text
stringlengths
56
1.16k
[2023-09-02 09:23:25,473::train::INFO] [train] Iter 08387 | loss 1.4445 | loss(rot) 1.2242 | loss(pos) 0.1383 | loss(seq) 0.0821 | grad 4.6436 | lr 0.0010 | time_forward 4.1800 | time_backward 6.2890
[2023-09-02 09:23:35,388::train::INFO] [train] Iter 08388 | loss 1.2971 | loss(rot) 0.5553 | loss(pos) 0.1856 | loss(seq) 0.5562 | grad 4.7065 | lr 0.0010 | time_forward 4.4410 | time_backward 5.4710
[2023-09-02 09:23:38,256::train::INFO] [train] Iter 08389 | loss 1.6516 | loss(rot) 0.9918 | loss(pos) 0.1393 | loss(seq) 0.5205 | grad 3.8569 | lr 0.0010 | time_forward 1.3820 | time_backward 1.4820
[2023-09-02 09:23:49,298::train::INFO] [train] Iter 08390 | loss 3.0578 | loss(rot) 0.0264 | loss(pos) 3.0308 | loss(seq) 0.0007 | grad 7.2846 | lr 0.0010 | time_forward 4.5400 | time_backward 6.4980
[2023-09-02 09:23:50,937::train::INFO] [train] Iter 08391 | loss 1.3215 | loss(rot) 0.1120 | loss(pos) 1.1617 | loss(seq) 0.0478 | grad 4.3100 | lr 0.0010 | time_forward 0.7310 | time_backward 0.9050
[2023-09-02 09:23:53,691::train::INFO] [train] Iter 08392 | loss 2.2057 | loss(rot) 1.5912 | loss(pos) 0.1542 | loss(seq) 0.4603 | grad 3.8810 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4600
[2023-09-02 09:24:04,877::train::INFO] [train] Iter 08393 | loss 1.2772 | loss(rot) 0.3629 | loss(pos) 0.5965 | loss(seq) 0.3178 | grad 3.0969 | lr 0.0010 | time_forward 4.5100 | time_backward 6.6720
[2023-09-02 09:24:07,637::train::INFO] [train] Iter 08394 | loss 2.2814 | loss(rot) 1.7960 | loss(pos) 0.1890 | loss(seq) 0.2963 | grad 4.7441 | lr 0.0010 | time_forward 1.3040 | time_backward 1.4520
[2023-09-02 09:24:17,700::train::INFO] [train] Iter 08395 | loss 2.7945 | loss(rot) 2.5233 | loss(pos) 0.2542 | loss(seq) 0.0170 | grad 4.7321 | lr 0.0010 | time_forward 4.1910 | time_backward 5.8420
[2023-09-02 09:24:21,091::train::INFO] [train] Iter 08396 | loss 1.4339 | loss(rot) 0.4392 | loss(pos) 0.5449 | loss(seq) 0.4498 | grad 3.8193 | lr 0.0010 | time_forward 1.4050 | time_backward 1.9820
[2023-09-02 09:24:23,922::train::INFO] [train] Iter 08397 | loss 1.4410 | loss(rot) 0.7498 | loss(pos) 0.3959 | loss(seq) 0.2953 | grad 3.4885 | lr 0.0010 | time_forward 1.3590 | time_backward 1.4690
[2023-09-02 09:24:36,406::train::INFO] [train] Iter 08398 | loss 1.2127 | loss(rot) 0.3696 | loss(pos) 0.2760 | loss(seq) 0.5671 | grad 2.7672 | lr 0.0010 | time_forward 5.1980 | time_backward 7.2820
[2023-09-02 09:24:45,376::train::INFO] [train] Iter 08399 | loss 1.3758 | loss(rot) 0.0566 | loss(pos) 1.3130 | loss(seq) 0.0062 | grad 8.4038 | lr 0.0010 | time_forward 3.8360 | time_backward 5.1310
[2023-09-02 09:24:54,272::train::INFO] [train] Iter 08400 | loss 2.1808 | loss(rot) 1.6724 | loss(pos) 0.0861 | loss(seq) 0.4224 | grad 4.6527 | lr 0.0010 | time_forward 3.4500 | time_backward 5.4420
