text
stringlengths
56
1.16k
[2023-09-02 09:36:56,149::train::INFO] [train] Iter 08487 | loss 1.6348 | loss(rot) 1.4371 | loss(pos) 0.1978 | loss(seq) 0.0000 | grad 5.7011 | lr 0.0010 | time_forward 4.0870 | time_backward 5.9910
[2023-09-02 09:37:06,404::train::INFO] [train] Iter 08488 | loss 1.1476 | loss(rot) 0.4514 | loss(pos) 0.4996 | loss(seq) 0.1966 | grad 4.4454 | lr 0.0010 | time_forward 4.2900 | time_backward 5.9610
[2023-09-02 09:37:15,704::train::INFO] [train] Iter 08489 | loss 2.3642 | loss(rot) 2.1690 | loss(pos) 0.1785 | loss(seq) 0.0166 | grad 5.0225 | lr 0.0010 | time_forward 3.9510 | time_backward 5.3450
[2023-09-02 09:37:18,421::train::INFO] [train] Iter 08490 | loss 1.3503 | loss(rot) 0.7094 | loss(pos) 0.2085 | loss(seq) 0.4324 | grad 5.9784 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4520
[2023-09-02 09:37:26,246::train::INFO] [train] Iter 08491 | loss 1.0119 | loss(rot) 0.2105 | loss(pos) 0.7637 | loss(seq) 0.0376 | grad 5.3837 | lr 0.0010 | time_forward 3.2020 | time_backward 4.6190
[2023-09-02 09:37:35,847::train::INFO] [train] Iter 08492 | loss 1.0721 | loss(rot) 0.3520 | loss(pos) 0.2816 | loss(seq) 0.4385 | grad 2.9281 | lr 0.0010 | time_forward 3.9200 | time_backward 5.6770
[2023-09-02 09:37:43,225::train::INFO] [train] Iter 08493 | loss 1.5503 | loss(rot) 0.0585 | loss(pos) 1.4898 | loss(seq) 0.0020 | grad 4.9530 | lr 0.0010 | time_forward 3.0660 | time_backward 4.3090
[2023-09-02 09:37:48,210::train::INFO] [train] Iter 08494 | loss 2.4387 | loss(rot) 1.9697 | loss(pos) 0.2121 | loss(seq) 0.2570 | grad 4.3261 | lr 0.0010 | time_forward 2.1560 | time_backward 2.8250
[2023-09-02 09:37:56,240::train::INFO] [train] Iter 08495 | loss 2.6485 | loss(rot) 2.4417 | loss(pos) 0.2020 | loss(seq) 0.0047 | grad 4.5167 | lr 0.0010 | time_forward 3.5040 | time_backward 4.4820
[2023-09-02 09:37:58,545::train::INFO] [train] Iter 08496 | loss 1.9048 | loss(rot) 1.7957 | loss(pos) 0.1090 | loss(seq) 0.0000 | grad 3.9165 | lr 0.0010 | time_forward 1.0850 | time_backward 1.2160
[2023-09-02 09:38:06,756::train::INFO] [train] Iter 08497 | loss 2.6198 | loss(rot) 2.5150 | loss(pos) 0.0957 | loss(seq) 0.0091 | grad 4.6229 | lr 0.0010 | time_forward 3.4700 | time_backward 4.7370
[2023-09-02 09:38:15,405::train::INFO] [train] Iter 08498 | loss 1.3291 | loss(rot) 0.3939 | loss(pos) 0.3446 | loss(seq) 0.5906 | grad 4.0045 | lr 0.0010 | time_forward 3.6470 | time_backward 4.9980
[2023-09-02 09:38:23,770::train::INFO] [train] Iter 08499 | loss 1.5540 | loss(rot) 0.5651 | loss(pos) 0.3775 | loss(seq) 0.6114 | grad 5.9216 | lr 0.0010 | time_forward 3.5290 | time_backward 4.8330
[2023-09-02 09:38:32,328::train::INFO] [train] Iter 08500 | loss 2.1129 | loss(rot) 1.2606 | loss(pos) 0.3805 | loss(seq) 0.4717 | grad 7.2374 | lr 0.0010 | time_forward 3.6270 | time_backward 4.9280
