text
stringlengths 56
1.16k
|
---|
[2023-09-02 08:33:24,123::train::INFO] [train] Iter 07988 | loss 1.4612 | loss(rot) 0.8584 | loss(pos) 0.1428 | loss(seq) 0.4600 | grad 4.3750 | lr 0.0010 | time_forward 3.9170 | time_backward 5.9540 |
[2023-09-02 08:33:32,817::train::INFO] [train] Iter 07989 | loss 3.1154 | loss(rot) 2.9270 | loss(pos) 0.1884 | loss(seq) 0.0000 | grad 4.0393 | lr 0.0010 | time_forward 3.7460 | time_backward 4.9440 |
[2023-09-02 08:33:35,513::train::INFO] [train] Iter 07990 | loss 1.7496 | loss(rot) 1.0749 | loss(pos) 0.2176 | loss(seq) 0.4570 | grad 3.5223 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4400 |
[2023-09-02 08:33:37,849::train::INFO] [train] Iter 07991 | loss 2.1078 | loss(rot) 1.4233 | loss(pos) 0.1836 | loss(seq) 0.5009 | grad 4.4550 | lr 0.0010 | time_forward 1.1320 | time_backward 1.2000 |
[2023-09-02 08:33:40,535::train::INFO] [train] Iter 07992 | loss 2.1588 | loss(rot) 1.2092 | loss(pos) 0.4293 | loss(seq) 0.5203 | grad 3.3971 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4040 |
[2023-09-02 08:33:46,624::train::INFO] [train] Iter 07993 | loss 2.3395 | loss(rot) 1.6530 | loss(pos) 0.2027 | loss(seq) 0.4838 | grad 5.1004 | lr 0.0010 | time_forward 2.5290 | time_backward 3.5290 |
[2023-09-02 08:33:56,896::train::INFO] [train] Iter 07994 | loss 2.5975 | loss(rot) 2.4578 | loss(pos) 0.1330 | loss(seq) 0.0068 | grad 3.8785 | lr 0.0010 | time_forward 4.3360 | time_backward 5.9320 |
[2023-09-02 08:33:59,329::train::INFO] [train] Iter 07995 | loss 2.9745 | loss(rot) 2.0070 | loss(pos) 0.2500 | loss(seq) 0.7175 | grad 4.2193 | lr 0.0010 | time_forward 1.1400 | time_backward 1.2890 |
[2023-09-02 08:34:08,255::train::INFO] [train] Iter 07996 | loss 1.2631 | loss(rot) 0.4837 | loss(pos) 0.4482 | loss(seq) 0.3312 | grad 4.1964 | lr 0.0010 | time_forward 3.7910 | time_backward 5.1310 |
[2023-09-02 08:34:18,263::train::INFO] [train] Iter 07997 | loss 4.6636 | loss(rot) 0.1240 | loss(pos) 4.5396 | loss(seq) 0.0000 | grad 10.8568 | lr 0.0010 | time_forward 4.2490 | time_backward 5.7540 |
[2023-09-02 08:34:26,753::train::INFO] [train] Iter 07998 | loss 1.5199 | loss(rot) 0.8775 | loss(pos) 0.2684 | loss(seq) 0.3740 | grad 3.9739 | lr 0.0010 | time_forward 3.5920 | time_backward 4.8940 |
[2023-09-02 08:34:35,044::train::INFO] [train] Iter 07999 | loss 1.4676 | loss(rot) 0.7026 | loss(pos) 0.3842 | loss(seq) 0.3809 | grad 3.8241 | lr 0.0010 | time_forward 3.4740 | time_backward 4.8140 |
[2023-09-02 08:34:45,108::train::INFO] [train] Iter 08000 | loss 2.0115 | loss(rot) 1.2796 | loss(pos) 0.1637 | loss(seq) 0.5682 | grad 2.6356 | lr 0.0010 | time_forward 4.1960 | time_backward 5.8640 |
[2023-09-02 08:35:22,375::train::INFO] [val] Iter 08000 | loss 2.1873 | loss(rot) 1.4027 | loss(pos) 0.5253 | loss(seq) 0.2594 |