[2023-09-02 09:25:04,511::train::INFO] [train] Iter 08401 | loss 0.6981 | loss(rot) 0.0571 | loss(pos) 0.6298 | loss(seq) 0.0112 | grad 3.4521 | lr 0.0010 | time_forward 4.5820 | time_backward 5.6550
[2023-09-02 09:25:13,767::train::INFO] [train] Iter 08402 | loss 1.7280 | loss(rot) 0.9041 | loss(pos) 0.3241 | loss(seq) 0.4997 | grad 7.6464 | lr 0.0010 | time_forward 3.8830 | time_backward 5.3690
[2023-09-02 09:25:16,907::train::INFO] [train] Iter 08403 | loss 2.0439 | loss(rot) 0.0042 | loss(pos) 2.0398 | loss(seq) 0.0000 | grad 5.7564 | lr 0.0010 | time_forward 1.7030 | time_backward 1.4330
[2023-09-02 09:25:25,911::train::INFO] [train] Iter 08404 | loss 1.2283 | loss(rot) 0.3047 | loss(pos) 0.5289 | loss(seq) 0.3947 | grad 3.6858 | lr 0.0010 | time_forward 4.0580 | time_backward 4.9430
[2023-09-02 09:25:37,243::train::INFO] [train] Iter 08405 | loss 0.7224 | loss(rot) 0.1920 | loss(pos) 0.4659 | loss(seq) 0.0645 | grad 4.5387 | lr 0.0010 | time_forward 4.3190 | time_backward 7.0090
[2023-09-02 09:25:52,838::train::INFO] [train] Iter 08406 | loss 1.4067 | loss(rot) 0.1499 | loss(pos) 1.2453 | loss(seq) 0.0116 | grad 5.1820 | lr 0.0010 | time_forward 9.0150 | time_backward 6.5770
[2023-09-02 09:26:26,218::train::INFO] [train] Iter 08407 | loss 1.6869 | loss(rot) 0.4937 | loss(pos) 0.6886 | loss(seq) 0.5046 | grad 5.5629 | lr 0.0010 | time_forward 27.4570 | time_backward 5.9210
[2023-09-02 09:26:29,725::train::INFO] [train] Iter 08408 | loss 0.8104 | loss(rot) 0.1090 | loss(pos) 0.6852 | loss(seq) 0.0161 | grad 4.0672 | lr 0.0010 | time_forward 1.8810 | time_backward 1.6230
[2023-09-02 09:26:40,761::train::INFO] [train] Iter 08409 | loss 1.7205 | loss(rot) 1.0490 | loss(pos) 0.1878 | loss(seq) 0.4837 | grad 3.7720 | lr 0.0010 | time_forward 4.8390 | time_backward 6.1800
[2023-09-02 09:26:43,358::train::INFO] [train] Iter 08410 | loss 1.9317 | loss(rot) 0.0305 | loss(pos) 1.8981 | loss(seq) 0.0032 | grad 5.5180 | lr 0.0010 | time_forward 1.2880 | time_backward 1.3040
[2023-09-02 09:26:46,169::train::INFO] [train] Iter 08411 | loss 1.1221 | loss(rot) 0.3414 | loss(pos) 0.5237 | loss(seq) 0.2570 | grad 3.2614 | lr 0.0010 | time_forward 1.3210 | time_backward 1.4860
[2023-09-02 09:26:56,549::train::INFO] [train] Iter 08412 | loss 2.4903 | loss(rot) 2.1034 | loss(pos) 0.1387 | loss(seq) 0.2481 | grad 6.1856 | lr 0.0010 | time_forward 4.2860 | time_backward 6.0560
[2023-09-02 09:27:06,466::train::INFO] [train] Iter 08413 | loss 0.9129 | loss(rot) 0.5359 | loss(pos) 0.2775 | loss(seq) 0.0995 | grad 3.7647 | lr 0.0010 | time_forward 4.2320 | time_backward 5.6830
[2023-09-02 09:27:18,553::train::INFO] [train] Iter 08414 | loss 2.0368 | loss(rot) 0.0771 | loss(pos) 1.6900 | loss(seq) 0.2697 | grad 4.5871 | lr 0.0010 | time_forward 4.5930 | time_backward 7.4900
