text
stringlengths 56
1.16k
|
---|
[2023-09-02 09:10:34,991::train::INFO] [train] Iter 08287 | loss 0.7845 | loss(rot) 0.2589 | loss(pos) 0.3107 | loss(seq) 0.2148 | grad 2.3145 | lr 0.0010 | time_forward 1.3760 | time_backward 1.4480 |
[2023-09-02 09:10:37,875::train::INFO] [train] Iter 08288 | loss 2.7659 | loss(rot) 2.5847 | loss(pos) 0.1805 | loss(seq) 0.0007 | grad 3.4876 | lr 0.0010 | time_forward 1.3920 | time_backward 1.4500 |
[2023-09-02 09:10:39,875::train::INFO] [train] Iter 08289 | loss 1.1244 | loss(rot) 0.2509 | loss(pos) 0.5574 | loss(seq) 0.3160 | grad 4.5533 | lr 0.0010 | time_forward 0.9340 | time_backward 1.0630 |
[2023-09-02 09:10:50,503::train::INFO] [train] Iter 08290 | loss 0.6094 | loss(rot) 0.1629 | loss(pos) 0.3720 | loss(seq) 0.0745 | grad 3.1474 | lr 0.0010 | time_forward 4.4530 | time_backward 6.1710 |
[2023-09-02 09:11:00,236::train::INFO] [train] Iter 08291 | loss 1.6859 | loss(rot) 0.7816 | loss(pos) 0.5036 | loss(seq) 0.4007 | grad 4.7920 | lr 0.0010 | time_forward 4.1380 | time_backward 5.5910 |
[2023-09-02 09:11:10,819::train::INFO] [train] Iter 08292 | loss 2.7717 | loss(rot) 0.0105 | loss(pos) 2.7607 | loss(seq) 0.0005 | grad 7.3951 | lr 0.0010 | time_forward 4.2660 | time_backward 6.3130 |
[2023-09-02 09:11:18,841::train::INFO] [train] Iter 08293 | loss 1.3542 | loss(rot) 0.7684 | loss(pos) 0.1507 | loss(seq) 0.4351 | grad 3.8288 | lr 0.0010 | time_forward 3.3240 | time_backward 4.6940 |
[2023-09-02 09:11:28,615::train::INFO] [train] Iter 08294 | loss 1.4929 | loss(rot) 0.8629 | loss(pos) 0.2198 | loss(seq) 0.4102 | grad 3.8412 | lr 0.0010 | time_forward 4.1250 | time_backward 5.6450 |
[2023-09-02 09:11:37,328::train::INFO] [train] Iter 08295 | loss 1.2465 | loss(rot) 0.0504 | loss(pos) 1.1817 | loss(seq) 0.0143 | grad 6.1610 | lr 0.0010 | time_forward 3.8160 | time_backward 4.8930 |
[2023-09-02 09:11:46,228::train::INFO] [train] Iter 08296 | loss 1.2069 | loss(rot) 0.4538 | loss(pos) 0.2642 | loss(seq) 0.4889 | grad 4.4912 | lr 0.0010 | time_forward 3.9590 | time_backward 4.9380 |
[2023-09-02 09:11:55,858::train::INFO] [train] Iter 08297 | loss 2.7106 | loss(rot) 1.5608 | loss(pos) 0.6196 | loss(seq) 0.5301 | grad 5.1799 | lr 0.0010 | time_forward 4.0880 | time_backward 5.5390 |
[2023-09-02 09:12:06,091::train::INFO] [train] Iter 08298 | loss 1.4789 | loss(rot) 0.6999 | loss(pos) 0.2063 | loss(seq) 0.5728 | grad 3.3002 | lr 0.0010 | time_forward 4.1710 | time_backward 6.0390 |
[2023-09-02 09:12:08,338::train::INFO] [train] Iter 08299 | loss 3.1960 | loss(rot) 0.0403 | loss(pos) 3.1551 | loss(seq) 0.0006 | grad 6.1316 | lr 0.0010 | time_forward 1.0620 | time_backward 1.1810 |
[2023-09-02 09:12:10,563::train::INFO] [train] Iter 08300 | loss 1.7493 | loss(rot) 1.1030 | loss(pos) 0.2108 | loss(seq) 0.4355 | grad 4.5983 | lr 0.0010 | time_forward 1.0290 | time_backward 1.1930 |
