text
stringlengths 56
1.16k
|
---|
[2023-09-02 08:46:17,857::train::INFO] [train] Iter 08087 | loss 2.3916 | loss(rot) 2.2153 | loss(pos) 0.1730 | loss(seq) 0.0033 | grad 5.0480 | lr 0.0010 | time_forward 4.2190 | time_backward 6.0260 |
[2023-09-02 08:46:24,455::train::INFO] [train] Iter 08088 | loss 1.9856 | loss(rot) 1.1984 | loss(pos) 0.3298 | loss(seq) 0.4574 | grad 5.1133 | lr 0.0010 | time_forward 2.7130 | time_backward 3.8810 |
[2023-09-02 08:46:34,805::train::INFO] [train] Iter 08089 | loss 2.3931 | loss(rot) 2.1882 | loss(pos) 0.0613 | loss(seq) 0.1435 | grad 3.8979 | lr 0.0010 | time_forward 4.4220 | time_backward 5.9250 |
[2023-09-02 08:46:44,977::train::INFO] [train] Iter 08090 | loss 1.7530 | loss(rot) 1.4770 | loss(pos) 0.0826 | loss(seq) 0.1934 | grad 4.7330 | lr 0.0010 | time_forward 4.0680 | time_backward 6.1000 |
[2023-09-02 08:46:52,174::train::INFO] [train] Iter 08091 | loss 1.5281 | loss(rot) 0.8441 | loss(pos) 0.2276 | loss(seq) 0.4564 | grad 4.9999 | lr 0.0010 | time_forward 3.0020 | time_backward 4.1900 |
[2023-09-02 08:46:54,842::train::INFO] [train] Iter 08092 | loss 4.2801 | loss(rot) 0.0546 | loss(pos) 4.2255 | loss(seq) 0.0000 | grad 13.3174 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4070 |
[2023-09-02 08:47:03,498::train::INFO] [train] Iter 08093 | loss 1.2864 | loss(rot) 0.7135 | loss(pos) 0.1631 | loss(seq) 0.4098 | grad 4.9912 | lr 0.0010 | time_forward 3.6770 | time_backward 4.9770 |
[2023-09-02 08:47:12,359::train::INFO] [train] Iter 08094 | loss 1.2961 | loss(rot) 0.2160 | loss(pos) 1.0615 | loss(seq) 0.0185 | grad 5.9935 | lr 0.0010 | time_forward 3.7130 | time_backward 5.1450 |
[2023-09-02 08:47:15,037::train::INFO] [train] Iter 08095 | loss 0.7928 | loss(rot) 0.2780 | loss(pos) 0.2054 | loss(seq) 0.3094 | grad 2.5902 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4470 |
[2023-09-02 08:47:25,716::train::INFO] [train] Iter 08096 | loss 2.9552 | loss(rot) 2.7324 | loss(pos) 0.2197 | loss(seq) 0.0031 | grad 4.0466 | lr 0.0010 | time_forward 4.4550 | time_backward 6.1880 |
[2023-09-02 08:47:34,304::train::INFO] [train] Iter 08097 | loss 2.1360 | loss(rot) 1.9706 | loss(pos) 0.1321 | loss(seq) 0.0333 | grad 6.0031 | lr 0.0010 | time_forward 3.5870 | time_backward 4.9990 |
[2023-09-02 08:47:44,465::train::INFO] [train] Iter 08098 | loss 2.5574 | loss(rot) 2.3545 | loss(pos) 0.1158 | loss(seq) 0.0871 | grad 6.4759 | lr 0.0010 | time_forward 4.2490 | time_backward 5.9080 |
[2023-09-02 08:47:47,138::train::INFO] [train] Iter 08099 | loss 2.1681 | loss(rot) 1.2454 | loss(pos) 0.2660 | loss(seq) 0.6567 | grad 3.6280 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4190 |
[2023-09-02 08:47:55,641::train::INFO] [train] Iter 08100 | loss 1.6942 | loss(rot) 0.7137 | loss(pos) 0.7323 | loss(seq) 0.2482 | grad 6.4324 | lr 0.0010 | time_forward 3.8040 | time_backward 4.6960 |