[2023-09-02 09:27:28,975::train::INFO] [train] Iter 08415 | loss 0.8948 | loss(rot) 0.4029 | loss(pos) 0.4752 | loss(seq) 0.0168 | grad 4.2623 | lr 0.0010 | time_forward 4.3360 | time_backward 6.0820
[2023-09-02 09:27:37,688::train::INFO] [train] Iter 08416 | loss 1.1179 | loss(rot) 0.1948 | loss(pos) 0.8992 | loss(seq) 0.0240 | grad 4.6976 | lr 0.0010 | time_forward 3.7000 | time_backward 5.0100
[2023-09-02 09:27:47,155::train::INFO] [train] Iter 08417 | loss 2.2350 | loss(rot) 1.9631 | loss(pos) 0.2452 | loss(seq) 0.0267 | grad 5.4964 | lr 0.0010 | time_forward 4.0750 | time_backward 5.3880
[2023-09-02 09:27:50,656::train::INFO] [train] Iter 08418 | loss 2.4651 | loss(rot) 2.1126 | loss(pos) 0.3480 | loss(seq) 0.0045 | grad 6.2704 | lr 0.0010 | time_forward 1.6020 | time_backward 1.8950
[2023-09-02 09:27:53,855::train::INFO] [train] Iter 08419 | loss 1.4829 | loss(rot) 0.4546 | loss(pos) 0.9491 | loss(seq) 0.0793 | grad 4.4095 | lr 0.0010 | time_forward 1.4190 | time_backward 1.7770
[2023-09-02 09:27:56,566::train::INFO] [train] Iter 08420 | loss 0.9448 | loss(rot) 0.3819 | loss(pos) 0.2611 | loss(seq) 0.3017 | grad 5.2692 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4370
[2023-09-02 09:28:03,935::train::INFO] [train] Iter 08421 | loss 1.9042 | loss(rot) 1.6254 | loss(pos) 0.1458 | loss(seq) 0.1330 | grad 6.6334 | lr 0.0010 | time_forward 3.1110 | time_backward 4.2550
[2023-09-02 09:28:13,971::train::INFO] [train] Iter 08422 | loss 2.4347 | loss(rot) 2.0844 | loss(pos) 0.1089 | loss(seq) 0.2414 | grad 3.9711 | lr 0.0010 | time_forward 4.0530 | time_backward 5.9790
[2023-09-02 09:28:22,623::train::INFO] [train] Iter 08423 | loss 2.3196 | loss(rot) 1.7002 | loss(pos) 0.2073 | loss(seq) 0.4121 | grad 4.8400 | lr 0.0010 | time_forward 3.6110 | time_backward 5.0370
[2023-09-02 09:28:31,472::train::INFO] [train] Iter 08424 | loss 2.4116 | loss(rot) 2.1344 | loss(pos) 0.0993 | loss(seq) 0.1779 | grad 5.0669 | lr 0.0010 | time_forward 3.7000 | time_backward 5.1470
[2023-09-02 09:28:40,279::train::INFO] [train] Iter 08425 | loss 1.5095 | loss(rot) 0.5348 | loss(pos) 0.3470 | loss(seq) 0.6278 | grad 4.5077 | lr 0.0010 | time_forward 3.6520 | time_backward 5.1520
[2023-09-02 09:28:48,507::train::INFO] [train] Iter 08426 | loss 1.0998 | loss(rot) 0.9868 | loss(pos) 0.0795 | loss(seq) 0.0334 | grad 5.4258 | lr 0.0010 | time_forward 3.4280 | time_backward 4.7950
[2023-09-02 09:28:58,482::train::INFO] [train] Iter 08427 | loss 1.7556 | loss(rot) 1.2449 | loss(pos) 0.1014 | loss(seq) 0.4092 | grad 3.7768 | lr 0.0010 | time_forward 4.2260 | time_backward 5.7450
[2023-09-02 09:29:07,218::train::INFO] [train] Iter 08428 | loss 1.2809 | loss(rot) 0.6326 | loss(pos) 0.5810 | loss(seq) 0.0673 | grad 3.7740 | lr 0.0010 | time_forward 3.7950 | time_backward 4.9380
[2023-09-02 09:29:16,501::train::INFO] [train] Iter 08429 | loss 1.1505 | loss(rot) 0.8174 | loss(pos) 0.0884 | loss(seq) 0.2446 | grad 3.9324 | lr 0.0010 | time_forward 3.9650 | time_backward 5.3130