[2023-09-02 09:12:20,425::train::INFO] [train] Iter 08301 | loss 3.2283 | loss(rot) 2.1429 | loss(pos) 0.5609 | loss(seq) 0.5244 | grad 4.5445 | lr 0.0010 | time_forward 4.0580 | time_backward 5.8000 |
[2023-09-02 09:12:29,035::train::INFO] [train] Iter 08302 | loss 1.8309 | loss(rot) 1.0951 | loss(pos) 0.1389 | loss(seq) 0.5969 | grad 3.3422 | lr 0.0010 | time_forward 3.5580 | time_backward 5.0490 |
[2023-09-02 09:12:31,735::train::INFO] [train] Iter 08303 | loss 2.5152 | loss(rot) 1.8372 | loss(pos) 0.1764 | loss(seq) 0.5016 | grad 3.7951 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4310 |
[2023-09-02 09:12:34,553::train::INFO] [train] Iter 08304 | loss 0.9670 | loss(rot) 0.1767 | loss(pos) 0.7179 | loss(seq) 0.0723 | grad 3.2172 | lr 0.0010 | time_forward 1.4090 | time_backward 1.4060 |
[2023-09-02 09:12:37,915::train::INFO] [train] Iter 08305 | loss 2.5353 | loss(rot) 2.3062 | loss(pos) 0.2291 | loss(seq) 0.0000 | grad 4.7083 | lr 0.0010 | time_forward 1.4570 | time_backward 1.9010 |
[2023-09-02 09:12:46,866::train::INFO] [train] Iter 08306 | loss 1.0535 | loss(rot) 0.3756 | loss(pos) 0.1727 | loss(seq) 0.5052 | grad 4.6483 | lr 0.0010 | time_forward 3.8660 | time_backward 5.0820 |
[2023-09-02 09:12:55,025::train::INFO] [train] Iter 08307 | loss 1.3604 | loss(rot) 0.5504 | loss(pos) 0.3829 | loss(seq) 0.4272 | grad 4.0554 | lr 0.0010 | time_forward 3.3830 | time_backward 4.7730 |
[2023-09-02 09:13:04,779::train::INFO] [train] Iter 08308 | loss 2.6313 | loss(rot) 1.7863 | loss(pos) 0.2951 | loss(seq) 0.5499 | grad 4.4016 | lr 0.0010 | time_forward 4.1170 | time_backward 5.6340 |
[2023-09-02 09:13:13,214::train::INFO] [train] Iter 08309 | loss 0.5941 | loss(rot) 0.0852 | loss(pos) 0.4940 | loss(seq) 0.0148 | grad 4.0017 | lr 0.0010 | time_forward 3.5320 | time_backward 4.8810 |
[2023-09-02 09:13:22,891::train::INFO] [train] Iter 08310 | loss 0.8381 | loss(rot) 0.3275 | loss(pos) 0.2534 | loss(seq) 0.2572 | grad 4.0679 | lr 0.0010 | time_forward 3.9680 | time_backward 5.7050 |
[2023-09-02 09:13:30,952::train::INFO] [train] Iter 08311 | loss 3.4668 | loss(rot) 0.0443 | loss(pos) 3.4225 | loss(seq) 0.0000 | grad 7.6461 | lr 0.0010 | time_forward 3.4130 | time_backward 4.6440 |
[2023-09-02 09:13:38,098::train::INFO] [train] Iter 08312 | loss 0.7563 | loss(rot) 0.1906 | loss(pos) 0.3105 | loss(seq) 0.2552 | grad 3.6633 | lr 0.0010 | time_forward 2.9990 | time_backward 4.1430 |
[2023-09-02 09:13:40,822::train::INFO] [train] Iter 08313 | loss 2.1340 | loss(rot) 1.7583 | loss(pos) 0.1484 | loss(seq) 0.2273 | grad 5.4397 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4260 |
[2023-09-02 09:13:49,724::train::INFO] [train] Iter 08314 | loss 0.9050 | loss(rot) 0.4626 | loss(pos) 0.2148 | loss(seq) 0.2276 | grad 3.2111 | lr 0.0010 | time_forward 3.8150 | time_backward 5.0810 |
[2023-09-02 09:13:58,499::train::INFO] [train] Iter 08315 | loss 1.4509 | loss(rot) 1.1940 | loss(pos) 0.1506 | loss(seq) 0.1063 | grad 3.6894 | lr 0.0010 | time_forward 3.7010 | time_backward 5.0700 |