[2023-09-02 08:35:33,160::train::INFO] [train] Iter 08001 | loss 0.8416 | loss(rot) 0.2945 | loss(pos) 0.4460 | loss(seq) 0.1011 | grad 3.6893 | lr 0.0010 | time_forward 4.3450 | time_backward 6.1040 |
[2023-09-02 08:35:35,839::train::INFO] [train] Iter 08002 | loss 1.5737 | loss(rot) 0.7987 | loss(pos) 0.2258 | loss(seq) 0.5491 | grad 4.8212 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4140 |
[2023-09-02 08:35:46,034::train::INFO] [train] Iter 08003 | loss 2.3037 | loss(rot) 1.9547 | loss(pos) 0.3490 | loss(seq) 0.0000 | grad 5.0047 | lr 0.0010 | time_forward 4.2320 | time_backward 5.9600 |
[2023-09-02 08:35:48,702::train::INFO] [train] Iter 08004 | loss 1.2431 | loss(rot) 0.2889 | loss(pos) 0.6822 | loss(seq) 0.2720 | grad 4.9950 | lr 0.0010 | time_forward 1.2730 | time_backward 1.3910 |
[2023-09-02 08:35:58,546::train::INFO] [train] Iter 08005 | loss 1.8967 | loss(rot) 1.1345 | loss(pos) 0.2794 | loss(seq) 0.4828 | grad 3.7767 | lr 0.0010 | time_forward 4.1460 | time_backward 5.6950 |
[2023-09-02 08:36:01,234::train::INFO] [train] Iter 08006 | loss 1.4419 | loss(rot) 0.5123 | loss(pos) 0.5038 | loss(seq) 0.4259 | grad 4.1176 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4070 |
[2023-09-02 08:36:11,378::train::INFO] [train] Iter 08007 | loss 1.4128 | loss(rot) 0.5843 | loss(pos) 0.1940 | loss(seq) 0.6345 | grad 2.9219 | lr 0.0010 | time_forward 4.2380 | time_backward 5.9030 |
[2023-09-02 08:36:18,033::train::INFO] [train] Iter 08008 | loss 1.2614 | loss(rot) 0.1399 | loss(pos) 1.1118 | loss(seq) 0.0097 | grad 4.4882 | lr 0.0010 | time_forward 2.7860 | time_backward 3.8650 |
[2023-09-02 08:36:28,330::train::INFO] [train] Iter 08009 | loss 1.9782 | loss(rot) 1.8829 | loss(pos) 0.0952 | loss(seq) 0.0000 | grad 4.6372 | lr 0.0010 | time_forward 4.1590 | time_backward 6.1350 |
[2023-09-02 08:36:31,044::train::INFO] [train] Iter 08010 | loss 1.3879 | loss(rot) 0.9958 | loss(pos) 0.1449 | loss(seq) 0.2473 | grad 5.0477 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4480 |
[2023-09-02 08:36:40,775::train::INFO] [train] Iter 08011 | loss 2.2879 | loss(rot) 1.5229 | loss(pos) 0.2321 | loss(seq) 0.5329 | grad 4.5283 | lr 0.0010 | time_forward 4.0230 | time_backward 5.7020 |
[2023-09-02 08:36:43,052::train::INFO] [train] Iter 08012 | loss 2.4402 | loss(rot) 2.2850 | loss(pos) 0.1549 | loss(seq) 0.0003 | grad 3.1686 | lr 0.0010 | time_forward 1.0620 | time_backward 1.2130 |
[2023-09-02 08:36:53,752::train::INFO] [train] Iter 08013 | loss 2.4561 | loss(rot) 2.2554 | loss(pos) 0.1503 | loss(seq) 0.0504 | grad 3.3703 | lr 0.0010 | time_forward 4.5040 | time_backward 6.1930 |
[2023-09-02 08:36:58,363::train::INFO] [train] Iter 08014 | loss 1.3881 | loss(rot) 0.1646 | loss(pos) 0.9262 | loss(seq) 0.2972 | grad 5.4858 | lr 0.0010 | time_forward 1.9920 | time_backward 2.6150 |
[2023-09-02 08:37:01,065::train::INFO] [train] Iter 08015 | loss 1.9593 | loss(rot) 1.3024 | loss(pos) 0.2260 | loss(seq) 0.4308 | grad 5.6713 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4230 |