[2023-09-02 08:48:04,150::train::INFO] [train] Iter 08101 | loss 2.8312 | loss(rot) 2.4490 | loss(pos) 0.1638 | loss(seq) 0.2185 | grad 6.0188 | lr 0.0010 | time_forward 3.6610 | time_backward 4.8440 |
[2023-09-02 08:48:14,113::train::INFO] [train] Iter 08102 | loss 2.4317 | loss(rot) 1.8630 | loss(pos) 0.2531 | loss(seq) 0.3155 | grad 3.6082 | lr 0.0010 | time_forward 4.1000 | time_backward 5.8590 |
[2023-09-02 08:48:22,642::train::INFO] [train] Iter 08103 | loss 1.3471 | loss(rot) 1.0116 | loss(pos) 0.1789 | loss(seq) 0.1566 | grad 5.0291 | lr 0.0010 | time_forward 3.6930 | time_backward 4.8340 |
[2023-09-02 08:48:25,384::train::INFO] [train] Iter 08104 | loss 2.4083 | loss(rot) 2.2234 | loss(pos) 0.1744 | loss(seq) 0.0105 | grad 5.5028 | lr 0.0010 | time_forward 1.3370 | time_backward 1.4010 |
[2023-09-02 08:48:33,522::train::INFO] [train] Iter 08105 | loss 2.2510 | loss(rot) 1.7408 | loss(pos) 0.1290 | loss(seq) 0.3812 | grad 5.8884 | lr 0.0010 | time_forward 3.3510 | time_backward 4.7840 |
[2023-09-02 08:48:42,794::train::INFO] [train] Iter 08106 | loss 2.1160 | loss(rot) 1.7969 | loss(pos) 0.3191 | loss(seq) 0.0000 | grad 7.5624 | lr 0.0010 | time_forward 3.9760 | time_backward 5.2920 |
[2023-09-02 08:48:45,647::train::INFO] [train] Iter 08107 | loss 0.9654 | loss(rot) 0.0788 | loss(pos) 0.8755 | loss(seq) 0.0111 | grad 6.1864 | lr 0.0010 | time_forward 1.3890 | time_backward 1.4600 |
[2023-09-02 08:48:54,730::train::INFO] [train] Iter 08108 | loss 2.8609 | loss(rot) 2.5686 | loss(pos) 0.1209 | loss(seq) 0.1715 | grad 4.7956 | lr 0.0010 | time_forward 4.0190 | time_backward 5.0600 |
[2023-09-02 08:48:57,141::train::INFO] [train] Iter 08109 | loss 1.5056 | loss(rot) 1.3450 | loss(pos) 0.1599 | loss(seq) 0.0007 | grad 4.2163 | lr 0.0010 | time_forward 1.1350 | time_backward 1.2720 |
[2023-09-02 08:49:05,267::train::INFO] [train] Iter 08110 | loss 2.3122 | loss(rot) 1.6547 | loss(pos) 0.2820 | loss(seq) 0.3755 | grad 5.4996 | lr 0.0010 | time_forward 3.4000 | time_backward 4.7230 |
[2023-09-02 08:49:14,612::train::INFO] [train] Iter 08111 | loss 2.2620 | loss(rot) 0.1023 | loss(pos) 1.8409 | loss(seq) 0.3188 | grad 6.1425 | lr 0.0010 | time_forward 3.9780 | time_backward 5.3640 |
[2023-09-02 08:49:22,917::train::INFO] [train] Iter 08112 | loss 2.2825 | loss(rot) 1.2956 | loss(pos) 0.5077 | loss(seq) 0.4792 | grad 4.6536 | lr 0.0010 | time_forward 3.4750 | time_backward 4.8270 |
[2023-09-02 08:49:25,569::train::INFO] [train] Iter 08113 | loss 0.8171 | loss(rot) 0.3573 | loss(pos) 0.3440 | loss(seq) 0.1158 | grad 3.6305 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4170 |
[2023-09-02 08:49:28,318::train::INFO] [train] Iter 08114 | loss 0.9815 | loss(rot) 0.3464 | loss(pos) 0.3934 | loss(seq) 0.2416 | grad 3.5913 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4430 |
