text
stringlengths 56
1.16k
|
---|
[2023-09-02 08:57:11,497::train::INFO] [train] Iter 08187 | loss 1.2318 | loss(rot) 0.1189 | loss(pos) 1.0966 | loss(seq) 0.0164 | grad 4.3314 | lr 0.0010 | time_forward 1.9080 | time_backward 2.5750 |
[2023-09-02 08:57:20,451::train::INFO] [train] Iter 08188 | loss 1.9639 | loss(rot) 1.7210 | loss(pos) 0.1536 | loss(seq) 0.0894 | grad 5.8981 | lr 0.0010 | time_forward 3.7670 | time_backward 5.1380 |
[2023-09-02 08:57:27,633::train::INFO] [train] Iter 08189 | loss 1.0074 | loss(rot) 0.4490 | loss(pos) 0.1209 | loss(seq) 0.4375 | grad 2.8183 | lr 0.0010 | time_forward 2.9870 | time_backward 4.1910 |
[2023-09-02 08:57:37,449::train::INFO] [train] Iter 08190 | loss 2.1817 | loss(rot) 1.5530 | loss(pos) 0.1790 | loss(seq) 0.4497 | grad 4.6500 | lr 0.0010 | time_forward 4.0810 | time_backward 5.7310 |
[2023-09-02 08:57:47,737::train::INFO] [train] Iter 08191 | loss 2.0082 | loss(rot) 1.5761 | loss(pos) 0.1600 | loss(seq) 0.2721 | grad 4.7298 | lr 0.0010 | time_forward 4.1980 | time_backward 6.0870 |
[2023-09-02 08:57:56,250::train::INFO] [train] Iter 08192 | loss 2.1062 | loss(rot) 0.0159 | loss(pos) 2.0886 | loss(seq) 0.0016 | grad 5.1034 | lr 0.0010 | time_forward 3.5480 | time_backward 4.9610 |
[2023-09-02 08:57:58,484::train::INFO] [train] Iter 08193 | loss 2.3501 | loss(rot) 1.6385 | loss(pos) 0.2054 | loss(seq) 0.5062 | grad 4.6289 | lr 0.0010 | time_forward 1.0360 | time_backward 1.1940 |
[2023-09-02 08:58:07,266::train::INFO] [train] Iter 08194 | loss 1.8989 | loss(rot) 1.1925 | loss(pos) 0.2050 | loss(seq) 0.5014 | grad 3.3037 | lr 0.0010 | time_forward 3.8470 | time_backward 4.9320 |
[2023-09-02 08:58:17,123::train::INFO] [train] Iter 08195 | loss 1.4242 | loss(rot) 1.1402 | loss(pos) 0.1402 | loss(seq) 0.1439 | grad 2.9547 | lr 0.0010 | time_forward 4.0080 | time_backward 5.8450 |
[2023-09-02 08:58:27,156::train::INFO] [train] Iter 08196 | loss 2.6319 | loss(rot) 2.1366 | loss(pos) 0.1193 | loss(seq) 0.3761 | grad 3.4738 | lr 0.0010 | time_forward 3.9840 | time_backward 6.0280 |
[2023-09-02 08:58:35,973::train::INFO] [train] Iter 08197 | loss 1.5492 | loss(rot) 1.3051 | loss(pos) 0.1429 | loss(seq) 0.1013 | grad 3.8762 | lr 0.0010 | time_forward 3.7130 | time_backward 5.1000 |
[2023-09-02 08:58:46,112::train::INFO] [train] Iter 08198 | loss 2.1870 | loss(rot) 2.0881 | loss(pos) 0.0797 | loss(seq) 0.0192 | grad 3.9496 | lr 0.0010 | time_forward 4.0240 | time_backward 6.1120 |
[2023-09-02 08:58:53,165::train::INFO] [train] Iter 08199 | loss 1.4419 | loss(rot) 1.1366 | loss(pos) 0.1758 | loss(seq) 0.1295 | grad 4.3736 | lr 0.0010 | time_forward 2.9320 | time_backward 4.1170 |
[2023-09-02 08:59:01,887::train::INFO] [train] Iter 08200 | loss 1.9845 | loss(rot) 1.3195 | loss(pos) 0.2982 | loss(seq) 0.3668 | grad 6.5297 | lr 0.0010 | time_forward 3.5380 | time_backward 5.1800 |