[2023-09-02 09:14:07,201::train::INFO] [train] Iter 08316 | loss 2.0758 | loss(rot) 1.6294 | loss(pos) 0.1136 | loss(seq) 0.3328 | grad 4.0007 | lr 0.0010 | time_forward 3.7000 | time_backward 4.9980 |
[2023-09-02 09:14:17,320::train::INFO] [train] Iter 08317 | loss 2.1606 | loss(rot) 1.3916 | loss(pos) 0.2690 | loss(seq) 0.4999 | grad 2.4146 | lr 0.0010 | time_forward 4.2140 | time_backward 5.9010 |
[2023-09-02 09:14:27,382::train::INFO] [train] Iter 08318 | loss 1.5601 | loss(rot) 0.1306 | loss(pos) 1.4142 | loss(seq) 0.0153 | grad 4.0218 | lr 0.0010 | time_forward 4.0820 | time_backward 5.9760 |
[2023-09-02 09:14:34,840::train::INFO] [train] Iter 08319 | loss 0.8635 | loss(rot) 0.0860 | loss(pos) 0.7679 | loss(seq) 0.0096 | grad 4.4578 | lr 0.0010 | time_forward 3.1010 | time_backward 4.3540 |
[2023-09-02 09:14:38,110::train::INFO] [train] Iter 08320 | loss 1.7259 | loss(rot) 1.1659 | loss(pos) 0.1594 | loss(seq) 0.4006 | grad 3.4120 | lr 0.0010 | time_forward 1.4320 | time_backward 1.8360 |
[2023-09-02 09:14:46,795::train::INFO] [train] Iter 08321 | loss 2.6201 | loss(rot) 1.8174 | loss(pos) 0.2478 | loss(seq) 0.5549 | grad 3.5566 | lr 0.0010 | time_forward 3.6660 | time_backward 5.0150 |
[2023-09-02 09:14:55,800::train::INFO] [train] Iter 08322 | loss 2.4972 | loss(rot) 1.8400 | loss(pos) 0.2036 | loss(seq) 0.4537 | grad 5.0404 | lr 0.0010 | time_forward 3.7890 | time_backward 5.2120 |
[2023-09-02 09:15:04,414::train::INFO] [train] Iter 08323 | loss 2.0849 | loss(rot) 1.7318 | loss(pos) 0.0861 | loss(seq) 0.2670 | grad 4.2654 | lr 0.0010 | time_forward 3.5880 | time_backward 5.0220 |
[2023-09-02 09:15:12,523::train::INFO] [train] Iter 08324 | loss 2.1997 | loss(rot) 2.0521 | loss(pos) 0.1017 | loss(seq) 0.0459 | grad 4.6374 | lr 0.0010 | time_forward 3.3530 | time_backward 4.7530 |
[2023-09-02 09:15:20,978::train::INFO] [train] Iter 08325 | loss 2.2627 | loss(rot) 1.0712 | loss(pos) 0.6331 | loss(seq) 0.5584 | grad 3.6089 | lr 0.0010 | time_forward 3.6230 | time_backward 4.8280 |
[2023-09-02 09:15:29,873::train::INFO] [train] Iter 08326 | loss 2.5938 | loss(rot) 1.4299 | loss(pos) 0.5429 | loss(seq) 0.6211 | grad 5.2675 | lr 0.0010 | time_forward 3.7700 | time_backward 5.1220 |
[2023-09-02 09:15:32,642::train::INFO] [train] Iter 08327 | loss 0.9358 | loss(rot) 0.0362 | loss(pos) 0.8872 | loss(seq) 0.0124 | grad 3.8237 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4750 |
[2023-09-02 09:15:41,253::train::INFO] [train] Iter 08328 | loss 1.8627 | loss(rot) 1.6667 | loss(pos) 0.1238 | loss(seq) 0.0721 | grad 4.5855 | lr 0.0010 | time_forward 3.6920 | time_backward 4.9160 |
[2023-09-02 09:15:43,979::train::INFO] [train] Iter 08329 | loss 1.0174 | loss(rot) 0.4312 | loss(pos) 0.2738 | loss(seq) 0.3124 | grad 3.1956 | lr 0.0010 | time_forward 1.3040 | time_backward 1.4170 |