[2023-09-02 08:37:11,082::train::INFO] [train] Iter 08016 | loss 1.8017 | loss(rot) 1.5627 | loss(pos) 0.2358 | loss(seq) 0.0031 | grad 5.0094 | lr 0.0010 | time_forward 4.1270 | time_backward 5.8860 |
[2023-09-02 08:37:13,446::train::INFO] [train] Iter 08017 | loss 1.9794 | loss(rot) 1.1991 | loss(pos) 0.3075 | loss(seq) 0.4728 | grad 4.3867 | lr 0.0010 | time_forward 1.1490 | time_backward 1.2130 |
[2023-09-02 08:37:16,215::train::INFO] [train] Iter 08018 | loss 1.4145 | loss(rot) 0.6099 | loss(pos) 0.1989 | loss(seq) 0.6057 | grad 3.2331 | lr 0.0010 | time_forward 1.3470 | time_backward 1.4150 |
[2023-09-02 08:37:26,409::train::INFO] [train] Iter 08019 | loss 1.5214 | loss(rot) 1.0460 | loss(pos) 0.1793 | loss(seq) 0.2961 | grad 6.0987 | lr 0.0010 | time_forward 4.2280 | time_backward 5.9630 |
[2023-09-02 08:37:36,941::train::INFO] [train] Iter 08020 | loss 2.0218 | loss(rot) 1.6457 | loss(pos) 0.0955 | loss(seq) 0.2806 | grad 3.3054 | lr 0.0010 | time_forward 4.4610 | time_backward 6.0670 |
[2023-09-02 08:37:46,897::train::INFO] [train] Iter 08021 | loss 0.7265 | loss(rot) 0.1951 | loss(pos) 0.2970 | loss(seq) 0.2344 | grad 3.3218 | lr 0.0010 | time_forward 4.0070 | time_backward 5.9460 |
[2023-09-02 08:37:56,935::train::INFO] [train] Iter 08022 | loss 2.0095 | loss(rot) 1.6051 | loss(pos) 0.1159 | loss(seq) 0.2884 | grad 4.5686 | lr 0.0010 | time_forward 4.0820 | time_backward 5.9510 |
[2023-09-02 08:38:06,964::train::INFO] [train] Iter 08023 | loss 0.9195 | loss(rot) 0.2767 | loss(pos) 0.4016 | loss(seq) 0.2412 | grad 3.9567 | lr 0.0010 | time_forward 4.1010 | time_backward 5.9250 |
[2023-09-02 08:38:09,779::train::INFO] [train] Iter 08024 | loss 1.8950 | loss(rot) 1.2893 | loss(pos) 0.2684 | loss(seq) 0.3373 | grad 4.9152 | lr 0.0010 | time_forward 1.3210 | time_backward 1.4730 |
[2023-09-02 08:38:12,587::train::INFO] [train] Iter 08025 | loss 1.6724 | loss(rot) 0.7459 | loss(pos) 0.3854 | loss(seq) 0.5411 | grad 3.8893 | lr 0.0010 | time_forward 1.2980 | time_backward 1.5050 |
[2023-09-02 08:38:15,611::train::INFO] [train] Iter 08026 | loss 2.1439 | loss(rot) 2.0202 | loss(pos) 0.0943 | loss(seq) 0.0294 | grad 5.9854 | lr 0.0010 | time_forward 1.5420 | time_backward 1.4630 |
[2023-09-02 08:38:25,657::train::INFO] [train] Iter 08027 | loss 2.6536 | loss(rot) 2.3613 | loss(pos) 0.1416 | loss(seq) 0.1507 | grad 3.9775 | lr 0.0010 | time_forward 4.1560 | time_backward 5.8860 |
[2023-09-02 08:38:35,345::train::INFO] [train] Iter 08028 | loss 1.9228 | loss(rot) 1.6136 | loss(pos) 0.3080 | loss(seq) 0.0012 | grad 4.6445 | lr 0.0010 | time_forward 3.9980 | time_backward 5.6870 |
[2023-09-02 08:38:44,900::train::INFO] [train] Iter 08029 | loss 1.1455 | loss(rot) 0.7202 | loss(pos) 0.1185 | loss(seq) 0.3068 | grad 4.7102 | lr 0.0010 | time_forward 3.9270 | time_backward 5.6230 |
