(rot) 1.4970 | loss(pos) 0.1833 | loss(seq) 0.0347 | grad 5.9278 | lr 0.0010 | time_forward 3.9120 | time_backward 5.4050
[2023-09-02 08:24:43,898::train::INFO] [train] Iter 07910 | loss 2.2771 | loss(rot) 2.0411 | loss(pos) 0.0981 | loss(seq) 0.1379 | grad 5.7627 | lr 0.0010 | time_forward 3.3340 | time_backward 4.7720
[2023-09-02 08:24:52,032::train::INFO] [train] Iter 07911 | loss 1.6007 | loss(rot) 1.3626 | loss(pos) 0.1083 | loss(seq) 0.1298 | grad 4.5880 | lr 0.0010 | time_forward 3.4320 | time_backward 4.6990
[2023-09-02 08:24:54,782::train::INFO] [train] Iter 07912 | loss 1.4169 | loss(rot) 0.2654 | loss(pos) 0.9174 | loss(seq) 0.2341 | grad 3.5391 | lr 0.0010 | time_forward 1.3060 | time_backward 1.4400
[2023-09-02 08:24:57,543::train::INFO] [train] Iter 07913 | loss 2.5333 | loss(rot) 1.9536 | loss(pos) 0.3612 | loss(seq) 0.2185 | grad 6.9403 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4770
[2023-09-02 08:25:05,958::train::INFO] [train] Iter 07914 | loss 1.5785 | loss(rot) 1.4140 | loss(pos) 0.1498 | loss(seq) 0.0148 | grad 5.9158 | lr 0.0010 | time_forward 3.5710 | time_backward 4.8400
[2023-09-02 08:25:13,649::train::INFO] [train] Iter 07915 | loss 1.7656 | loss(rot) 0.8140 | loss(pos) 0.8448 | loss(seq) 0.1068 | grad 5.7183 | lr 0.0010 | time_forward 3.2500 | time_backward 4.4380
[2023-09-02 08:25:21,861::train::INFO] [train] Iter 07916 | loss 1.2659 | loss(rot) 0.3689 | loss(pos) 0.3872 | loss(seq) 0.5098 | grad 4.3889 | lr 0.0010 | time_forward 3.4550 | time_backward 4.7540
[2023-09-02 08:25:31,967::train::INFO] [train] Iter 07917 | loss 2.7716 | loss(rot) 1.9868 | loss(pos) 0.2650 | loss(seq) 0.5199 | grad 3.5213 | lr 0.0010 | time_forward 4.2320 | time_backward 5.8700
[2023-09-02 08:25:34,229::train::INFO] [train] Iter 07918 | loss 1.5769 | loss(rot) 0.7887 | loss(pos) 0.2378 | loss(seq) 0.5504 | grad 4.3923 | lr 0.0010 | time_forward 1.0520 | time_backward 1.2060
[2023-09-02 08:25:44,511::train::INFO] [train] Iter 07919 | loss 1.7252 | loss(rot) 0.0539 | loss(pos) 1.4756 | loss(seq) 0.1956 | grad 4.7025 | lr 0.0010 | time_forward 4.1290 | time_backward 6.1490
[2023-09-02 08:25:47,299::train::INFO] [train] Iter 07920 | loss 1.3150 | loss(rot) 1.1008 | loss(pos) 0.1283 | loss(seq) 0.0859 | grad 4.4482 | lr 0.0010 | time_forward 1.3280 | time_backward 1.4560
[2023-09-02 08:25:50,022::train::INFO] [train] Iter 07921 | loss 1.1559 | loss(rot) 0.0816 | loss(pos) 0.7720 | loss(seq) 0.3023 | grad 5.0981 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4360
[2023-09-02 08:26:00,438::train::INFO] [train] Iter 07922 | loss 1.0695 | loss(rot) 0.0369 | loss(pos) 0.6839 | loss(seq) 0.3486 | grad 4.1954 | lr 0.0010 | time_forward 4.2010 | time_backward 6.2110
[2023-09-02 08:26:08,140::train::INFO] [train] Iter 07923 | loss 1.1168 | loss(rot) 1.0628 | loss(pos) 0.0537 | loss(seq) 0.0003 | grad 7.5767 | lr 0.0010 | time_forward 3.3190 | time_backward 4.3790
[2023-09-02 08:26:18,390::train::INFO] [train] Iter 07924 | loss 1.8376 | loss(rot) 1.6325 | loss(pos) 0.1524 | loss(seq) 0.0527 | grad 3.8303 | lr 0.0010 | time_forward 4.3150 | time_backward 5.9310