[2023-09-02 09:38:42,308::train::INFO] [train] Iter 08501 | loss 0.8505 | loss(rot) 0.1638 | loss(pos) 0.6143 | loss(seq) 0.0724 | grad 4.6695 | lr 0.0010 | time_forward 4.0110 | time_backward 5.9660
[2023-09-02 09:38:51,870::train::INFO] [train] Iter 08502 | loss 2.3724 | loss(rot) 2.1386 | loss(pos) 0.2337 | loss(seq) 0.0000 | grad 3.5899 | lr 0.0010 | time_forward 4.0030 | time_backward 5.5550
[2023-09-02 09:38:54,438::train::INFO] [train] Iter 08503 | loss 2.5569 | loss(rot) 2.3909 | loss(pos) 0.1639 | loss(seq) 0.0021 | grad 3.7011 | lr 0.0010 | time_forward 1.3170 | time_backward 1.2460
[2023-09-02 09:39:00,186::train::INFO] [train] Iter 08504 | loss 1.5228 | loss(rot) 0.7546 | loss(pos) 0.4843 | loss(seq) 0.2839 | grad 6.7511 | lr 0.0010 | time_forward 2.4650 | time_backward 3.2630
[2023-09-02 09:39:08,737::train::INFO] [train] Iter 08505 | loss 1.7336 | loss(rot) 0.0128 | loss(pos) 1.7188 | loss(seq) 0.0020 | grad 7.4427 | lr 0.0010 | time_forward 3.6370 | time_backward 4.9110
[2023-09-02 09:39:16,963::train::INFO] [train] Iter 08506 | loss 1.7947 | loss(rot) 1.5840 | loss(pos) 0.1145 | loss(seq) 0.0962 | grad 7.5390 | lr 0.0010 | time_forward 3.4590 | time_backward 4.7630
[2023-09-02 09:39:19,227::train::INFO] [train] Iter 08507 | loss 0.7893 | loss(rot) 0.1705 | loss(pos) 0.5701 | loss(seq) 0.0487 | grad 3.3180 | lr 0.0010 | time_forward 1.0540 | time_backward 1.2060
[2023-09-02 09:39:29,319::train::INFO] [train] Iter 08508 | loss 1.8423 | loss(rot) 1.3737 | loss(pos) 0.1479 | loss(seq) 0.3208 | grad 3.9466 | lr 0.0010 | time_forward 4.2120 | time_backward 5.8620
[2023-09-02 09:39:37,995::train::INFO] [train] Iter 08509 | loss 2.6885 | loss(rot) 0.9240 | loss(pos) 1.7596 | loss(seq) 0.0048 | grad 7.0167 | lr 0.0010 | time_forward 3.6680 | time_backward 5.0050
[2023-09-02 09:39:47,253::train::INFO] [train] Iter 08510 | loss 1.8519 | loss(rot) 1.0101 | loss(pos) 0.2477 | loss(seq) 0.5941 | grad 3.9081 | lr 0.0010 | time_forward 3.8300 | time_backward 5.4230
[2023-09-02 09:39:49,981::train::INFO] [train] Iter 08511 | loss 1.2417 | loss(rot) 0.2962 | loss(pos) 0.4477 | loss(seq) 0.4977 | grad 3.3358 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4440
[2023-09-02 09:40:00,253::train::INFO] [train] Iter 08512 | loss 2.1123 | loss(rot) 1.9222 | loss(pos) 0.1598 | loss(seq) 0.0304 | grad 5.7742 | lr 0.0010 | time_forward 4.2030 | time_backward 6.0330
[2023-09-02 09:40:02,967::train::INFO] [train] Iter 08513 | loss 0.7302 | loss(rot) 0.2850 | loss(pos) 0.4000 | loss(seq) 0.0452 | grad 5.0508 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4450
[2023-09-02 09:40:12,217::train::INFO] [train] Iter 08514 | loss 1.8552 | loss(rot) 1.4632 | loss(pos) 0.1281 | loss(seq) 0.2639 | grad 4.3535 | lr 0.0010 | time_forward 3.9830 | time_backward 5.2630