[2023-09-02 08:38:51,871::train::INFO] [train] Iter 08030 | loss 2.2030 | loss(rot) 1.7714 | loss(pos) 0.1021 | loss(seq) 0.3295 | grad 6.0366 | lr 0.0010 | time_forward 2.9670 | time_backward 4.0000 |
[2023-09-02 08:39:00,861::train::INFO] [train] Iter 08031 | loss 1.9459 | loss(rot) 1.2121 | loss(pos) 0.2711 | loss(seq) 0.4627 | grad 4.8370 | lr 0.0010 | time_forward 3.8020 | time_backward 5.1840 |
[2023-09-02 08:39:11,811::train::INFO] [train] Iter 08032 | loss 1.6280 | loss(rot) 1.0411 | loss(pos) 0.1440 | loss(seq) 0.4430 | grad 3.0597 | lr 0.0010 | time_forward 4.5670 | time_backward 6.3790 |
[2023-09-02 08:39:14,546::train::INFO] [train] Iter 08033 | loss 2.2019 | loss(rot) 1.8604 | loss(pos) 0.3416 | loss(seq) 0.0000 | grad 4.8633 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4560 |
[2023-09-02 08:39:22,705::train::INFO] [train] Iter 08034 | loss 1.5247 | loss(rot) 1.0505 | loss(pos) 0.3072 | loss(seq) 0.1670 | grad 8.3305 | lr 0.0010 | time_forward 3.4740 | time_backward 4.6510 |
[2023-09-02 08:39:25,392::train::INFO] [train] Iter 08035 | loss 0.5746 | loss(rot) 0.0902 | loss(pos) 0.4685 | loss(seq) 0.0159 | grad 3.7781 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4030 |
[2023-09-02 08:39:27,691::train::INFO] [train] Iter 08036 | loss 1.6833 | loss(rot) 0.8613 | loss(pos) 0.2589 | loss(seq) 0.5631 | grad 3.4444 | lr 0.0010 | time_forward 1.0980 | time_backward 1.1970 |
[2023-09-02 08:39:38,088::train::INFO] [train] Iter 08037 | loss 1.0094 | loss(rot) 0.3482 | loss(pos) 0.3014 | loss(seq) 0.3598 | grad 2.4015 | lr 0.0010 | time_forward 4.4810 | time_backward 5.9010 |
[2023-09-02 08:39:47,973::train::INFO] [train] Iter 08038 | loss 2.0575 | loss(rot) 1.7765 | loss(pos) 0.1165 | loss(seq) 0.1645 | grad 4.9438 | lr 0.0010 | time_forward 4.0680 | time_backward 5.8140 |
[2023-09-02 08:39:56,327::train::INFO] [train] Iter 08039 | loss 1.2773 | loss(rot) 0.3426 | loss(pos) 0.7684 | loss(seq) 0.1664 | grad 2.7283 | lr 0.0010 | time_forward 3.5570 | time_backward 4.7940 |
[2023-09-02 08:40:05,230::train::INFO] [train] Iter 08040 | loss 1.4276 | loss(rot) 0.5490 | loss(pos) 0.6521 | loss(seq) 0.2264 | grad 3.5729 | lr 0.0010 | time_forward 3.7250 | time_backward 5.1740 |
[2023-09-02 08:40:13,893::train::INFO] [train] Iter 08041 | loss 2.5256 | loss(rot) 1.9389 | loss(pos) 0.1291 | loss(seq) 0.4575 | grad 4.2787 | lr 0.0010 | time_forward 3.6550 | time_backward 5.0050 |
[2023-09-02 08:40:16,601::train::INFO] [train] Iter 08042 | loss 1.7517 | loss(rot) 1.1221 | loss(pos) 0.2420 | loss(seq) 0.3876 | grad 6.7320 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4280 |
[2023-09-02 08:40:25,576::train::INFO] [train] Iter 08043 | loss 1.4168 | loss(rot) 1.0540 | loss(pos) 0.1388 | loss(seq) 0.2240 | grad 4.8539 | lr 0.0010 | time_forward 3.9050 | time_backward 5.0670 |