[2023-09-02 09:29:19,407::train::INFO] [train] Iter 08430 | loss 1.9617 | loss(rot) 0.0527 | loss(pos) 1.9052 | loss(seq) 0.0037 | grad 5.4724 | lr 0.0010 | time_forward 1.4250 | time_backward 1.4770
[2023-09-02 09:29:28,645::train::INFO] [train] Iter 08431 | loss 1.3397 | loss(rot) 1.0826 | loss(pos) 0.1822 | loss(seq) 0.0750 | grad 5.7036 | lr 0.0010 | time_forward 3.9040 | time_backward 5.3310
[2023-09-02 09:29:36,759::train::INFO] [train] Iter 08432 | loss 2.8869 | loss(rot) 2.5011 | loss(pos) 0.2367 | loss(seq) 0.1491 | grad 3.6625 | lr 0.0010 | time_forward 3.3530 | time_backward 4.7580
[2023-09-02 09:29:39,465::train::INFO] [train] Iter 08433 | loss 2.3573 | loss(rot) 1.3813 | loss(pos) 0.3327 | loss(seq) 0.6433 | grad 5.4708 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4570
[2023-09-02 09:29:41,767::train::INFO] [train] Iter 08434 | loss 2.4672 | loss(rot) 2.1865 | loss(pos) 0.2807 | loss(seq) 0.0000 | grad 4.0454 | lr 0.0010 | time_forward 1.0750 | time_backward 1.2230
[2023-09-02 09:29:50,825::train::INFO] [train] Iter 08435 | loss 1.7752 | loss(rot) 0.1195 | loss(pos) 1.3465 | loss(seq) 0.3093 | grad 5.9909 | lr 0.0010 | time_forward 4.0730 | time_backward 4.9810
[2023-09-02 09:29:59,535::train::INFO] [train] Iter 08436 | loss 0.9984 | loss(rot) 0.8918 | loss(pos) 0.1066 | loss(seq) 0.0000 | grad 3.6730 | lr 0.0010 | time_forward 3.6580 | time_backward 5.0490
[2023-09-02 09:30:07,629::train::INFO] [train] Iter 08437 | loss 3.1570 | loss(rot) 2.7531 | loss(pos) 0.2492 | loss(seq) 0.1547 | grad 4.2354 | lr 0.0010 | time_forward 3.3730 | time_backward 4.7170
[2023-09-02 09:30:15,743::train::INFO] [train] Iter 08438 | loss 0.4704 | loss(rot) 0.0673 | loss(pos) 0.3804 | loss(seq) 0.0227 | grad 4.1041 | lr 0.0010 | time_forward 3.4220 | time_backward 4.6880
[2023-09-02 09:30:25,430::train::INFO] [train] Iter 08439 | loss 2.0764 | loss(rot) 1.2332 | loss(pos) 0.3061 | loss(seq) 0.5371 | grad 4.7205 | lr 0.0010 | time_forward 4.2220 | time_backward 5.4610
[2023-09-02 09:30:34,146::train::INFO] [train] Iter 08440 | loss 1.2343 | loss(rot) 0.4632 | loss(pos) 0.3138 | loss(seq) 0.4573 | grad 2.5735 | lr 0.0010 | time_forward 3.7140 | time_backward 4.9980
[2023-09-02 09:30:42,330::train::INFO] [train] Iter 08441 | loss 2.0764 | loss(rot) 1.4537 | loss(pos) 0.2037 | loss(seq) 0.4190 | grad 3.7913 | lr 0.0010 | time_forward 3.4370 | time_backward 4.7440
[2023-09-02 09:30:50,336::train::INFO] [train] Iter 08442 | loss 2.3526 | loss(rot) 1.9668 | loss(pos) 0.3537 | loss(seq) 0.0321 | grad 6.4830 | lr 0.0010 | time_forward 3.3230 | time_backward 4.6780
[2023-09-02 09:30:57,841::train::INFO] [train] Iter 08443 | loss 1.5254 | loss(rot) 0.7539 | loss(pos) 0.2261 | loss(seq) 0.5453 | grad 4.2643 | lr 0.0010 | time_forward 3.1370 | time_backward 4.3650