[2023-09-02 08:26:20,653::train::INFO] [train] Iter 07925 | loss 1.5537 | loss(rot) 0.2099 | loss(pos) 1.3377 | loss(seq) 0.0061 | grad 7.0998 | lr 0.0010 | time_forward 1.0680 | time_backward 1.1920
[2023-09-02 08:26:23,600::train::INFO] [train] Iter 07926 | loss 1.6877 | loss(rot) 1.4760 | loss(pos) 0.1719 | loss(seq) 0.0398 | grad 4.4508 | lr 0.0010 | time_forward 1.4970 | time_backward 1.4460
[2023-09-02 08:26:33,853::train::INFO] [train] Iter 07927 | loss 1.4031 | loss(rot) 0.4707 | loss(pos) 0.3262 | loss(seq) 0.6062 | grad 3.5996 | lr 0.0010 | time_forward 4.1100 | time_backward 6.1390
[2023-09-02 08:26:43,998::train::INFO] [train] Iter 07928 | loss 2.8326 | loss(rot) 2.0236 | loss(pos) 0.2873 | loss(seq) 0.5216 | grad 5.5512 | lr 0.0010 | time_forward 4.0870 | time_backward 6.0540
[2023-09-02 08:26:52,895::train::INFO] [train] Iter 07929 | loss 1.9363 | loss(rot) 1.1703 | loss(pos) 0.2791 | loss(seq) 0.4869 | grad 5.9953 | lr 0.0010 | time_forward 3.7450 | time_backward 5.1380
[2023-09-02 08:26:55,602::train::INFO] [train] Iter 07930 | loss 3.6234 | loss(rot) 2.0698 | loss(pos) 1.5267 | loss(seq) 0.0269 | grad 9.2925 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4200
[2023-09-02 08:27:03,579::train::INFO] [train] Iter 07931 | loss 3.0924 | loss(rot) 2.6244 | loss(pos) 0.1613 | loss(seq) 0.3067 | grad 6.2142 | lr 0.0010 | time_forward 3.3530 | time_backward 4.6020
[2023-09-02 08:27:10,294::train::INFO] [train] Iter 07932 | loss 2.2510 | loss(rot) 0.2345 | loss(pos) 2.0154 | loss(seq) 0.0011 | grad 9.7830 | lr 0.0010 | time_forward 3.3020 | time_backward 3.4100
[2023-09-02 08:27:20,683::train::INFO] [train] Iter 07933 | loss 0.8176 | loss(rot) 0.2559 | loss(pos) 0.4903 | loss(seq) 0.0714 | grad 5.4572 | lr 0.0010 | time_forward 4.2780 | time_backward 6.1070
[2023-09-02 08:27:32,151::train::INFO] [train] Iter 07934 | loss 2.6223 | loss(rot) 2.1067 | loss(pos) 0.1713 | loss(seq) 0.3443 | grad 4.5835 | lr 0.0010 | time_forward 5.6840 | time_backward 5.7810
[2023-09-02 08:27:34,963::train::INFO] [train] Iter 07935 | loss 2.1345 | loss(rot) 1.3642 | loss(pos) 0.2704 | loss(seq) 0.4998 | grad 6.0483 | lr 0.0010 | time_forward 1.3680 | time_backward 1.4410
[2023-09-02 08:27:45,236::train::INFO] [train] Iter 07936 | loss 1.1359 | loss(rot) 0.5654 | loss(pos) 0.1515 | loss(seq) 0.4191 | grad 4.4197 | lr 0.0010 | time_forward 4.2070 | time_backward 6.0620
[2023-09-02 08:27:55,582::train::INFO] [train] Iter 07937 | loss 2.6655 | loss(rot) 2.1172 | loss(pos) 0.1025 | loss(seq) 0.4457 | grad 3.8854 | lr 0.0010 | time_forward 4.1270 | time_backward 6.2160
[2023-09-02 08:28:05,880::train::INFO] [train] Iter 07938 | loss 2.9390 | loss(rot) 2.7614 | loss(pos) 0.1578 | loss(seq) 0.0197 | grad 5.6941 | lr 0.0010 | time_forward 4.1930 | time_backward 6.0990
[2023-09-02 08:28:08,643::train::INFO] [train] Iter 07939 | loss 1.8211 | loss(rot) 1.3380 | loss(pos) 0.0939 | loss(seq) 0.3891 | grad 3.9595 | lr 0.0010 | time_forward 1.3200 | time_backward 1.4390
[2023-09-02 08:28:11,323::train::INFO] [train] Iter 07940 | loss 2.0120 | loss(rot) 1.0736 | loss(pos) 0.4077 | loss(seq) 0.5307 | grad 6.2623 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4010