[2023-09-02 08:49:31,100::train::INFO] [train] Iter 08115 | loss 1.0519 | loss(rot) 0.0845 | loss(pos) 0.7182 | loss(seq) 0.2492 | grad 4.5251 | lr 0.0010 | time_forward 1.3480 | time_backward 1.4300 |
[2023-09-02 08:49:41,494::train::INFO] [train] Iter 08116 | loss 0.9961 | loss(rot) 0.1758 | loss(pos) 0.7733 | loss(seq) 0.0470 | grad 3.5492 | lr 0.0010 | time_forward 4.5230 | time_backward 5.8670 |
[2023-09-02 08:49:44,232::train::INFO] [train] Iter 08117 | loss 1.2394 | loss(rot) 0.6523 | loss(pos) 0.2210 | loss(seq) 0.3661 | grad 4.2114 | lr 0.0010 | time_forward 1.3230 | time_backward 1.4110 |
[2023-09-02 08:49:54,546::train::INFO] [train] Iter 08118 | loss 1.4274 | loss(rot) 0.3567 | loss(pos) 0.3822 | loss(seq) 0.6885 | grad 4.5352 | lr 0.0010 | time_forward 4.1530 | time_backward 6.1280 |
[2023-09-02 08:50:04,957::train::INFO] [train] Iter 08119 | loss 1.7167 | loss(rot) 0.9119 | loss(pos) 0.3680 | loss(seq) 0.4368 | grad 5.1598 | lr 0.0010 | time_forward 4.2380 | time_backward 6.1700 |
[2023-09-02 08:50:13,915::train::INFO] [train] Iter 08120 | loss 1.2088 | loss(rot) 0.3000 | loss(pos) 0.8435 | loss(seq) 0.0652 | grad 4.9996 | lr 0.0010 | time_forward 3.8030 | time_backward 5.1510 |
[2023-09-02 08:50:16,605::train::INFO] [train] Iter 08121 | loss 3.0619 | loss(rot) 2.0476 | loss(pos) 0.5464 | loss(seq) 0.4679 | grad 6.7299 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4160 |
[2023-09-02 08:50:26,086::train::INFO] [train] Iter 08122 | loss 0.8387 | loss(rot) 0.0922 | loss(pos) 0.7099 | loss(seq) 0.0366 | grad 4.2617 | lr 0.0010 | time_forward 4.0510 | time_backward 5.4270 |
[2023-09-02 08:50:36,234::train::INFO] [train] Iter 08123 | loss 3.6789 | loss(rot) 3.2971 | loss(pos) 0.3816 | loss(seq) 0.0001 | grad 4.0153 | lr 0.0010 | time_forward 4.1720 | time_backward 5.9710 |
[2023-09-02 08:50:45,428::train::INFO] [train] Iter 08124 | loss 2.4111 | loss(rot) 1.9059 | loss(pos) 0.2117 | loss(seq) 0.2935 | grad 6.0979 | lr 0.0010 | time_forward 3.8290 | time_backward 5.3620 |
[2023-09-02 08:50:53,846::train::INFO] [train] Iter 08125 | loss 1.9368 | loss(rot) 0.0115 | loss(pos) 1.9238 | loss(seq) 0.0015 | grad 10.6850 | lr 0.0010 | time_forward 3.5590 | time_backward 4.8550 |
[2023-09-02 08:50:56,042::train::INFO] [train] Iter 08126 | loss 2.1624 | loss(rot) 1.7621 | loss(pos) 0.0988 | loss(seq) 0.3015 | grad 3.8011 | lr 0.0010 | time_forward 1.0260 | time_backward 1.1670 |
[2023-09-02 08:50:58,816::train::INFO] [train] Iter 08127 | loss 2.3913 | loss(rot) 1.5734 | loss(pos) 0.2518 | loss(seq) 0.5662 | grad 4.5275 | lr 0.0010 | time_forward 1.3560 | time_backward 1.4140 |
[2023-09-02 08:51:08,481::train::INFO] [train] Iter 08128 | loss 1.7684 | loss(rot) 1.5394 | loss(pos) 0.1935 | loss(seq) 0.0355 | grad 6.1326 | lr 0.0010 | time_forward 4.0750 | time_backward 5.5880 |