[2023-09-02 09:31:07,894::train::INFO] [train] Iter 08444 | loss 1.8683 | loss(rot) 0.5494 | loss(pos) 0.7965 | loss(seq) 0.5224 | grad 6.1739 | lr 0.0010 | time_forward 4.0430 | time_backward 6.0060
[2023-09-02 09:31:17,009::train::INFO] [train] Iter 08445 | loss 1.6251 | loss(rot) 1.0425 | loss(pos) 0.1223 | loss(seq) 0.4604 | grad 4.1172 | lr 0.0010 | time_forward 3.7990 | time_backward 5.3120
[2023-09-02 09:31:25,845::train::INFO] [train] Iter 08446 | loss 2.6821 | loss(rot) 2.4006 | loss(pos) 0.1409 | loss(seq) 0.1406 | grad 4.6838 | lr 0.0010 | time_forward 3.9590 | time_backward 4.8730
[2023-09-02 09:31:28,769::train::INFO] [train] Iter 08447 | loss 2.7471 | loss(rot) 1.8476 | loss(pos) 0.4174 | loss(seq) 0.4820 | grad 4.0669 | lr 0.0010 | time_forward 1.3670 | time_backward 1.5530
[2023-09-02 09:31:39,035::train::INFO] [train] Iter 08448 | loss 1.8699 | loss(rot) 1.7633 | loss(pos) 0.0938 | loss(seq) 0.0128 | grad 4.3961 | lr 0.0010 | time_forward 4.2340 | time_backward 6.0280
[2023-09-02 09:31:48,000::train::INFO] [train] Iter 08449 | loss 1.5942 | loss(rot) 1.4612 | loss(pos) 0.1300 | loss(seq) 0.0030 | grad 4.2291 | lr 0.0010 | time_forward 3.6080 | time_backward 5.3530
[2023-09-02 09:31:50,787::train::INFO] [train] Iter 08450 | loss 1.8069 | loss(rot) 1.4413 | loss(pos) 0.0711 | loss(seq) 0.2946 | grad 6.0999 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4870
[2023-09-02 09:32:06,184::train::INFO] [train] Iter 08451 | loss 1.2399 | loss(rot) 1.0537 | loss(pos) 0.1798 | loss(seq) 0.0064 | grad 4.9091 | lr 0.0010 | time_forward 5.1680 | time_backward 10.2250
[2023-09-02 09:32:14,111::train::INFO] [train] Iter 08452 | loss 0.9947 | loss(rot) 0.1983 | loss(pos) 0.3508 | loss(seq) 0.4456 | grad 2.3236 | lr 0.0010 | time_forward 3.5180 | time_backward 4.4040
[2023-09-02 09:32:22,067::train::INFO] [train] Iter 08453 | loss 2.0399 | loss(rot) 1.8101 | loss(pos) 0.0991 | loss(seq) 0.1307 | grad 3.4770 | lr 0.0010 | time_forward 3.3450 | time_backward 4.6050
[2023-09-02 09:32:29,917::train::INFO] [train] Iter 08454 | loss 1.2982 | loss(rot) 0.7924 | loss(pos) 0.1022 | loss(seq) 0.4036 | grad 3.9943 | lr 0.0010 | time_forward 3.2730 | time_backward 4.5750
[2023-09-02 09:32:39,489::train::INFO] [train] Iter 08455 | loss 2.1249 | loss(rot) 1.7923 | loss(pos) 0.3325 | loss(seq) 0.0001 | grad 4.9841 | lr 0.0010 | time_forward 3.8340 | time_backward 5.7330
[2023-09-02 09:32:43,022::train::INFO] [train] Iter 08456 | loss 2.2875 | loss(rot) 0.8873 | loss(pos) 0.8310 | loss(seq) 0.5692 | grad 5.5881 | lr 0.0010 | time_forward 1.5420 | time_backward 1.9880
[2023-09-02 09:32:52,860::train::INFO] [train] Iter 08457 | loss 1.3566 | loss(rot) 0.1815 | loss(pos) 1.1383 | loss(seq) 0.0369 | grad 6.1959 | lr 0.0010 | time_forward 4.0120 | time_backward 5.8230