[2023-09-02 09:40:19,611::train::INFO] [train] Iter 08515 | loss 1.2711 | loss(rot) 0.6073 | loss(pos) 0.2057 | loss(seq) 0.4581 | grad 5.5852 | lr 0.0010 | time_forward 3.1670 | time_backward 4.2240
[2023-09-02 09:40:28,108::train::INFO] [train] Iter 08516 | loss 2.3722 | loss(rot) 1.0244 | loss(pos) 0.6910 | loss(seq) 0.6568 | grad 8.1626 | lr 0.0010 | time_forward 3.6380 | time_backward 4.8550
[2023-09-02 09:40:37,141::train::INFO] [train] Iter 08517 | loss 1.9981 | loss(rot) 1.8995 | loss(pos) 0.0980 | loss(seq) 0.0006 | grad 4.2232 | lr 0.0010 | time_forward 3.7930 | time_backward 5.2360
[2023-09-02 09:40:46,868::train::INFO] [train] Iter 08518 | loss 2.2580 | loss(rot) 2.0772 | loss(pos) 0.1797 | loss(seq) 0.0011 | grad 5.5038 | lr 0.0010 | time_forward 4.0740 | time_backward 5.6500
[2023-09-02 09:40:53,387::train::INFO] [train] Iter 08519 | loss 2.1373 | loss(rot) 2.0016 | loss(pos) 0.0776 | loss(seq) 0.0581 | grad 12.4568 | lr 0.0010 | time_forward 2.7630 | time_backward 3.7540
[2023-09-02 09:41:03,716::train::INFO] [train] Iter 08520 | loss 1.9853 | loss(rot) 1.5585 | loss(pos) 0.1476 | loss(seq) 0.2793 | grad 4.3440 | lr 0.0010 | time_forward 4.2590 | time_backward 6.0670
[2023-09-02 09:41:12,209::train::INFO] [train] Iter 08521 | loss 1.9961 | loss(rot) 1.4138 | loss(pos) 0.1730 | loss(seq) 0.4092 | grad 5.7639 | lr 0.0010 | time_forward 3.6670 | time_backward 4.8070
[2023-09-02 09:41:20,638::train::INFO] [train] Iter 08522 | loss 0.9742 | loss(rot) 0.5323 | loss(pos) 0.2036 | loss(seq) 0.2383 | grad 5.0619 | lr 0.0010 | time_forward 3.6420 | time_backward 4.7840
[2023-09-02 09:41:24,362::train::INFO] [train] Iter 08523 | loss 2.6165 | loss(rot) 2.2101 | loss(pos) 0.1559 | loss(seq) 0.2505 | grad 5.0081 | lr 0.0010 | time_forward 1.7480 | time_backward 1.9710
[2023-09-02 09:41:30,014::train::INFO] [train] Iter 08524 | loss 2.9762 | loss(rot) 2.7864 | loss(pos) 0.1623 | loss(seq) 0.0275 | grad 2.7853 | lr 0.0010 | time_forward 2.4050 | time_backward 3.2430
[2023-09-02 09:41:39,970::train::INFO] [train] Iter 08525 | loss 1.8686 | loss(rot) 1.6370 | loss(pos) 0.1704 | loss(seq) 0.0612 | grad 4.9048 | lr 0.0010 | time_forward 4.0260 | time_backward 5.9150
[2023-09-02 09:41:48,271::train::INFO] [train] Iter 08526 | loss 2.6291 | loss(rot) 2.4070 | loss(pos) 0.1410 | loss(seq) 0.0811 | grad 3.9684 | lr 0.0010 | time_forward 3.4720 | time_backward 4.8270
[2023-09-02 09:41:56,431::train::INFO] [train] Iter 08527 | loss 1.3486 | loss(rot) 0.2863 | loss(pos) 0.7485 | loss(seq) 0.3138 | grad 3.4853 | lr 0.0010 | time_forward 3.5400 | time_backward 4.6140
[2023-09-02 09:42:06,386::train::INFO] [train] Iter 08528 | loss 0.9608 | loss(rot) 0.3076 | loss(pos) 0.3096 | loss(seq) 0.3436 | grad 3.6146 | lr 0.0010 | time_forward 4.1530 | time_backward 5.7980
[2023-09-02 09:42:15,742::train::INFO] [train] Iter 08529 | loss 1.4157 | loss(rot) 1.1699 | loss(pos) 0.2426 | loss(seq) 0.0031 | grad 5.3618 | lr 0.0010 | time_forward 3.9290 | time_backward 5.4230