[2023-09-02 08:51:11,211::train::INFO] [train] Iter 08129 | loss 2.4815 | loss(rot) 2.0591 | loss(pos) 0.1470 | loss(seq) 0.2754 | grad 5.7008 | lr 0.0010 | time_forward 1.3280 | time_backward 1.3970 |
[2023-09-02 08:51:13,997::train::INFO] [train] Iter 08130 | loss 2.0129 | loss(rot) 1.6180 | loss(pos) 0.1623 | loss(seq) 0.2326 | grad 5.4760 | lr 0.0010 | time_forward 1.3500 | time_backward 1.4320 |
[2023-09-02 08:51:17,679::train::INFO] [train] Iter 08131 | loss 1.5791 | loss(rot) 0.6979 | loss(pos) 0.4078 | loss(seq) 0.4734 | grad 3.0521 | lr 0.0010 | time_forward 1.6110 | time_backward 2.0690 |
[2023-09-02 08:51:26,524::train::INFO] [train] Iter 08132 | loss 1.5950 | loss(rot) 1.3568 | loss(pos) 0.2382 | loss(seq) 0.0000 | grad 4.6352 | lr 0.0010 | time_forward 3.6760 | time_backward 5.1550 |
[2023-09-02 08:51:36,224::train::INFO] [train] Iter 08133 | loss 2.4441 | loss(rot) 1.9778 | loss(pos) 0.2827 | loss(seq) 0.1836 | grad 8.1910 | lr 0.0010 | time_forward 4.3340 | time_backward 5.3610 |
[2023-09-02 08:51:45,522::train::INFO] [train] Iter 08134 | loss 2.1840 | loss(rot) 1.6976 | loss(pos) 0.1735 | loss(seq) 0.3130 | grad 6.2246 | lr 0.0010 | time_forward 3.9580 | time_backward 5.3360 |
[2023-09-02 08:51:48,196::train::INFO] [train] Iter 08135 | loss 1.9086 | loss(rot) 1.6756 | loss(pos) 0.0913 | loss(seq) 0.1417 | grad 4.0713 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4200 |
[2023-09-02 08:51:57,014::train::INFO] [train] Iter 08136 | loss 1.3226 | loss(rot) 0.7530 | loss(pos) 0.2434 | loss(seq) 0.3262 | grad 3.4233 | lr 0.0010 | time_forward 3.6920 | time_backward 5.1220 |
[2023-09-02 08:52:07,470::train::INFO] [train] Iter 08137 | loss 2.5171 | loss(rot) 1.1005 | loss(pos) 0.9281 | loss(seq) 0.4885 | grad 5.6815 | lr 0.0010 | time_forward 4.0680 | time_backward 6.3840 |
[2023-09-02 08:52:16,146::train::INFO] [train] Iter 08138 | loss 1.9730 | loss(rot) 0.1314 | loss(pos) 1.8323 | loss(seq) 0.0093 | grad 7.8138 | lr 0.0010 | time_forward 3.6610 | time_backward 5.0120 |
[2023-09-02 08:52:26,560::train::INFO] [train] Iter 08139 | loss 2.7198 | loss(rot) 2.4819 | loss(pos) 0.2290 | loss(seq) 0.0089 | grad 4.4007 | lr 0.0010 | time_forward 4.2140 | time_backward 6.1970 |
[2023-09-02 08:52:34,574::train::INFO] [train] Iter 08140 | loss 1.3721 | loss(rot) 0.9554 | loss(pos) 0.2311 | loss(seq) 0.1856 | grad 4.3037 | lr 0.0010 | time_forward 3.4110 | time_backward 4.5850 |
[2023-09-02 08:52:37,378::train::INFO] [train] Iter 08141 | loss 1.8175 | loss(rot) 0.1424 | loss(pos) 1.6729 | loss(seq) 0.0022 | grad 6.6062 | lr 0.0010 | time_forward 1.3610 | time_backward 1.4400 |
[2023-09-02 08:52:47,525::train::INFO] [train] Iter 08142 | loss 2.5869 | loss(rot) 2.2503 | loss(pos) 0.2835 | loss(seq) 0.0531 | grad 4.8374 | lr 0.0010 | time_forward 4.0710 | time_backward 6.0730 |