[2023-09-02 08:28:21,554::train::INFO] [train] Iter 07941 | loss 2.4089 | loss(rot) 1.8546 | loss(pos) 0.2328 | loss(seq) 0.3215 | grad 5.1616 | lr 0.0010 | time_forward 4.3720 | time_backward 5.8560
[2023-09-02 08:28:23,765::train::INFO] [train] Iter 07942 | loss 1.9336 | loss(rot) 1.2338 | loss(pos) 0.2464 | loss(seq) 0.4534 | grad 4.2112 | lr 0.0010 | time_forward 1.0950 | time_backward 1.1130
[2023-09-02 08:28:33,279::train::INFO] [train] Iter 07943 | loss 2.5824 | loss(rot) 2.3841 | loss(pos) 0.1976 | loss(seq) 0.0006 | grad 4.5536 | lr 0.0010 | time_forward 3.9970 | time_backward 5.4960
[2023-09-02 08:28:41,816::train::INFO] [train] Iter 07944 | loss 3.2316 | loss(rot) 2.4679 | loss(pos) 0.3208 | loss(seq) 0.4428 | grad 3.6706 | lr 0.0010 | time_forward 3.5690 | time_backward 4.9650
[2023-09-02 08:28:51,906::train::INFO] [train] Iter 07945 | loss 2.0161 | loss(rot) 0.2208 | loss(pos) 1.7912 | loss(seq) 0.0041 | grad 8.8574 | lr 0.0010 | time_forward 4.0970 | time_backward 5.9900
[2023-09-02 08:28:54,636::train::INFO] [train] Iter 07946 | loss 1.7812 | loss(rot) 1.0423 | loss(pos) 0.1544 | loss(seq) 0.5845 | grad 4.2610 | lr 0.0010 | time_forward 1.3370 | time_backward 1.3890
[2023-09-02 08:28:57,450::train::INFO] [train] Iter 07947 | loss 1.2054 | loss(rot) 0.4925 | loss(pos) 0.3963 | loss(seq) 0.3166 | grad 5.1215 | lr 0.0010 | time_forward 1.3980 | time_backward 1.4130
[2023-09-02 08:29:07,296::train::INFO] [train] Iter 07948 | loss 1.4631 | loss(rot) 0.3826 | loss(pos) 0.5938 | loss(seq) 0.4867 | grad 4.5026 | lr 0.0010 | time_forward 4.0540 | time_backward 5.7870
[2023-09-02 08:29:14,853::train::INFO] [train] Iter 07949 | loss 2.3850 | loss(rot) 1.4930 | loss(pos) 0.4754 | loss(seq) 0.4166 | grad 6.5979 | lr 0.0010 | time_forward 3.2110 | time_backward 4.3430
[2023-09-02 08:29:17,507::train::INFO] [train] Iter 07950 | loss 1.3771 | loss(rot) 0.5106 | loss(pos) 0.6549 | loss(seq) 0.2116 | grad 4.6015 | lr 0.0010 | time_forward 1.2240 | time_backward 1.4270
[2023-09-02 08:29:22,245::train::INFO] [train] Iter 07951 | loss 1.8919 | loss(rot) 1.3258 | loss(pos) 0.0596 | loss(seq) 0.5066 | grad 3.5470 | lr 0.0010 | time_forward 2.1390 | time_backward 2.5960
[2023-09-02 08:29:30,891::train::INFO] [train] Iter 07952 | loss 1.4469 | loss(rot) 0.6104 | loss(pos) 0.4248 | loss(seq) 0.4117 | grad 4.3809 | lr 0.0010 | time_forward 3.5830 | time_backward 5.0590
[2023-09-02 08:29:38,025::train::INFO] [train] Iter 07953 | loss 1.4106 | loss(rot) 0.6333 | loss(pos) 0.3248 | loss(seq) 0.4525 | grad 6.3086 | lr 0.0010 | time_forward 2.9320 | time_backward 4.1290
[2023-09-02 08:29:48,155::train::INFO] [train] Iter 07954 | loss 2.3669 | loss(rot) 1.3277 | loss(pos) 0.4460 | loss(seq) 0.5933 | grad 6.1082 | lr 0.0010 | time_forward 4.2290 | time_backward 5.8980
[2023-09-02 08:29:58,214::train::INFO] [train] Iter 07955 | loss 2.0684 | loss(rot) 1.1197 | loss(pos) 0.4686 | loss(seq) 0.4801 | grad 4.6481 | lr 0.0010 | time_forward 4.2680 | time_backward 5.7870
[2023-09-02 08:30:06,715::train::INFO] [train] Iter 07956 | loss 2.1520 | loss(rot) 1.9699 | loss(pos) 0.1569 | loss(seq) 0.0252 | grad 8.7969 | lr 0.0010 | time_forward 3.5490 | time_backward 4.9480