[2023-09-02 08:59:11,330::train::INFO] [train] Iter 08201 | loss 2.5549 | loss(rot) 2.0557 | loss(pos) 0.1753 | loss(seq) 0.3239 | grad 3.0312 | lr 0.0010 | time_forward 3.9460 | time_backward 5.4930 |
[2023-09-02 08:59:14,076::train::INFO] [train] Iter 08202 | loss 1.8966 | loss(rot) 0.7486 | loss(pos) 0.8454 | loss(seq) 0.3026 | grad 7.6881 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4670 |
[2023-09-02 08:59:23,886::train::INFO] [train] Iter 08203 | loss 1.4979 | loss(rot) 0.1379 | loss(pos) 1.3469 | loss(seq) 0.0131 | grad 4.6813 | lr 0.0010 | time_forward 4.0770 | time_backward 5.7290 |
[2023-09-02 08:59:34,046::train::INFO] [train] Iter 08204 | loss 2.5282 | loss(rot) 2.1585 | loss(pos) 0.2485 | loss(seq) 0.1212 | grad 4.6600 | lr 0.0010 | time_forward 4.2140 | time_backward 5.9420 |
[2023-09-02 08:59:43,208::train::INFO] [train] Iter 08205 | loss 1.9025 | loss(rot) 1.8057 | loss(pos) 0.0956 | loss(seq) 0.0012 | grad 4.5164 | lr 0.0010 | time_forward 3.8410 | time_backward 5.3170 |
[2023-09-02 08:59:45,897::train::INFO] [train] Iter 08206 | loss 2.5252 | loss(rot) 2.3017 | loss(pos) 0.2234 | loss(seq) 0.0001 | grad 4.6006 | lr 0.0010 | time_forward 1.2230 | time_backward 1.4630 |
[2023-09-02 08:59:48,164::train::INFO] [train] Iter 08207 | loss 1.0492 | loss(rot) 0.2730 | loss(pos) 0.5113 | loss(seq) 0.2649 | grad 3.4982 | lr 0.0010 | time_forward 1.0800 | time_backward 1.1840 |
[2023-09-02 08:59:50,929::train::INFO] [train] Iter 08208 | loss 2.6187 | loss(rot) 2.3804 | loss(pos) 0.2050 | loss(seq) 0.0333 | grad 5.8114 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4570 |
[2023-09-02 09:00:00,918::train::INFO] [train] Iter 08209 | loss 2.4469 | loss(rot) 2.3348 | loss(pos) 0.1115 | loss(seq) 0.0007 | grad 4.0739 | lr 0.0010 | time_forward 4.0380 | time_backward 5.9470 |
[2023-09-02 09:00:09,250::train::INFO] [train] Iter 08210 | loss 1.8980 | loss(rot) 1.1128 | loss(pos) 0.1829 | loss(seq) 0.6024 | grad 4.0457 | lr 0.0010 | time_forward 3.5150 | time_backward 4.8140 |
[2023-09-02 09:00:18,217::train::INFO] [train] Iter 08211 | loss 1.7415 | loss(rot) 1.3916 | loss(pos) 0.0599 | loss(seq) 0.2901 | grad 6.0562 | lr 0.0010 | time_forward 3.8680 | time_backward 5.0950 |
[2023-09-02 09:00:27,723::train::INFO] [train] Iter 08212 | loss 2.9317 | loss(rot) 2.6842 | loss(pos) 0.0962 | loss(seq) 0.1513 | grad 8.3194 | lr 0.0010 | time_forward 4.0310 | time_backward 5.4720 |
[2023-09-02 09:00:31,165::train::INFO] [train] Iter 08213 | loss 1.8881 | loss(rot) 1.0847 | loss(pos) 0.2070 | loss(seq) 0.5963 | grad 3.8535 | lr 0.0010 | time_forward 1.4490 | time_backward 1.9900 |
[2023-09-02 09:00:40,543::train::INFO] [train] Iter 08214 | loss 2.0658 | loss(rot) 1.9213 | loss(pos) 0.1445 | loss(seq) 0.0000 | grad 9.0087 | lr 0.0010 | time_forward 3.9620 | time_backward 5.4120 |
[2023-09-02 09:00:43,244::train::INFO] [train] Iter 08215 | loss 1.3631 | loss(rot) 0.5719 | loss(pos) 0.7718 | loss(seq) 0.0194 | grad 4.5501 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4340 |