[2023-09-02 09:33:02,737::train::INFO] [train] Iter 08458 | loss 0.6721 | loss(rot) 0.1279 | loss(pos) 0.4914 | loss(seq) 0.0527 | grad 3.6692 | lr 0.0010 | time_forward 4.0440 | time_backward 5.8290
[2023-09-02 09:33:12,435::train::INFO] [train] Iter 08459 | loss 1.4174 | loss(rot) 0.6673 | loss(pos) 0.2277 | loss(seq) 0.5224 | grad 5.3070 | lr 0.0010 | time_forward 3.9750 | time_backward 5.7190
[2023-09-02 09:33:21,147::train::INFO] [train] Iter 08460 | loss 1.1028 | loss(rot) 0.5024 | loss(pos) 0.1861 | loss(seq) 0.4143 | grad 3.9067 | lr 0.0010 | time_forward 3.7410 | time_backward 4.9680
[2023-09-02 09:33:28,487::train::INFO] [train] Iter 08461 | loss 1.3347 | loss(rot) 0.4052 | loss(pos) 0.7396 | loss(seq) 0.1900 | grad 5.3960 | lr 0.0010 | time_forward 3.1100 | time_backward 4.2270
[2023-09-02 09:33:38,389::train::INFO] [train] Iter 08462 | loss 2.4608 | loss(rot) 1.8111 | loss(pos) 0.1953 | loss(seq) 0.4544 | grad 3.8529 | lr 0.0010 | time_forward 4.0000 | time_backward 5.8980
[2023-09-02 09:33:40,703::train::INFO] [train] Iter 08463 | loss 1.5485 | loss(rot) 1.4035 | loss(pos) 0.1268 | loss(seq) 0.0182 | grad 4.4348 | lr 0.0010 | time_forward 1.0800 | time_backward 1.2300
[2023-09-02 09:33:43,491::train::INFO] [train] Iter 08464 | loss 1.5716 | loss(rot) 0.6358 | loss(pos) 0.5840 | loss(seq) 0.3518 | grad 3.9621 | lr 0.0010 | time_forward 1.3170 | time_backward 1.4680
[2023-09-02 09:33:50,939::train::INFO] [train] Iter 08465 | loss 1.3241 | loss(rot) 0.7463 | loss(pos) 0.1336 | loss(seq) 0.4442 | grad 5.9261 | lr 0.0010 | time_forward 3.1520 | time_backward 4.2920
[2023-09-02 09:33:53,816::train::INFO] [train] Iter 08466 | loss 2.0572 | loss(rot) 1.2572 | loss(pos) 0.2575 | loss(seq) 0.5425 | grad 6.4595 | lr 0.0010 | time_forward 1.3720 | time_backward 1.5030
[2023-09-02 09:34:03,741::train::INFO] [train] Iter 08467 | loss 1.9710 | loss(rot) 1.3508 | loss(pos) 0.1648 | loss(seq) 0.4555 | grad 5.2709 | lr 0.0010 | time_forward 4.2340 | time_backward 5.6530
[2023-09-02 09:34:12,269::train::INFO] [train] Iter 08468 | loss 1.7355 | loss(rot) 1.1418 | loss(pos) 0.2180 | loss(seq) 0.3757 | grad 6.8804 | lr 0.0010 | time_forward 3.7610 | time_backward 4.7640
[2023-09-02 09:34:18,673::train::INFO] [train] Iter 08469 | loss 1.4790 | loss(rot) 0.8325 | loss(pos) 0.2214 | loss(seq) 0.4250 | grad 4.4381 | lr 0.0010 | time_forward 2.6540 | time_backward 3.7460
[2023-09-02 09:34:27,766::train::INFO] [train] Iter 08470 | loss 2.1138 | loss(rot) 1.9523 | loss(pos) 0.1615 | loss(seq) 0.0000 | grad 7.4388 | lr 0.0010 | time_forward 3.8200 | time_backward 5.2700
[2023-09-02 09:34:30,424::train::INFO] [train] Iter 08471 | loss 1.4368 | loss(rot) 0.4185 | loss(pos) 0.4678 | loss(seq) 0.5505 | grad 4.0580 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4030
[2023-09-02 09:34:40,234::train::INFO] [train] Iter 08472 | loss 2.0793 | loss(rot) 1.8737 | loss(pos) 0.2056 | loss(seq) 0.0000 | grad 7.5002 | lr 0.0010 | time_forward 4.1310 | time_backward 5.6760