[2023-09-02 08:30:14,270::train::INFO] [train] Iter 07957 | loss 1.2320 | loss(rot) 0.2730 | loss(pos) 0.6639 | loss(seq) 0.2950 | grad 7.0228 | lr 0.0010 | time_forward 3.2080 | time_backward 4.3440
[2023-09-02 08:30:17,769::train::INFO] [train] Iter 07958 | loss 3.3452 | loss(rot) 3.0258 | loss(pos) 0.3194 | loss(seq) 0.0000 | grad 2.2714 | lr 0.0010 | time_forward 1.5170 | time_backward 1.9790
[2023-09-02 08:30:27,796::train::INFO] [train] Iter 07959 | loss 1.6966 | loss(rot) 0.5864 | loss(pos) 0.9396 | loss(seq) 0.1706 | grad 6.3669 | lr 0.0010 | time_forward 4.1550 | time_backward 5.8680
[2023-09-02 08:30:30,537::train::INFO] [train] Iter 07960 | loss 2.2342 | loss(rot) 1.9789 | loss(pos) 0.2424 | loss(seq) 0.0128 | grad 4.1865 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4640
[2023-09-02 08:30:33,314::train::INFO] [train] Iter 07961 | loss 1.6185 | loss(rot) 0.8932 | loss(pos) 0.4298 | loss(seq) 0.2955 | grad 5.5465 | lr 0.0010 | time_forward 1.2990 | time_backward 1.4750
[2023-09-02 08:30:42,888::train::INFO] [train] Iter 07962 | loss 1.9464 | loss(rot) 1.0887 | loss(pos) 0.4748 | loss(seq) 0.3829 | grad 5.8677 | lr 0.0010 | time_forward 4.1570 | time_backward 5.4120
[2023-09-02 08:30:52,804::train::INFO] [train] Iter 07963 | loss 1.4519 | loss(rot) 0.5314 | loss(pos) 0.4321 | loss(seq) 0.4884 | grad 4.4294 | lr 0.0010 | time_forward 4.1250 | time_backward 5.7880
[2023-09-02 08:30:55,501::train::INFO] [train] Iter 07964 | loss 2.1898 | loss(rot) 2.0211 | loss(pos) 0.1640 | loss(seq) 0.0047 | grad 4.1439 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4140
[2023-09-02 08:30:57,810::train::INFO] [train] Iter 07965 | loss 2.3520 | loss(rot) 1.7922 | loss(pos) 0.1359 | loss(seq) 0.4239 | grad 5.2019 | lr 0.0010 | time_forward 1.1270 | time_backward 1.1790
[2023-09-02 08:31:00,419::train::INFO] [train] Iter 07966 | loss 1.1847 | loss(rot) 0.9307 | loss(pos) 0.0945 | loss(seq) 0.1596 | grad 3.3584 | lr 0.0010 | time_forward 1.2100 | time_backward 1.3940
[2023-09-02 08:31:03,156::train::INFO] [train] Iter 07967 | loss 2.6217 | loss(rot) 2.3767 | loss(pos) 0.0913 | loss(seq) 0.1537 | grad 3.8853 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4420
[2023-09-02 08:31:05,925::train::INFO] [train] Iter 07968 | loss 1.5558 | loss(rot) 0.6840 | loss(pos) 0.3966 | loss(seq) 0.4752 | grad 4.9289 | lr 0.0010 | time_forward 1.3560 | time_backward 1.4090
[2023-09-02 08:31:14,660::train::INFO] [train] Iter 07969 | loss 2.4224 | loss(rot) 0.0513 | loss(pos) 2.3695 | loss(seq) 0.0016 | grad 5.3982 | lr 0.0010 | time_forward 3.6660 | time_backward 5.0370
[2023-09-02 08:31:24,830::train::INFO] [train] Iter 07970 | loss 3.1230 | loss(rot) 2.7402 | loss(pos) 0.1290 | loss(seq) 0.2539 | grad 3.4042 | lr 0.0010 | time_forward 4.0500 | time_backward 6.1170
[2023-09-02 08:31:28,155::train::INFO] [train] Iter 07971 | loss 2.1681 | loss(rot) 1.5758 | loss(pos) 0.1565 | loss(seq) 0.4358 | grad 3.3969 | lr 0.0010 | time_forward 1.4120 | time_backward 1.9090