[2023-09-02 09:00:46,625::train::INFO] [train] Iter 08216 | loss 1.1795 | loss(rot) 0.2632 | loss(pos) 0.7404 | loss(seq) 0.1760 | grad 3.7250 | lr 0.0010 | time_forward 1.5320 | time_backward 1.8450 |
[2023-09-02 09:00:56,855::train::INFO] [train] Iter 08217 | loss 1.4349 | loss(rot) 1.2951 | loss(pos) 0.1270 | loss(seq) 0.0128 | grad 4.1216 | lr 0.0010 | time_forward 4.2090 | time_backward 6.0180 |
[2023-09-02 09:01:06,354::train::INFO] [train] Iter 08218 | loss 1.3606 | loss(rot) 0.5402 | loss(pos) 0.3418 | loss(seq) 0.4785 | grad 3.9964 | lr 0.0010 | time_forward 4.0320 | time_backward 5.4630 |
[2023-09-02 09:01:09,885::train::INFO] [train] Iter 08219 | loss 0.9134 | loss(rot) 0.0811 | loss(pos) 0.8099 | loss(seq) 0.0224 | grad 4.0550 | lr 0.0010 | time_forward 1.6290 | time_backward 1.8980 |
[2023-09-02 09:01:18,835::train::INFO] [train] Iter 08220 | loss 1.6963 | loss(rot) 1.5458 | loss(pos) 0.0882 | loss(seq) 0.0624 | grad 3.8058 | lr 0.0010 | time_forward 3.7350 | time_backward 5.2110 |
[2023-09-02 09:01:28,024::train::INFO] [train] Iter 08221 | loss 2.1637 | loss(rot) 0.0095 | loss(pos) 2.1536 | loss(seq) 0.0006 | grad 5.8289 | lr 0.0010 | time_forward 3.8710 | time_backward 5.3140 |
[2023-09-02 09:01:34,545::train::INFO] [train] Iter 08222 | loss 0.8956 | loss(rot) 0.1282 | loss(pos) 0.7294 | loss(seq) 0.0380 | grad 5.9724 | lr 0.0010 | time_forward 2.7080 | time_backward 3.8100 |
[2023-09-02 09:01:42,805::train::INFO] [train] Iter 08223 | loss 1.7068 | loss(rot) 0.8908 | loss(pos) 0.2013 | loss(seq) 0.6146 | grad 5.3488 | lr 0.0010 | time_forward 3.4630 | time_backward 4.7930 |
[2023-09-02 09:01:49,363::train::INFO] [train] Iter 08224 | loss 2.2233 | loss(rot) 1.6656 | loss(pos) 0.1868 | loss(seq) 0.3709 | grad 5.5935 | lr 0.0010 | time_forward 2.7650 | time_backward 3.7890 |
[2023-09-02 09:01:57,789::train::INFO] [train] Iter 08225 | loss 1.1450 | loss(rot) 0.0535 | loss(pos) 1.0839 | loss(seq) 0.0076 | grad 7.4554 | lr 0.0010 | time_forward 3.6220 | time_backward 4.8000 |
[2023-09-02 09:02:06,693::train::INFO] [train] Iter 08226 | loss 2.2451 | loss(rot) 2.0915 | loss(pos) 0.0813 | loss(seq) 0.0724 | grad 7.3295 | lr 0.0010 | time_forward 3.7760 | time_backward 5.1250 |
[2023-09-02 09:02:17,086::train::INFO] [train] Iter 08227 | loss 2.7718 | loss(rot) 2.2008 | loss(pos) 0.3047 | loss(seq) 0.2663 | grad 7.5479 | lr 0.0010 | time_forward 4.4320 | time_backward 5.9580 |
[2023-09-02 09:02:27,404::train::INFO] [train] Iter 08228 | loss 2.1353 | loss(rot) 1.4643 | loss(pos) 0.2350 | loss(seq) 0.4360 | grad 3.0370 | lr 0.0010 | time_forward 4.2580 | time_backward 6.0380 |
[2023-09-02 09:02:35,380::train::INFO] [train] Iter 08229 | loss 1.8671 | loss(rot) 1.7909 | loss(pos) 0.0762 | loss(seq) 0.0000 | grad 14.6930 | lr 0.0010 | time_forward 3.4120 | time_backward 4.5590 |