[2023-09-02 09:42:24,511::train::INFO] [train] Iter 08530 | loss 1.2846 | loss(rot) 0.2222 | loss(pos) 0.8669 | loss(seq) 0.1955 | grad 5.3077 | lr 0.0010 | time_forward 3.7120 | time_backward 5.0540
[2023-09-02 09:42:27,363::train::INFO] [train] Iter 08531 | loss 1.6823 | loss(rot) 1.5421 | loss(pos) 0.1401 | loss(seq) 0.0000 | grad 5.8802 | lr 0.0010 | time_forward 1.3610 | time_backward 1.4860
[2023-09-02 09:42:37,499::train::INFO] [train] Iter 08532 | loss 2.1062 | loss(rot) 1.7187 | loss(pos) 0.1045 | loss(seq) 0.2830 | grad 4.8704 | lr 0.0010 | time_forward 4.1080 | time_backward 6.0230
[2023-09-02 09:42:39,858::train::INFO] [train] Iter 08533 | loss 1.8095 | loss(rot) 1.0692 | loss(pos) 0.3112 | loss(seq) 0.4290 | grad 3.5243 | lr 0.0010 | time_forward 1.1430 | time_backward 1.2140
[2023-09-02 09:42:42,682::train::INFO] [train] Iter 08534 | loss 2.5339 | loss(rot) 1.9802 | loss(pos) 0.1567 | loss(seq) 0.3971 | grad 4.3615 | lr 0.0010 | time_forward 1.3440 | time_backward 1.4770
[2023-09-02 09:42:52,418::train::INFO] [train] Iter 08535 | loss 2.4679 | loss(rot) 2.0668 | loss(pos) 0.0709 | loss(seq) 0.3303 | grad 4.5226 | lr 0.0010 | time_forward 3.9790 | time_backward 5.7530
[2023-09-02 09:43:02,347::train::INFO] [train] Iter 08536 | loss 1.8685 | loss(rot) 1.2575 | loss(pos) 0.2662 | loss(seq) 0.3448 | grad 4.8126 | lr 0.0010 | time_forward 4.1590 | time_backward 5.7470
[2023-09-02 09:43:05,164::train::INFO] [train] Iter 08537 | loss 0.9380 | loss(rot) 0.3459 | loss(pos) 0.2209 | loss(seq) 0.3712 | grad 3.6491 | lr 0.0010 | time_forward 1.3410 | time_backward 1.4730
[2023-09-02 09:43:07,857::train::INFO] [train] Iter 08538 | loss 1.0731 | loss(rot) 0.0840 | loss(pos) 0.9692 | loss(seq) 0.0199 | grad 6.5147 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4290
[2023-09-02 09:43:15,750::train::INFO] [train] Iter 08539 | loss 2.0422 | loss(rot) 1.7934 | loss(pos) 0.0982 | loss(seq) 0.1505 | grad 3.5971 | lr 0.0010 | time_forward 3.3600 | time_backward 4.5290
[2023-09-02 09:43:25,542::train::INFO] [train] Iter 08540 | loss 1.4801 | loss(rot) 0.1035 | loss(pos) 1.1966 | loss(seq) 0.1800 | grad 5.8100 | lr 0.0010 | time_forward 4.1610 | time_backward 5.6280
[2023-09-02 09:43:34,517::train::INFO] [train] Iter 08541 | loss 0.7962 | loss(rot) 0.1761 | loss(pos) 0.5867 | loss(seq) 0.0334 | grad 4.7198 | lr 0.0010 | time_forward 3.8560 | time_backward 5.1150
[2023-09-02 09:43:44,301::train::INFO] [train] Iter 08542 | loss 1.3922 | loss(rot) 0.4490 | loss(pos) 0.6597 | loss(seq) 0.2834 | grad 4.6835 | lr 0.0010 | time_forward 4.0350 | time_backward 5.7460
[2023-09-02 09:43:53,923::train::INFO] [train] Iter 08543 | loss 1.1789 | loss(rot) 0.4442 | loss(pos) 0.6899 | loss(seq) 0.0448 | grad 4.8464 | lr 0.0010 | time_forward 4.0000 | time_backward 5.6190