[2023-09-02 08:40:33,913::train::INFO] [train] Iter 08044 | loss 1.7539 | loss(rot) 1.4658 | loss(pos) 0.1142 | loss(seq) 0.1740 | grad 5.6014 | lr 0.0010 | time_forward 3.5300 | time_backward 4.8030 |
[2023-09-02 08:40:41,379::train::INFO] [train] Iter 08045 | loss 2.6210 | loss(rot) 1.6305 | loss(pos) 0.3878 | loss(seq) 0.6027 | grad 6.4843 | lr 0.0010 | time_forward 3.2150 | time_backward 4.2480 |
[2023-09-02 08:40:44,082::train::INFO] [train] Iter 08046 | loss 1.6368 | loss(rot) 0.2867 | loss(pos) 1.3306 | loss(seq) 0.0195 | grad 7.1743 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4140 |
[2023-09-02 08:40:53,365::train::INFO] [train] Iter 08047 | loss 1.3215 | loss(rot) 1.1082 | loss(pos) 0.1541 | loss(seq) 0.0591 | grad 5.1002 | lr 0.0010 | time_forward 3.9750 | time_backward 5.3060 |
[2023-09-02 08:41:02,630::train::INFO] [train] Iter 08048 | loss 0.8606 | loss(rot) 0.0315 | loss(pos) 0.8246 | loss(seq) 0.0044 | grad 5.8120 | lr 0.0010 | time_forward 3.9270 | time_backward 5.3340 |
[2023-09-02 08:41:05,391::train::INFO] [train] Iter 08049 | loss 2.2434 | loss(rot) 1.9180 | loss(pos) 0.0883 | loss(seq) 0.2371 | grad 3.9957 | lr 0.0010 | time_forward 1.3350 | time_backward 1.4220 |
[2023-09-02 08:41:15,439::train::INFO] [train] Iter 08050 | loss 1.1002 | loss(rot) 0.2449 | loss(pos) 0.8139 | loss(seq) 0.0414 | grad 4.6825 | lr 0.0010 | time_forward 4.0950 | time_backward 5.9320 |
[2023-09-02 08:41:18,156::train::INFO] [train] Iter 08051 | loss 0.7819 | loss(rot) 0.1734 | loss(pos) 0.4724 | loss(seq) 0.1361 | grad 2.8456 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4600 |
[2023-09-02 08:41:27,708::train::INFO] [train] Iter 08052 | loss 1.6549 | loss(rot) 1.4617 | loss(pos) 0.1564 | loss(seq) 0.0367 | grad 5.7250 | lr 0.0010 | time_forward 3.9470 | time_backward 5.6010 |
[2023-09-02 08:41:39,009::train::INFO] [train] Iter 08053 | loss 2.0703 | loss(rot) 1.9095 | loss(pos) 0.1605 | loss(seq) 0.0003 | grad 3.9134 | lr 0.0010 | time_forward 4.8630 | time_backward 6.4340 |
[2023-09-02 08:41:49,405::train::INFO] [train] Iter 08054 | loss 1.9084 | loss(rot) 1.7262 | loss(pos) 0.1822 | loss(seq) 0.0000 | grad 4.4915 | lr 0.0010 | time_forward 4.2200 | time_backward 6.1720 |
[2023-09-02 08:41:52,128::train::INFO] [train] Iter 08055 | loss 1.4547 | loss(rot) 0.8046 | loss(pos) 0.2371 | loss(seq) 0.4130 | grad 4.8130 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4330 |
[2023-09-02 08:42:00,609::train::INFO] [train] Iter 08056 | loss 0.7326 | loss(rot) 0.2221 | loss(pos) 0.2291 | loss(seq) 0.2815 | grad 3.5033 | lr 0.0010 | time_forward 3.6010 | time_backward 4.8760 |
[2023-09-02 08:42:06,304::train::INFO] [train] Iter 08057 | loss 1.2285 | loss(rot) 0.6734 | loss(pos) 0.3653 | loss(seq) 0.1897 | grad 7.1453 | lr 0.0010 | time_forward 2.3820 | time_backward 3.3100 |
[2023-09-02 08:42:15,071::train::INFO] [train] Iter 08058 | loss 1.8852 | loss(rot) 1.7759 | loss(pos) 0.0909 | loss(seq) 0.0183 | grad 3.9669 | lr 0.0010 | time_forward 3.7140 | time_backward 5.0490 |