[2023-09-02 09:02:44,283::train::INFO] [train] Iter 08230 | loss 2.9020 | loss(rot) 2.5973 | loss(pos) 0.3040 | loss(seq) 0.0007 | grad 6.1424 | lr 0.0010 | time_forward 3.7750 | time_backward 5.1240 |
[2023-09-02 09:02:47,144::train::INFO] [train] Iter 08231 | loss 2.2269 | loss(rot) 0.6669 | loss(pos) 1.0873 | loss(seq) 0.4727 | grad 7.5578 | lr 0.0010 | time_forward 1.3390 | time_backward 1.5190 |
[2023-09-02 09:02:58,122::train::INFO] [train] Iter 08232 | loss 2.3742 | loss(rot) 2.0870 | loss(pos) 0.2415 | loss(seq) 0.0457 | grad 5.8644 | lr 0.0010 | time_forward 4.5070 | time_backward 6.4660 |
[2023-09-02 09:03:08,378::train::INFO] [train] Iter 08233 | loss 2.4260 | loss(rot) 2.2711 | loss(pos) 0.1548 | loss(seq) 0.0001 | grad 3.5529 | lr 0.0010 | time_forward 4.3370 | time_backward 5.9160 |
[2023-09-02 09:03:11,075::train::INFO] [train] Iter 08234 | loss 2.8258 | loss(rot) 2.6386 | loss(pos) 0.1859 | loss(seq) 0.0013 | grad 6.6403 | lr 0.0010 | time_forward 1.3040 | time_backward 1.3890 |
[2023-09-02 09:03:19,641::train::INFO] [train] Iter 08235 | loss 1.0343 | loss(rot) 0.3685 | loss(pos) 0.1806 | loss(seq) 0.4852 | grad 4.9738 | lr 0.0010 | time_forward 3.6890 | time_backward 4.8740 |
[2023-09-02 09:03:22,418::train::INFO] [train] Iter 08236 | loss 2.0197 | loss(rot) 1.2114 | loss(pos) 0.3838 | loss(seq) 0.4246 | grad 5.3879 | lr 0.0010 | time_forward 1.3230 | time_backward 1.4510 |
[2023-09-02 09:03:30,653::train::INFO] [train] Iter 08237 | loss 1.5146 | loss(rot) 0.8246 | loss(pos) 0.3449 | loss(seq) 0.3451 | grad 4.9408 | lr 0.0010 | time_forward 3.5170 | time_backward 4.7150 |
[2023-09-02 09:03:39,960::train::INFO] [train] Iter 08238 | loss 1.6481 | loss(rot) 0.5361 | loss(pos) 0.9029 | loss(seq) 0.2091 | grad 4.7819 | lr 0.0010 | time_forward 3.9370 | time_backward 5.3670 |
[2023-09-02 09:03:52,729::train::INFO] [train] Iter 08239 | loss 2.0624 | loss(rot) 1.8433 | loss(pos) 0.1350 | loss(seq) 0.0841 | grad 5.5783 | lr 0.0010 | time_forward 6.4020 | time_backward 6.3620 |
[2023-09-02 09:04:01,373::train::INFO] [train] Iter 08240 | loss 1.1244 | loss(rot) 0.4212 | loss(pos) 0.4557 | loss(seq) 0.2475 | grad 5.0249 | lr 0.0010 | time_forward 3.7250 | time_backward 4.9170 |
[2023-09-02 09:04:10,267::train::INFO] [train] Iter 08241 | loss 1.3647 | loss(rot) 0.7122 | loss(pos) 0.1641 | loss(seq) 0.4884 | grad 3.1480 | lr 0.0010 | time_forward 3.7970 | time_backward 5.0920 |
[2023-09-02 09:04:18,893::train::INFO] [train] Iter 08242 | loss 0.7409 | loss(rot) 0.1261 | loss(pos) 0.5996 | loss(seq) 0.0153 | grad 5.1154 | lr 0.0010 | time_forward 3.6360 | time_backward 4.9870 |
[2023-09-02 09:04:28,169::train::INFO] [train] Iter 08243 | loss 0.8620 | loss(rot) 0.1685 | loss(pos) 0.6706 | loss(seq) 0.0229 | grad 4.6553 | lr 0.0010 | time_forward 4.3500 | time_backward 4.9220 |