[2023-09-02 09:15:52,859::train::INFO] [train] Iter 08330 | loss 1.7647 | loss(rot) 0.9946 | loss(pos) 0.2186 | loss(seq) 0.5515 | grad 3.9630 | lr 0.0010 | time_forward 3.7640 | time_backward 5.1110 |
[2023-09-02 09:16:02,957::train::INFO] [train] Iter 08331 | loss 1.1097 | loss(rot) 0.3292 | loss(pos) 0.5777 | loss(seq) 0.2028 | grad 3.2694 | lr 0.0010 | time_forward 4.2810 | time_backward 5.8150 |
[2023-09-02 09:16:13,086::train::INFO] [train] Iter 08332 | loss 1.7176 | loss(rot) 1.0625 | loss(pos) 0.2066 | loss(seq) 0.4484 | grad 5.4903 | lr 0.0010 | time_forward 4.0840 | time_backward 6.0420 |
[2023-09-02 09:16:22,041::train::INFO] [train] Iter 08333 | loss 0.9197 | loss(rot) 0.2070 | loss(pos) 0.4360 | loss(seq) 0.2767 | grad 3.1671 | lr 0.0010 | time_forward 3.8530 | time_backward 5.0980 |
[2023-09-02 09:16:30,673::train::INFO] [train] Iter 08334 | loss 3.8241 | loss(rot) 0.0068 | loss(pos) 3.8174 | loss(seq) 0.0000 | grad 6.9651 | lr 0.0010 | time_forward 3.7230 | time_backward 4.9050 |
[2023-09-02 09:16:39,588::train::INFO] [train] Iter 08335 | loss 1.9285 | loss(rot) 1.3431 | loss(pos) 0.1906 | loss(seq) 0.3947 | grad 5.7164 | lr 0.0010 | time_forward 3.6500 | time_backward 5.2620 |
[2023-09-02 09:16:42,293::train::INFO] [train] Iter 08336 | loss 2.2262 | loss(rot) 1.6155 | loss(pos) 0.0889 | loss(seq) 0.5218 | grad 4.8704 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4230 |
[2023-09-02 09:16:51,106::train::INFO] [train] Iter 08337 | loss 1.5601 | loss(rot) 0.9291 | loss(pos) 0.1754 | loss(seq) 0.4556 | grad 6.0452 | lr 0.0010 | time_forward 3.8180 | time_backward 4.9910 |
[2023-09-02 09:16:57,603::train::INFO] [train] Iter 08338 | loss 1.8220 | loss(rot) 1.4692 | loss(pos) 0.1600 | loss(seq) 0.1928 | grad 5.0906 | lr 0.0010 | time_forward 2.7740 | time_backward 3.7190 |
[2023-09-02 09:17:07,431::train::INFO] [train] Iter 08339 | loss 1.3504 | loss(rot) 0.5883 | loss(pos) 0.4563 | loss(seq) 0.3057 | grad 3.9294 | lr 0.0010 | time_forward 4.0730 | time_backward 5.7520 |
[2023-09-02 09:17:15,642::train::INFO] [train] Iter 08340 | loss 1.7595 | loss(rot) 1.2707 | loss(pos) 0.1093 | loss(seq) 0.3795 | grad 5.6083 | lr 0.0010 | time_forward 3.4020 | time_backward 4.7890 |
[2023-09-02 09:17:24,114::train::INFO] [train] Iter 08341 | loss 1.0742 | loss(rot) 0.2041 | loss(pos) 0.6365 | loss(seq) 0.2336 | grad 3.4774 | lr 0.0010 | time_forward 3.5760 | time_backward 4.8920 |
[2023-09-02 09:17:33,509::train::INFO] [train] Iter 08342 | loss 0.9166 | loss(rot) 0.4863 | loss(pos) 0.3970 | loss(seq) 0.0333 | grad 4.0927 | lr 0.0010 | time_forward 3.9320 | time_backward 5.4580 |
[2023-09-02 09:17:41,728::train::INFO] [train] Iter 08343 | loss 0.7211 | loss(rot) 0.3568 | loss(pos) 0.1794 | loss(seq) 0.1850 | grad 5.3038 | lr 0.0010 | time_forward 3.4070 | time_backward 4.8100 |