[2023-09-02 08:42:23,485::train::INFO] [train] Iter 08059 | loss 1.5452 | loss(rot) 0.0662 | loss(pos) 1.4721 | loss(seq) 0.0069 | grad 5.5240 | lr 0.0010 | time_forward 3.5510 | time_backward 4.8590 |
[2023-09-02 08:42:33,479::train::INFO] [train] Iter 08060 | loss 0.6925 | loss(rot) 0.2336 | loss(pos) 0.3692 | loss(seq) 0.0897 | grad 2.8824 | lr 0.0010 | time_forward 4.2150 | time_backward 5.7750 |
[2023-09-02 08:42:41,917::train::INFO] [train] Iter 08061 | loss 1.9104 | loss(rot) 1.6871 | loss(pos) 0.1263 | loss(seq) 0.0969 | grad 6.2627 | lr 0.0010 | time_forward 3.5370 | time_backward 4.8970 |
[2023-09-02 08:42:48,749::train::INFO] [train] Iter 08062 | loss 2.3975 | loss(rot) 2.0452 | loss(pos) 0.1619 | loss(seq) 0.1905 | grad 7.0224 | lr 0.0010 | time_forward 3.0180 | time_backward 3.8100 |
[2023-09-02 08:42:57,026::train::INFO] [train] Iter 08063 | loss 2.5040 | loss(rot) 2.4239 | loss(pos) 0.0618 | loss(seq) 0.0183 | grad 5.7137 | lr 0.0010 | time_forward 3.5530 | time_backward 4.7200 |
[2023-09-02 08:43:06,229::train::INFO] [train] Iter 08064 | loss 1.6784 | loss(rot) 0.8770 | loss(pos) 0.2968 | loss(seq) 0.5045 | grad 4.4946 | lr 0.0010 | time_forward 3.9110 | time_backward 5.2890 |
[2023-09-02 08:43:08,978::train::INFO] [train] Iter 08065 | loss 2.5176 | loss(rot) 2.2953 | loss(pos) 0.1402 | loss(seq) 0.0821 | grad 3.2384 | lr 0.0010 | time_forward 1.3010 | time_backward 1.4430 |
[2023-09-02 08:43:18,206::train::INFO] [train] Iter 08066 | loss 1.8627 | loss(rot) 1.1759 | loss(pos) 0.2913 | loss(seq) 0.3955 | grad 5.6906 | lr 0.0010 | time_forward 4.4080 | time_backward 4.7910 |
[2023-09-02 08:43:20,861::train::INFO] [train] Iter 08067 | loss 2.5273 | loss(rot) 1.9791 | loss(pos) 0.1771 | loss(seq) 0.3710 | grad 6.3625 | lr 0.0010 | time_forward 1.2630 | time_backward 1.3890 |
[2023-09-02 08:43:30,275::train::INFO] [train] Iter 08068 | loss 2.2444 | loss(rot) 2.1022 | loss(pos) 0.1420 | loss(seq) 0.0001 | grad 3.7829 | lr 0.0010 | time_forward 3.9350 | time_backward 5.4750 |
[2023-09-02 08:43:38,872::train::INFO] [train] Iter 08069 | loss 2.0185 | loss(rot) 1.2460 | loss(pos) 0.2149 | loss(seq) 0.5576 | grad 4.6210 | lr 0.0010 | time_forward 3.6240 | time_backward 4.9710 |
[2023-09-02 08:43:49,025::train::INFO] [train] Iter 08070 | loss 1.8600 | loss(rot) 1.7449 | loss(pos) 0.1026 | loss(seq) 0.0125 | grad 5.9389 | lr 0.0010 | time_forward 4.0710 | time_backward 6.0790 |
[2023-09-02 08:43:59,113::train::INFO] [train] Iter 08071 | loss 2.2673 | loss(rot) 2.1589 | loss(pos) 0.0996 | loss(seq) 0.0088 | grad 3.9265 | lr 0.0010 | time_forward 4.2720 | time_backward 5.8120 |
[2023-09-02 08:44:09,043::train::INFO] [train] Iter 08072 | loss 0.8131 | loss(rot) 0.1548 | loss(pos) 0.4225 | loss(seq) 0.2358 | grad 4.4374 | lr 0.0010 | time_forward 4.2640 | time_backward 5.6630 |