[2023-09-02 09:04:38,146::train::INFO] [train] Iter 08244 | loss 1.8494 | loss(rot) 1.4013 | loss(pos) 0.2405 | loss(seq) 0.2076 | grad 4.9314 | lr 0.0010 | time_forward 4.1840 | time_backward 5.7890 |
[2023-09-02 09:04:46,194::train::INFO] [train] Iter 08245 | loss 3.3149 | loss(rot) 2.9144 | loss(pos) 0.3269 | loss(seq) 0.0736 | grad 4.1950 | lr 0.0010 | time_forward 3.4650 | time_backward 4.5800 |
[2023-09-02 09:04:56,463::train::INFO] [train] Iter 08246 | loss 1.5077 | loss(rot) 0.0919 | loss(pos) 1.4111 | loss(seq) 0.0046 | grad 7.0318 | lr 0.0010 | time_forward 4.1310 | time_backward 6.1170 |
[2023-09-02 09:05:06,826::train::INFO] [train] Iter 08247 | loss 2.0698 | loss(rot) 1.4954 | loss(pos) 0.4231 | loss(seq) 0.1512 | grad 5.4216 | lr 0.0010 | time_forward 4.2100 | time_backward 6.1500 |
[2023-09-02 09:05:09,184::train::INFO] [train] Iter 08248 | loss 2.5525 | loss(rot) 1.8479 | loss(pos) 0.3263 | loss(seq) 0.3783 | grad 4.3537 | lr 0.0010 | time_forward 1.1170 | time_backward 1.2370 |
[2023-09-02 09:05:19,924::train::INFO] [train] Iter 08249 | loss 0.9550 | loss(rot) 0.2316 | loss(pos) 0.5317 | loss(seq) 0.1918 | grad 3.3447 | lr 0.0010 | time_forward 4.4750 | time_backward 6.2630 |
[2023-09-02 09:05:29,070::train::INFO] [train] Iter 08250 | loss 1.9276 | loss(rot) 0.0234 | loss(pos) 1.8978 | loss(seq) 0.0064 | grad 8.2213 | lr 0.0010 | time_forward 3.8270 | time_backward 5.3150 |
[2023-09-02 09:05:31,830::train::INFO] [train] Iter 08251 | loss 1.0773 | loss(rot) 0.3280 | loss(pos) 0.1875 | loss(seq) 0.5618 | grad 3.1770 | lr 0.0010 | time_forward 1.3030 | time_backward 1.4540 |
[2023-09-02 09:05:34,675::train::INFO] [train] Iter 08252 | loss 1.1859 | loss(rot) 0.9911 | loss(pos) 0.1082 | loss(seq) 0.0867 | grad 4.5489 | lr 0.0010 | time_forward 1.4060 | time_backward 1.4350 |
[2023-09-02 09:05:44,759::train::INFO] [train] Iter 08253 | loss 1.8055 | loss(rot) 1.1432 | loss(pos) 0.1877 | loss(seq) 0.4746 | grad 3.7889 | lr 0.0010 | time_forward 4.2040 | time_backward 5.8770 |
[2023-09-02 09:05:53,839::train::INFO] [train] Iter 08254 | loss 1.4536 | loss(rot) 1.0097 | loss(pos) 0.4421 | loss(seq) 0.0018 | grad 6.2741 | lr 0.0010 | time_forward 3.9070 | time_backward 5.1700 |
[2023-09-02 09:06:03,351::train::INFO] [train] Iter 08255 | loss 3.2281 | loss(rot) 2.9411 | loss(pos) 0.2857 | loss(seq) 0.0012 | grad 3.4265 | lr 0.0010 | time_forward 4.0760 | time_backward 5.4300 |
[2023-09-02 09:06:13,062::train::INFO] [train] Iter 08256 | loss 1.8140 | loss(rot) 1.7315 | loss(pos) 0.0774 | loss(seq) 0.0052 | grad 5.5546 | lr 0.0010 | time_forward 4.1750 | time_backward 5.5330 |
[2023-09-02 09:06:21,592::train::INFO] [train] Iter 08257 | loss 2.0624 | loss(rot) 0.2802 | loss(pos) 1.4932 | loss(seq) 0.2890 | grad 6.9971 | lr 0.0010 | time_forward 3.6150 | time_backward 4.9100 |
[2023-09-02 09:06:24,314::train::INFO] [train] Iter 08258 | loss 1.3248 | loss(rot) 0.0855 | loss(pos) 1.2370 | loss(seq) 0.0023 | grad 8.7646 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4390 |