[2023-09-02 09:34:50,209::train::INFO] [train] Iter 08473 | loss 1.7386 | loss(rot) 0.6536 | loss(pos) 0.4796 | loss(seq) 0.6054 | grad 3.7115 | lr 0.0010 | time_forward 4.0630 | time_backward 5.9090
[2023-09-02 09:34:58,536::train::INFO] [train] Iter 08474 | loss 1.9653 | loss(rot) 1.3121 | loss(pos) 0.1792 | loss(seq) 0.4741 | grad 5.3173 | lr 0.0010 | time_forward 3.5640 | time_backward 4.7590
[2023-09-02 09:35:06,891::train::INFO] [train] Iter 08475 | loss 1.9698 | loss(rot) 1.6707 | loss(pos) 0.0929 | loss(seq) 0.2062 | grad 3.7538 | lr 0.0010 | time_forward 3.4760 | time_backward 4.8760
[2023-09-02 09:35:16,780::train::INFO] [train] Iter 08476 | loss 2.2894 | loss(rot) 1.7314 | loss(pos) 0.1963 | loss(seq) 0.3617 | grad 6.7478 | lr 0.0010 | time_forward 3.9510 | time_backward 5.9350
[2023-09-02 09:35:25,980::train::INFO] [train] Iter 08477 | loss 2.6083 | loss(rot) 1.3520 | loss(pos) 0.4929 | loss(seq) 0.7634 | grad 8.0963 | lr 0.0010 | time_forward 3.8570 | time_backward 5.3390
[2023-09-02 09:35:34,762::train::INFO] [train] Iter 08478 | loss 1.6630 | loss(rot) 1.1011 | loss(pos) 0.2003 | loss(seq) 0.3616 | grad 4.5569 | lr 0.0010 | time_forward 3.6430 | time_backward 5.1340
[2023-09-02 09:35:43,358::train::INFO] [train] Iter 08479 | loss 2.0290 | loss(rot) 1.1264 | loss(pos) 0.4074 | loss(seq) 0.4952 | grad 4.4984 | lr 0.0010 | time_forward 3.6640 | time_backward 4.9290
[2023-09-02 09:35:53,308::train::INFO] [train] Iter 08480 | loss 2.4875 | loss(rot) 2.2584 | loss(pos) 0.2270 | loss(seq) 0.0021 | grad 4.1892 | lr 0.0010 | time_forward 3.9910 | time_backward 5.9550
[2023-09-02 09:36:03,106::train::INFO] [train] Iter 08481 | loss 0.9283 | loss(rot) 0.5111 | loss(pos) 0.2149 | loss(seq) 0.2023 | grad 3.5681 | lr 0.0010 | time_forward 3.9710 | time_backward 5.8240
[2023-09-02 09:36:05,527::train::INFO] [train] Iter 08482 | loss 2.0424 | loss(rot) 1.9717 | loss(pos) 0.0699 | loss(seq) 0.0007 | grad 4.7879 | lr 0.0010 | time_forward 1.1300 | time_backward 1.2880
[2023-09-02 09:36:15,579::train::INFO] [train] Iter 08483 | loss 2.9607 | loss(rot) 2.7429 | loss(pos) 0.1634 | loss(seq) 0.0544 | grad 3.6267 | lr 0.0010 | time_forward 4.3920 | time_backward 5.6560
[2023-09-02 09:36:27,394::train::INFO] [train] Iter 08484 | loss 0.7064 | loss(rot) 0.2195 | loss(pos) 0.4342 | loss(seq) 0.0528 | grad 3.1371 | lr 0.0010 | time_forward 6.0260 | time_backward 5.7860
[2023-09-02 09:36:36,353::train::INFO] [train] Iter 08485 | loss 1.2633 | loss(rot) 1.0289 | loss(pos) 0.2344 | loss(seq) 0.0000 | grad 4.6041 | lr 0.0010 | time_forward 3.8040 | time_backward 5.1510
[2023-09-02 09:36:46,056::train::INFO] [train] Iter 08486 | loss 1.3528 | loss(rot) 0.4257 | loss(pos) 0.6767 | loss(seq) 0.2504 | grad 4.4677 | lr 0.0010 | time_forward 3.9420 | time_backward 5.7580