[2023-09-02 08:31:30,851::train::INFO] [train] Iter 07972 | loss 2.0644 | loss(rot) 1.8748 | loss(pos) 0.1701 | loss(seq) 0.0195 | grad 4.3703 | lr 0.0010 | time_forward 1.2690 | time_backward 1.4230
[2023-09-02 08:31:33,725::train::INFO] [train] Iter 07973 | loss 2.5390 | loss(rot) 1.0087 | loss(pos) 0.9705 | loss(seq) 0.5597 | grad 3.6304 | lr 0.0010 | time_forward 1.3810 | time_backward 1.4890
[2023-09-02 08:31:43,754::train::INFO] [train] Iter 07974 | loss 2.0377 | loss(rot) 1.3130 | loss(pos) 0.2552 | loss(seq) 0.4695 | grad 4.8240 | lr 0.0010 | time_forward 4.0440 | time_backward 5.9820
[2023-09-02 08:31:52,559::train::INFO] [train] Iter 07975 | loss 1.4161 | loss(rot) 0.0819 | loss(pos) 1.3305 | loss(seq) 0.0037 | grad 5.9605 | lr 0.0010 | time_forward 3.7420 | time_backward 5.0590
[2023-09-02 08:31:55,303::train::INFO] [train] Iter 07976 | loss 1.9445 | loss(rot) 1.2263 | loss(pos) 0.2347 | loss(seq) 0.4834 | grad 3.4988 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4530
[2023-09-02 08:32:03,189::train::INFO] [train] Iter 07977 | loss 1.9771 | loss(rot) 1.5808 | loss(pos) 0.1189 | loss(seq) 0.2773 | grad 4.4476 | lr 0.0010 | time_forward 3.2120 | time_backward 4.6710
[2023-09-02 08:32:05,519::train::INFO] [train] Iter 07978 | loss 1.6146 | loss(rot) 0.9640 | loss(pos) 0.1748 | loss(seq) 0.4759 | grad 4.4668 | lr 0.0010 | time_forward 1.1180 | time_backward 1.2080
[2023-09-02 08:32:08,932::train::INFO] [train] Iter 07979 | loss 2.0839 | loss(rot) 1.2429 | loss(pos) 0.3995 | loss(seq) 0.4414 | grad 5.6221 | lr 0.0010 | time_forward 1.4060 | time_backward 2.0040
[2023-09-02 08:32:11,653::train::INFO] [train] Iter 07980 | loss 2.5178 | loss(rot) 2.1083 | loss(pos) 0.1812 | loss(seq) 0.2283 | grad 4.7268 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4550
[2023-09-02 08:32:20,485::train::INFO] [train] Iter 07981 | loss 1.7637 | loss(rot) 1.2294 | loss(pos) 0.1558 | loss(seq) 0.3786 | grad 4.7319 | lr 0.0010 | time_forward 3.7250 | time_backward 5.1050
[2023-09-02 08:32:27,617::train::INFO] [train] Iter 07982 | loss 2.3668 | loss(rot) 2.2123 | loss(pos) 0.1544 | loss(seq) 0.0001 | grad 3.4663 | lr 0.0010 | time_forward 3.0680 | time_backward 4.0600
[2023-09-02 08:32:36,229::train::INFO] [train] Iter 07983 | loss 2.0365 | loss(rot) 1.5624 | loss(pos) 0.1691 | loss(seq) 0.3049 | grad 4.2585 | lr 0.0010 | time_forward 3.6640 | time_backward 4.9440
[2023-09-02 08:32:46,169::train::INFO] [train] Iter 07984 | loss 1.3718 | loss(rot) 0.1960 | loss(pos) 1.1633 | loss(seq) 0.0125 | grad 5.8485 | lr 0.0010 | time_forward 4.0390 | time_backward 5.8980
[2023-09-02 08:32:56,091::train::INFO] [train] Iter 07985 | loss 1.5681 | loss(rot) 0.9065 | loss(pos) 0.1673 | loss(seq) 0.4943 | grad 3.2869 | lr 0.0010 | time_forward 4.0810 | time_backward 5.8390
[2023-09-02 08:33:04,458::train::INFO] [train] Iter 07986 | loss 1.5732 | loss(rot) 1.0382 | loss(pos) 0.2192 | loss(seq) 0.3158 | grad 5.8357 | lr 0.0010 | time_forward 3.4750 | time_backward 4.8890
[2023-09-02 08:33:14,249::train::INFO] [train] Iter 07987 | loss 0.9927 | loss(rot) 0.2578 | loss(pos) 0.3871 | loss(seq) 0.3478 | grad 2.8530 | lr 0.0010 | time_forward 4.0500 | time_backward 5.7370