[2023-09-02 09:06:26,578::train::INFO] [train] Iter 08259 | loss 2.5989 | loss(rot) 2.3612 | loss(pos) 0.2276 | loss(seq) 0.0101 | grad 4.4346 | lr 0.0010 | time_forward 1.0730 | time_backward 1.1870 |
[2023-09-02 09:06:36,158::train::INFO] [train] Iter 08260 | loss 2.3785 | loss(rot) 1.4954 | loss(pos) 0.3980 | loss(seq) 0.4851 | grad 5.8821 | lr 0.0010 | time_forward 4.1730 | time_backward 5.3800 |
[2023-09-02 09:06:46,276::train::INFO] [train] Iter 08261 | loss 1.7408 | loss(rot) 1.3953 | loss(pos) 0.1527 | loss(seq) 0.1928 | grad 4.8028 | lr 0.0010 | time_forward 4.0330 | time_backward 6.0810 |
[2023-09-02 09:06:55,240::train::INFO] [train] Iter 08262 | loss 1.2094 | loss(rot) 0.5138 | loss(pos) 0.2012 | loss(seq) 0.4944 | grad 5.6582 | lr 0.0010 | time_forward 3.8540 | time_backward 5.1060 |
[2023-09-02 09:07:03,682::train::INFO] [train] Iter 08263 | loss 1.9860 | loss(rot) 1.1366 | loss(pos) 0.2901 | loss(seq) 0.5593 | grad 5.1225 | lr 0.0010 | time_forward 3.5970 | time_backward 4.8420 |
[2023-09-02 09:07:13,438::train::INFO] [train] Iter 08264 | loss 2.7656 | loss(rot) 1.8420 | loss(pos) 0.3679 | loss(seq) 0.5557 | grad 3.8051 | lr 0.0010 | time_forward 4.1760 | time_backward 5.5770 |
[2023-09-02 09:07:23,926::train::INFO] [train] Iter 08265 | loss 1.9553 | loss(rot) 1.6624 | loss(pos) 0.1435 | loss(seq) 0.1495 | grad 5.3522 | lr 0.0010 | time_forward 4.2460 | time_backward 6.2390 |
[2023-09-02 09:07:33,444::train::INFO] [train] Iter 08266 | loss 1.8534 | loss(rot) 0.6845 | loss(pos) 0.4002 | loss(seq) 0.7687 | grad 5.1083 | lr 0.0010 | time_forward 4.0680 | time_backward 5.4460 |
[2023-09-02 09:07:42,410::train::INFO] [train] Iter 08267 | loss 1.9658 | loss(rot) 1.6843 | loss(pos) 0.2539 | loss(seq) 0.0276 | grad 6.2870 | lr 0.0010 | time_forward 3.7740 | time_backward 5.1880 |
[2023-09-02 09:07:52,797::train::INFO] [train] Iter 08268 | loss 1.9610 | loss(rot) 1.4678 | loss(pos) 0.2556 | loss(seq) 0.2376 | grad 4.0591 | lr 0.0010 | time_forward 4.4420 | time_backward 5.9420 |
[2023-09-02 09:08:01,754::train::INFO] [train] Iter 08269 | loss 0.9135 | loss(rot) 0.1427 | loss(pos) 0.7401 | loss(seq) 0.0307 | grad 5.7776 | lr 0.0010 | time_forward 3.8090 | time_backward 5.1430 |
[2023-09-02 09:08:10,713::train::INFO] [train] Iter 08270 | loss 1.9051 | loss(rot) 0.9826 | loss(pos) 0.2507 | loss(seq) 0.6718 | grad 5.6204 | lr 0.0010 | time_forward 3.7550 | time_backward 5.2010 |
[2023-09-02 09:08:19,819::train::INFO] [train] Iter 08271 | loss 3.0959 | loss(rot) 2.8514 | loss(pos) 0.1635 | loss(seq) 0.0810 | grad 3.7689 | lr 0.0010 | time_forward 3.7240 | time_backward 5.3780 |
[2023-09-02 09:08:29,347::train::INFO] [train] Iter 08272 | loss 1.4878 | loss(rot) 0.9876 | loss(pos) 0.1438 | loss(seq) 0.3563 | grad 8.7416 | lr 0.0010 | time_forward 4.1560 | time_backward 5.3680 |