[2023-09-02 09:17:50,671::train::INFO] [train] Iter 08344 | loss 1.6803 | loss(rot) 1.3976 | loss(pos) 0.2826 | loss(seq) 0.0001 | grad 5.2507 | lr 0.0010 | time_forward 3.7410 | time_backward 5.1970 |
[2023-09-02 09:17:57,566::train::INFO] [train] Iter 08345 | loss 2.3349 | loss(rot) 1.8238 | loss(pos) 0.4401 | loss(seq) 0.0710 | grad 8.8603 | lr 0.0010 | time_forward 2.9390 | time_backward 3.9530 |
[2023-09-02 09:18:08,159::train::INFO] [train] Iter 08346 | loss 1.6046 | loss(rot) 0.7050 | loss(pos) 0.2808 | loss(seq) 0.6188 | grad 3.3542 | lr 0.0010 | time_forward 4.5380 | time_backward 6.0520 |
[2023-09-02 09:18:16,142::train::INFO] [train] Iter 08347 | loss 1.5993 | loss(rot) 0.7100 | loss(pos) 0.4774 | loss(seq) 0.4119 | grad 4.6925 | lr 0.0010 | time_forward 3.3450 | time_backward 4.6340 |
[2023-09-02 09:18:25,878::train::INFO] [train] Iter 08348 | loss 2.7434 | loss(rot) 2.1215 | loss(pos) 0.1819 | loss(seq) 0.4400 | grad 5.4602 | lr 0.0010 | time_forward 3.9520 | time_backward 5.7800 |
[2023-09-02 09:18:35,337::train::INFO] [train] Iter 08349 | loss 1.9030 | loss(rot) 1.7315 | loss(pos) 0.0690 | loss(seq) 0.1024 | grad 6.0799 | lr 0.0010 | time_forward 4.1260 | time_backward 5.3300 |
[2023-09-02 09:18:46,787::train::INFO] [train] Iter 08350 | loss 2.6531 | loss(rot) 2.4597 | loss(pos) 0.1370 | loss(seq) 0.0564 | grad 3.8537 | lr 0.0010 | time_forward 5.6160 | time_backward 5.8300 |
[2023-09-02 09:18:57,088::train::INFO] [train] Iter 08351 | loss 1.7178 | loss(rot) 1.3907 | loss(pos) 0.1664 | loss(seq) 0.1607 | grad 6.7761 | lr 0.0010 | time_forward 4.9000 | time_backward 5.3970 |
[2023-09-02 09:19:05,822::train::INFO] [train] Iter 08352 | loss 1.7503 | loss(rot) 0.8322 | loss(pos) 0.4371 | loss(seq) 0.4810 | grad 5.3567 | lr 0.0010 | time_forward 3.7890 | time_backward 4.9410 |
[2023-09-02 09:19:08,551::train::INFO] [train] Iter 08353 | loss 1.3983 | loss(rot) 0.8409 | loss(pos) 0.3522 | loss(seq) 0.2051 | grad 3.7205 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4290 |
[2023-09-02 09:19:18,928::train::INFO] [train] Iter 08354 | loss 2.5952 | loss(rot) 2.3771 | loss(pos) 0.2114 | loss(seq) 0.0067 | grad 5.5460 | lr 0.0010 | time_forward 4.4830 | time_backward 5.8900 |
[2023-09-02 09:19:29,541::train::INFO] [train] Iter 08355 | loss 1.2056 | loss(rot) 0.2773 | loss(pos) 0.8812 | loss(seq) 0.0471 | grad 5.9943 | lr 0.0010 | time_forward 4.1500 | time_backward 6.4610 |
[2023-09-02 09:19:39,681::train::INFO] [train] Iter 08356 | loss 1.3090 | loss(rot) 0.5323 | loss(pos) 0.5024 | loss(seq) 0.2743 | grad 3.0929 | lr 0.0010 | time_forward 4.3230 | time_backward 5.8130 |
[2023-09-02 09:19:42,327::train::INFO] [train] Iter 08357 | loss 1.2400 | loss(rot) 0.3947 | loss(pos) 0.8306 | loss(seq) 0.0147 | grad 5.2204 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4000 |
[2023-09-02 09:19:52,727::train::INFO] [train] Iter 08358 | loss 1.4535 | loss(rot) 0.8758 | loss(pos) 0.2497 | loss(seq) 0.3280 | grad 4.0273 | lr 0.0010 | time_forward 5.8490 | time_backward 4.5470 |