[2023-09-02 08:44:19,196::train::INFO] [train] Iter 08073 | loss 1.6143 | loss(rot) 0.7285 | loss(pos) 0.4865 | loss(seq) 0.3993 | grad 4.7688 | lr 0.0010 | time_forward 4.3050 | time_backward 5.8440 |
[2023-09-02 08:44:27,951::train::INFO] [train] Iter 08074 | loss 1.6092 | loss(rot) 0.4084 | loss(pos) 0.5582 | loss(seq) 0.6426 | grad 4.3366 | lr 0.0010 | time_forward 3.7110 | time_backward 5.0410 |
[2023-09-02 08:44:36,416::train::INFO] [train] Iter 08075 | loss 1.4977 | loss(rot) 0.2372 | loss(pos) 1.0626 | loss(seq) 0.1979 | grad 6.3347 | lr 0.0010 | time_forward 3.5620 | time_backward 4.9000 |
[2023-09-02 08:44:44,942::train::INFO] [train] Iter 08076 | loss 2.0338 | loss(rot) 1.4740 | loss(pos) 0.2084 | loss(seq) 0.3514 | grad 6.4532 | lr 0.0010 | time_forward 3.5880 | time_backward 4.9340 |
[2023-09-02 08:44:52,446::train::INFO] [train] Iter 08077 | loss 1.4203 | loss(rot) 0.4185 | loss(pos) 0.4582 | loss(seq) 0.5436 | grad 4.3849 | lr 0.0010 | time_forward 3.1250 | time_backward 4.3750 |
[2023-09-02 08:45:02,543::train::INFO] [train] Iter 08078 | loss 1.6762 | loss(rot) 1.5603 | loss(pos) 0.0690 | loss(seq) 0.0468 | grad 5.4054 | lr 0.0010 | time_forward 4.1630 | time_backward 5.9300 |
[2023-09-02 08:45:10,061::train::INFO] [train] Iter 08079 | loss 1.5423 | loss(rot) 1.3410 | loss(pos) 0.0743 | loss(seq) 0.1271 | grad 6.0648 | lr 0.0010 | time_forward 3.2360 | time_backward 4.2790 |
[2023-09-02 08:45:18,375::train::INFO] [train] Iter 08080 | loss 1.0232 | loss(rot) 0.3687 | loss(pos) 0.3576 | loss(seq) 0.2969 | grad 4.3176 | lr 0.0010 | time_forward 3.6370 | time_backward 4.6730 |
[2023-09-02 08:45:26,754::train::INFO] [train] Iter 08081 | loss 1.2049 | loss(rot) 0.6133 | loss(pos) 0.1360 | loss(seq) 0.4556 | grad 4.2786 | lr 0.0010 | time_forward 3.4610 | time_backward 4.9130 |
[2023-09-02 08:45:35,004::train::INFO] [train] Iter 08082 | loss 1.4337 | loss(rot) 0.7318 | loss(pos) 0.4188 | loss(seq) 0.2831 | grad 5.4804 | lr 0.0010 | time_forward 3.4500 | time_backward 4.7970 |
[2023-09-02 08:45:42,423::train::INFO] [train] Iter 08083 | loss 2.1219 | loss(rot) 0.9732 | loss(pos) 0.5672 | loss(seq) 0.5816 | grad 5.8371 | lr 0.0010 | time_forward 3.1680 | time_backward 4.2470 |
[2023-09-02 08:45:50,872::train::INFO] [train] Iter 08084 | loss 0.6246 | loss(rot) 0.0902 | loss(pos) 0.5034 | loss(seq) 0.0310 | grad 2.7732 | lr 0.0010 | time_forward 3.5630 | time_backward 4.8830 |
[2023-09-02 08:45:59,111::train::INFO] [train] Iter 08085 | loss 2.2978 | loss(rot) 0.0286 | loss(pos) 2.2688 | loss(seq) 0.0005 | grad 4.6773 | lr 0.0010 | time_forward 3.5450 | time_backward 4.6910 |
[2023-09-02 08:46:07,608::train::INFO] [train] Iter 08086 | loss 1.2758 | loss(rot) 0.5562 | loss(pos) 0.4486 | loss(seq) 0.2710 | grad 4.4468 | lr 0.0010 | time_forward 3.5860 | time_backward 4.9070 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.