[2023-09-02 09:08:32,030::train::INFO] [train] Iter 08273 | loss 1.7534 | loss(rot) 0.6100 | loss(pos) 0.6702 | loss(seq) 0.4732 | grad 5.1827 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4210 |
[2023-09-02 09:08:42,125::train::INFO] [train] Iter 08274 | loss 2.3296 | loss(rot) 1.9266 | loss(pos) 0.1924 | loss(seq) 0.2107 | grad 5.4397 | lr 0.0010 | time_forward 4.1270 | time_backward 5.9640 |
[2023-09-02 09:08:51,360::train::INFO] [train] Iter 08275 | loss 2.8886 | loss(rot) 2.6418 | loss(pos) 0.1490 | loss(seq) 0.0978 | grad 5.0060 | lr 0.0010 | time_forward 3.8830 | time_backward 5.3480 |
[2023-09-02 09:09:00,695::train::INFO] [train] Iter 08276 | loss 1.7341 | loss(rot) 0.8280 | loss(pos) 0.5888 | loss(seq) 0.3173 | grad 4.1777 | lr 0.0010 | time_forward 3.9400 | time_backward 5.3920 |
[2023-09-02 09:09:11,195::train::INFO] [train] Iter 08277 | loss 2.5520 | loss(rot) 1.8852 | loss(pos) 0.2415 | loss(seq) 0.4253 | grad 5.2237 | lr 0.0010 | time_forward 4.2860 | time_backward 6.2100 |
[2023-09-02 09:09:19,930::train::INFO] [train] Iter 08278 | loss 1.1287 | loss(rot) 0.2956 | loss(pos) 0.5807 | loss(seq) 0.2524 | grad 3.6039 | lr 0.0010 | time_forward 3.6450 | time_backward 5.0860 |
[2023-09-02 09:09:28,926::train::INFO] [train] Iter 08279 | loss 1.8469 | loss(rot) 1.3694 | loss(pos) 0.1099 | loss(seq) 0.3675 | grad 5.5348 | lr 0.0010 | time_forward 3.8010 | time_backward 5.1930 |
[2023-09-02 09:09:38,399::train::INFO] [train] Iter 08280 | loss 1.6645 | loss(rot) 1.1181 | loss(pos) 0.1225 | loss(seq) 0.4239 | grad 4.5188 | lr 0.0010 | time_forward 4.0320 | time_backward 5.4370 |
[2023-09-02 09:09:46,980::train::INFO] [train] Iter 08281 | loss 2.7825 | loss(rot) 2.4958 | loss(pos) 0.1215 | loss(seq) 0.1652 | grad 5.5217 | lr 0.0010 | time_forward 3.6800 | time_backward 4.8970 |
[2023-09-02 09:09:49,670::train::INFO] [train] Iter 08282 | loss 1.4797 | loss(rot) 0.0945 | loss(pos) 1.3619 | loss(seq) 0.0233 | grad 6.5398 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4150 |
[2023-09-02 09:09:59,142::train::INFO] [train] Iter 08283 | loss 2.1709 | loss(rot) 1.5585 | loss(pos) 0.1759 | loss(seq) 0.4365 | grad 5.7706 | lr 0.0010 | time_forward 3.9800 | time_backward 5.4880 |
[2023-09-02 09:10:09,989::train::INFO] [train] Iter 08284 | loss 2.7731 | loss(rot) 2.0384 | loss(pos) 0.1930 | loss(seq) 0.5417 | grad 2.9797 | lr 0.0010 | time_forward 4.8580 | time_backward 5.9860 |
[2023-09-02 09:10:23,726::train::INFO] [train] Iter 08285 | loss 2.6553 | loss(rot) 2.3305 | loss(pos) 0.1415 | loss(seq) 0.1833 | grad 3.8795 | lr 0.0010 | time_forward 7.9610 | time_backward 5.7720 |
[2023-09-02 09:10:32,164::train::INFO] [train] Iter 08286 | loss 1.6381 | loss(rot) 0.9085 | loss(pos) 0.2387 | loss(seq) 0.4909 | grad 5.5861 | lr 0.0010 | time_forward 3.5450 | time_backward 4.8900 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.