[2023-09-02 09:20:03,449::train::INFO] [train] Iter 08359 | loss 2.0454 | loss(rot) 1.2603 | loss(pos) 0.1993 | loss(seq) 0.5858 | grad 3.7910 | lr 0.0010 | time_forward 3.9090 | time_backward 6.8100 |
[2023-09-02 09:20:13,858::train::INFO] [train] Iter 08360 | loss 2.8619 | loss(rot) 2.2538 | loss(pos) 0.2899 | loss(seq) 0.3182 | grad 4.0397 | lr 0.0010 | time_forward 4.5110 | time_backward 5.8960 |
[2023-09-02 09:20:17,164::train::INFO] [train] Iter 08361 | loss 1.4039 | loss(rot) 0.3543 | loss(pos) 0.7798 | loss(seq) 0.2698 | grad 3.2784 | lr 0.0010 | time_forward 1.3920 | time_backward 1.9100 |
[2023-09-02 09:20:20,107::train::INFO] [train] Iter 08362 | loss 2.3137 | loss(rot) 1.6055 | loss(pos) 0.2417 | loss(seq) 0.4665 | grad 5.5433 | lr 0.0010 | time_forward 1.5040 | time_backward 1.4350 |
[2023-09-02 09:20:22,803::train::INFO] [train] Iter 08363 | loss 1.3822 | loss(rot) 0.7160 | loss(pos) 0.1186 | loss(seq) 0.5476 | grad 3.3496 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4200 |
[2023-09-02 09:20:32,409::train::INFO] [train] Iter 08364 | loss 1.1822 | loss(rot) 0.4486 | loss(pos) 0.5912 | loss(seq) 0.1423 | grad 4.6380 | lr 0.0010 | time_forward 3.8650 | time_backward 5.7370 |
[2023-09-02 09:20:40,920::train::INFO] [train] Iter 08365 | loss 2.2080 | loss(rot) 1.9677 | loss(pos) 0.2400 | loss(seq) 0.0003 | grad 5.7673 | lr 0.0010 | time_forward 3.6720 | time_backward 4.8360 |
[2023-09-02 09:20:44,133::train::INFO] [train] Iter 08366 | loss 0.8410 | loss(rot) 0.1557 | loss(pos) 0.5239 | loss(seq) 0.1614 | grad 2.8191 | lr 0.0010 | time_forward 1.3800 | time_backward 1.8310 |
[2023-09-02 09:20:51,806::train::INFO] [train] Iter 08367 | loss 1.3973 | loss(rot) 1.2402 | loss(pos) 0.1331 | loss(seq) 0.0240 | grad 4.1445 | lr 0.0010 | time_forward 3.3050 | time_backward 4.3640 |
[2023-09-02 09:21:00,282::train::INFO] [train] Iter 08368 | loss 2.1213 | loss(rot) 2.0601 | loss(pos) 0.0612 | loss(seq) 0.0000 | grad 5.7195 | lr 0.0010 | time_forward 3.5410 | time_backward 4.9310 |
[2023-09-02 09:21:07,840::train::INFO] [train] Iter 08369 | loss 2.8340 | loss(rot) 2.3556 | loss(pos) 0.1269 | loss(seq) 0.3515 | grad 4.7254 | lr 0.0010 | time_forward 3.1880 | time_backward 4.3660 |
[2023-09-02 09:21:10,558::train::INFO] [train] Iter 08370 | loss 2.5372 | loss(rot) 2.3090 | loss(pos) 0.0528 | loss(seq) 0.1754 | grad 5.4559 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4500 |
[2023-09-02 09:21:20,126::train::INFO] [train] Iter 08371 | loss 2.3413 | loss(rot) 1.8140 | loss(pos) 0.2749 | loss(seq) 0.2523 | grad 5.1023 | lr 0.0010 | time_forward 3.9780 | time_backward 5.5860 |
[2023-09-02 09:21:29,964::train::INFO] [train] Iter 08372 | loss 1.6402 | loss(rot) 0.7995 | loss(pos) 0.2335 | loss(seq) 0.6073 | grad 4.3172 | lr 0.0010 | time_forward 3.9710 | time_backward 5.8650 |