[2023-09-02 09:43:56,650::train::INFO] [train] Iter 08544 | loss 2.7817 | loss(rot) 2.5493 | loss(pos) 0.2323 | loss(seq) 0.0000 | grad 4.3541 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4570
[2023-09-02 09:44:06,549::train::INFO] [train] Iter 08545 | loss 2.3130 | loss(rot) 1.9649 | loss(pos) 0.0822 | loss(seq) 0.2660 | grad 5.9375 | lr 0.0010 | time_forward 4.0070 | time_backward 5.8720
[2023-09-02 09:44:14,634::train::INFO] [train] Iter 08546 | loss 1.1637 | loss(rot) 0.5635 | loss(pos) 0.3353 | loss(seq) 0.2649 | grad 4.4077 | lr 0.0010 | time_forward 3.3430 | time_backward 4.7380
[2023-09-02 09:44:21,629::train::INFO] [train] Iter 08547 | loss 2.0136 | loss(rot) 1.2940 | loss(pos) 0.4051 | loss(seq) 0.3145 | grad 7.1751 | lr 0.0010 | time_forward 2.9910 | time_backward 4.0020
[2023-09-02 09:44:30,841::train::INFO] [train] Iter 08548 | loss 1.9764 | loss(rot) 1.8800 | loss(pos) 0.0840 | loss(seq) 0.0123 | grad 5.1587 | lr 0.0010 | time_forward 3.8650 | time_backward 5.3440
[2023-09-02 09:44:33,084::train::INFO] [train] Iter 08549 | loss 2.8046 | loss(rot) 2.3471 | loss(pos) 0.4574 | loss(seq) 0.0000 | grad 6.3579 | lr 0.0010 | time_forward 1.0340 | time_backward 1.2060
[2023-09-02 09:44:41,711::train::INFO] [train] Iter 08550 | loss 1.4750 | loss(rot) 0.0196 | loss(pos) 1.4536 | loss(seq) 0.0019 | grad 12.8765 | lr 0.0010 | time_forward 3.5350 | time_backward 5.0870
[2023-09-02 09:44:44,510::train::INFO] [train] Iter 08551 | loss 2.3492 | loss(rot) 2.2395 | loss(pos) 0.0883 | loss(seq) 0.0214 | grad 14.0686 | lr 0.0010 | time_forward 1.3330 | time_backward 1.4630
[2023-09-02 09:44:52,925::train::INFO] [train] Iter 08552 | loss 0.9761 | loss(rot) 0.5816 | loss(pos) 0.1009 | loss(seq) 0.2935 | grad 5.9721 | lr 0.0010 | time_forward 3.5270 | time_backward 4.8520
[2023-09-02 09:44:55,685::train::INFO] [train] Iter 08553 | loss 2.5836 | loss(rot) 1.8225 | loss(pos) 0.3263 | loss(seq) 0.4349 | grad 5.1383 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4440
[2023-09-02 09:45:06,202::train::INFO] [train] Iter 08554 | loss 2.9124 | loss(rot) 0.3941 | loss(pos) 2.5130 | loss(seq) 0.0053 | grad 9.1384 | lr 0.0010 | time_forward 4.2080 | time_backward 6.3050
[2023-09-02 09:45:15,295::train::INFO] [train] Iter 08555 | loss 1.7566 | loss(rot) 1.4575 | loss(pos) 0.0887 | loss(seq) 0.2103 | grad 3.5716 | lr 0.0010 | time_forward 3.8580 | time_backward 5.2320
[2023-09-02 09:45:25,660::train::INFO] [train] Iter 08556 | loss 2.0347 | loss(rot) 1.5699 | loss(pos) 0.1601 | loss(seq) 0.3047 | grad 4.3468 | lr 0.0010 | time_forward 4.0960 | time_backward 6.2650
[2023-09-02 09:45:35,241::train::INFO] [train] Iter 08557 | loss 2.0532 | loss(rot) 1.9412 | loss(pos) 0.1120 | loss(seq) 0.0000 | grad 5.4687 | lr 0.0010 | time_forward 4.0280 | time_backward 5.5490