[2023-09-02 09:21:39,652::train::INFO] [train] Iter 08373 | loss 1.4686 | loss(rot) 0.6464 | loss(pos) 0.5848 | loss(seq) 0.2373 | grad 4.9644 | lr 0.0010 | time_forward 4.0500 | time_backward 5.6340 |
[2023-09-02 09:21:42,328::train::INFO] [train] Iter 08374 | loss 1.6467 | loss(rot) 0.8030 | loss(pos) 0.2993 | loss(seq) 0.5444 | grad 4.0245 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4050 |
[2023-09-02 09:21:50,884::train::INFO] [train] Iter 08375 | loss 1.7226 | loss(rot) 1.1483 | loss(pos) 0.1463 | loss(seq) 0.4281 | grad 4.9835 | lr 0.0010 | time_forward 3.6170 | time_backward 4.9350 |
[2023-09-02 09:21:58,142::train::INFO] [train] Iter 08376 | loss 1.5315 | loss(rot) 1.2624 | loss(pos) 0.2034 | loss(seq) 0.0656 | grad 7.5418 | lr 0.0010 | time_forward 3.0910 | time_backward 4.1640 |
[2023-09-02 09:22:06,749::train::INFO] [train] Iter 08377 | loss 4.4183 | loss(rot) 0.0217 | loss(pos) 4.3966 | loss(seq) 0.0000 | grad 10.2608 | lr 0.0010 | time_forward 3.6160 | time_backward 4.9870 |
[2023-09-02 09:22:15,811::train::INFO] [train] Iter 08378 | loss 2.0611 | loss(rot) 1.4829 | loss(pos) 0.1868 | loss(seq) 0.3914 | grad 4.7346 | lr 0.0010 | time_forward 3.8550 | time_backward 5.2030 |
[2023-09-02 09:22:24,084::train::INFO] [train] Iter 08379 | loss 0.6409 | loss(rot) 0.1226 | loss(pos) 0.4727 | loss(seq) 0.0456 | grad 5.3634 | lr 0.0010 | time_forward 3.4650 | time_backward 4.8040 |
[2023-09-02 09:22:26,776::train::INFO] [train] Iter 08380 | loss 0.5530 | loss(rot) 0.0919 | loss(pos) 0.4362 | loss(seq) 0.0249 | grad 3.9572 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4080 |
[2023-09-02 09:22:36,806::train::INFO] [train] Iter 08381 | loss 1.1896 | loss(rot) 0.4177 | loss(pos) 0.4813 | loss(seq) 0.2907 | grad 3.8248 | lr 0.0010 | time_forward 4.0970 | time_backward 5.9120 |
[2023-09-02 09:22:47,414::train::INFO] [train] Iter 08382 | loss 1.6287 | loss(rot) 0.0837 | loss(pos) 1.5396 | loss(seq) 0.0054 | grad 5.8810 | lr 0.0010 | time_forward 4.1380 | time_backward 6.4670 |
[2023-09-02 09:23:00,432::train::INFO] [train] Iter 08383 | loss 1.2114 | loss(rot) 0.2115 | loss(pos) 0.5898 | loss(seq) 0.4101 | grad 4.0654 | lr 0.0010 | time_forward 4.5990 | time_backward 8.4150 |
[2023-09-02 09:23:03,282::train::INFO] [train] Iter 08384 | loss 2.2457 | loss(rot) 1.9559 | loss(pos) 0.1518 | loss(seq) 0.1380 | grad 5.8507 | lr 0.0010 | time_forward 1.3690 | time_backward 1.4770 |
[2023-09-02 09:23:12,257::train::INFO] [train] Iter 08385 | loss 1.9592 | loss(rot) 1.4404 | loss(pos) 0.1699 | loss(seq) 0.3489 | grad 5.0847 | lr 0.0010 | time_forward 3.5810 | time_backward 5.3900 |
[2023-09-02 09:23:15,000::train::INFO] [train] Iter 08386 | loss 2.3236 | loss(rot) 1.8272 | loss(pos) 0.2441 | loss(seq) 0.2523 | grad 4.1075 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4920 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.