[2023-09-02 09:45:45,862::train::INFO] [train] Iter 08558 | loss 2.0254 | loss(rot) 0.8945 | loss(pos) 0.6254 | loss(seq) 0.5054 | grad 4.0601 | lr 0.0010 | time_forward 4.3080 | time_backward 6.3090
[2023-09-02 09:45:54,682::train::INFO] [train] Iter 08559 | loss 2.5902 | loss(rot) 1.5648 | loss(pos) 0.5222 | loss(seq) 0.5032 | grad 5.8426 | lr 0.0010 | time_forward 3.7240 | time_backward 5.0920
[2023-09-02 09:46:03,542::train::INFO] [train] Iter 08560 | loss 2.1221 | loss(rot) 1.8260 | loss(pos) 0.1290 | loss(seq) 0.1671 | grad 3.4375 | lr 0.0010 | time_forward 3.7320 | time_backward 5.1250
[2023-09-02 09:46:13,419::train::INFO] [train] Iter 08561 | loss 1.4901 | loss(rot) 1.3026 | loss(pos) 0.1853 | loss(seq) 0.0021 | grad 4.8438 | lr 0.0010 | time_forward 3.9780 | time_backward 5.8950
[2023-09-02 09:46:22,255::train::INFO] [train] Iter 08562 | loss 2.4675 | loss(rot) 2.2003 | loss(pos) 0.2558 | loss(seq) 0.0115 | grad 5.7536 | lr 0.0010 | time_forward 3.8810 | time_backward 4.9530
[2023-09-02 09:46:32,103::train::INFO] [train] Iter 08563 | loss 1.8262 | loss(rot) 1.4584 | loss(pos) 0.3677 | loss(seq) 0.0001 | grad 5.8950 | lr 0.0010 | time_forward 4.1370 | time_backward 5.7080
[2023-09-02 09:46:33,858::train::INFO] [train] Iter 08564 | loss 4.6258 | loss(rot) 0.0669 | loss(pos) 4.5574 | loss(seq) 0.0015 | grad 23.3127 | lr 0.0010 | time_forward 0.8030 | time_backward 0.9490
[2023-09-02 09:46:36,500::train::INFO] [train] Iter 08565 | loss 1.3244 | loss(rot) 0.5905 | loss(pos) 0.2543 | loss(seq) 0.4795 | grad 5.1047 | lr 0.0010 | time_forward 1.2440 | time_backward 1.3950
[2023-09-02 09:46:39,189::train::INFO] [train] Iter 08566 | loss 1.7401 | loss(rot) 1.6322 | loss(pos) 0.0953 | loss(seq) 0.0127 | grad 5.8818 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4010
[2023-09-02 09:46:48,834::train::INFO] [train] Iter 08567 | loss 2.6573 | loss(rot) 2.2767 | loss(pos) 0.2613 | loss(seq) 0.1193 | grad 4.1454 | lr 0.0010 | time_forward 4.0270 | time_backward 5.6160
[2023-09-02 09:46:58,701::train::INFO] [train] Iter 08568 | loss 1.6981 | loss(rot) 0.6200 | loss(pos) 0.6959 | loss(seq) 0.3822 | grad 3.7876 | lr 0.0010 | time_forward 4.1810 | time_backward 5.6790
[2023-09-02 09:47:05,003::train::INFO] [train] Iter 08569 | loss 3.0470 | loss(rot) 2.6949 | loss(pos) 0.3489 | loss(seq) 0.0031 | grad 5.3574 | lr 0.0010 | time_forward 2.6610 | time_backward 3.6380
[2023-09-02 09:47:14,047::train::INFO] [train] Iter 08570 | loss 1.4109 | loss(rot) 0.2008 | loss(pos) 1.1860 | loss(seq) 0.0241 | grad 5.5918 | lr 0.0010 | time_forward 3.4260 | time_backward 5.6140
[2023-09-02 09:47:16,848::train::INFO] [train] Iter 08571 | loss 1.9369 | loss(rot) 0.5291 | loss(pos) 1.2826 | loss(seq) 0.1251 | grad 6.3250 | lr 0.0010 | time_forward 1.3360 | time_backward 1.4630
[2023-09-02 09:47:27,974::train::INFO] [train] Iter 08572 | loss 1.9975 | loss(rot) 1.7189 | loss(pos) 0.2755 | loss(seq) 0.0031 | grad 4.9602 | lr 0.0010 | time_forward 5.3540 | time_backward 5.7680
[2023-09-02 09:47:35,118::train::INFO] [train] Iter 08573 | loss 1.6857 | loss(rot) 0.9886 | loss(pos) 0.2254 | loss(seq) 0.4717 | grad 3.2825 | lr 0.0010 | time_forward 2.9880 | time_backward 4.1510
[2023-09-02 09:47:38,687::train::INFO] [train] Iter 08574 | loss 2.9471 | loss(rot) 2.0524 | loss(pos) 0.5600 | loss(seq) 0.3347 | grad 5.1964 | lr 0.0010 | time_forward 1.6270 | time_backward 1.9390
[2023-09-02 09:47:48,049::train::INFO] [train] Iter 08575 | loss 1.1961 | loss(rot) 0.5174 | loss(pos) 0.5963 | loss(seq) 0.0823 | grad 3.7526 | lr 0.0010 | time_forward 4.0020 | time_backward 5.3560
[2023-09-02 09:47:58,025::train::INFO] [train] Iter 08576 | loss 1.9627 | loss(rot) 1.8293 | loss(pos) 0.1320 | loss(seq) 0.0014 | grad 4.8156 | lr 0.0010 | time_forward 4.1150 | time_backward 5.8580
[2023-09-02 09:48:08,110::train::INFO] [train] Iter 08577 | loss 1.1159 | loss(rot) 0.4100 | loss(pos) 0.3409 | loss(seq) 0.3650 | grad 2.9372 | lr 0.0010 | time_forward 4.0160 | time_backward 6.0650
[2023-09-02 09:48:17,410::train::INFO] [train] Iter 08578 | loss 1.9527 | loss(rot) 0.9764 | loss(pos) 0.5956 | loss(seq) 0.3806 | grad 4.8750 | lr 0.0010 | time_forward 4.0420 | time_backward 5.2550
[2023-09-02 09:48:27,419::train::INFO] [train] Iter 08579 | loss 1.6929 | loss(rot) 1.2476 | loss(pos) 0.1941 | loss(seq) 0.2513 | grad 5.0697 | lr 0.0010 | time_forward 4.0600 | time_backward 5.9450
[2023-09-02 09:48:36,968::train::INFO] [train] Iter 08580 | loss 2.2751 | loss(rot) 1.8784 | loss(pos) 0.2053 | loss(seq) 0.1914 | grad 4.3801 | lr 0.0010 | time_forward 4.1870 | time_backward 5.3580
[2023-09-02 09:48:47,056::train::INFO] [train] Iter 08581 | loss 2.0118 | loss(rot) 1.2396 | loss(pos) 0.3353 | loss(seq) 0.4369 | grad 8.6540 | lr 0.0010 | time_forward 4.1750 | time_backward 5.9100
[2023-09-02 09:48:49,752::train::INFO] [train] Iter 08582 | loss 1.2049 | loss(rot) 0.1163 | loss(pos) 1.0720 | loss(seq) 0.0166 | grad 5.9295 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4340
[2023-09-02 09:48:58,127::train::INFO] [train] Iter 08583 | loss 2.5313 | loss(rot) 2.2728 | loss(pos) 0.2523 | loss(seq) 0.0062 | grad 6.0125 | lr 0.0010 | time_forward 3.6190 | time_backward 4.7530
[2023-09-02 09:49:07,912::train::INFO] [train] Iter 08584 | loss 0.9094 | loss(rot) 0.1368 | loss(pos) 0.5535 | loss(seq) 0.2190 | grad 3.4701 | lr 0.0010 | time_forward 4.0280 | time_backward 5.7520
[2023-09-02 09:49:17,814::train::INFO] [train] Iter 08585 | loss 2.3066 | loss(rot) 1.6331 | loss(pos) 0.2483 | loss(seq) 0.4253 | grad 5.9255 | lr 0.0010 | time_forward 4.1190 | time_backward 5.7800
[2023-09-02 09:49:27,120::train::INFO] [train] Iter 08586 | loss 1.1425 | loss(rot) 0.2911 | loss(pos) 0.5799 | loss(seq) 0.2715 | grad 5.0034 | lr 0.0010 | time_forward 3.9230 | time_backward 5.3800