[2023-09-02 08:52:54,666::train::INFO] [train] Iter 08143 | loss 2.4589 | loss(rot) 1.7324 | loss(pos) 0.2161 | loss(seq) 0.5104 | grad 6.1598 | lr 0.0010 | time_forward 3.0470 | time_backward 4.0890 |
[2023-09-02 08:53:04,685::train::INFO] [train] Iter 08144 | loss 2.4221 | loss(rot) 2.1472 | loss(pos) 0.2533 | loss(seq) 0.0215 | grad 5.1229 | lr 0.0010 | time_forward 4.0870 | time_backward 5.9290 |
[2023-09-02 08:53:07,357::train::INFO] [train] Iter 08145 | loss 3.0862 | loss(rot) 2.2042 | loss(pos) 0.4109 | loss(seq) 0.4711 | grad 4.9188 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4170 |
[2023-09-02 08:53:10,001::train::INFO] [train] Iter 08146 | loss 1.4437 | loss(rot) 0.3956 | loss(pos) 0.7395 | loss(seq) 0.3085 | grad 4.1323 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4000 |
[2023-09-02 08:53:19,824::train::INFO] [train] Iter 08147 | loss 1.6709 | loss(rot) 0.5673 | loss(pos) 0.7675 | loss(seq) 0.3361 | grad 6.7107 | lr 0.0010 | time_forward 4.0970 | time_backward 5.7230 |
[2023-09-02 08:53:27,945::train::INFO] [train] Iter 08148 | loss 1.4746 | loss(rot) 1.3615 | loss(pos) 0.0894 | loss(seq) 0.0238 | grad 4.4123 | lr 0.0010 | time_forward 3.4140 | time_backward 4.7040 |
[2023-09-02 08:53:30,660::train::INFO] [train] Iter 08149 | loss 2.0638 | loss(rot) 0.7687 | loss(pos) 0.7905 | loss(seq) 0.5046 | grad 6.2705 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4050 |
[2023-09-02 08:53:33,349::train::INFO] [train] Iter 08150 | loss 1.8344 | loss(rot) 1.6594 | loss(pos) 0.1622 | loss(seq) 0.0127 | grad 6.3468 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4080 |
[2023-09-02 08:53:36,043::train::INFO] [train] Iter 08151 | loss 0.5986 | loss(rot) 0.1856 | loss(pos) 0.3965 | loss(seq) 0.0165 | grad 4.2243 | lr 0.0010 | time_forward 1.2920 | time_backward 1.3980 |
[2023-09-02 08:53:38,481::train::INFO] [train] Iter 08152 | loss 1.0246 | loss(rot) 0.4194 | loss(pos) 0.1445 | loss(seq) 0.4606 | grad 3.6213 | lr 0.0010 | time_forward 1.1750 | time_backward 1.2600 |
[2023-09-02 08:53:41,200::train::INFO] [train] Iter 08153 | loss 1.6311 | loss(rot) 0.9707 | loss(pos) 0.2207 | loss(seq) 0.4396 | grad 4.2706 | lr 0.0010 | time_forward 1.3170 | time_backward 1.3990 |
[2023-09-02 08:53:50,950::train::INFO] [train] Iter 08154 | loss 2.2864 | loss(rot) 2.0719 | loss(pos) 0.1068 | loss(seq) 0.1077 | grad 4.9295 | lr 0.0010 | time_forward 4.0800 | time_backward 5.6660 |
[2023-09-02 08:54:00,756::train::INFO] [train] Iter 08155 | loss 1.3215 | loss(rot) 0.3468 | loss(pos) 0.4742 | loss(seq) 0.5005 | grad 4.3743 | lr 0.0010 | time_forward 4.0030 | time_backward 5.7990 |
[2023-09-02 08:54:09,414::train::INFO] [train] Iter 08156 | loss 1.4604 | loss(rot) 0.7670 | loss(pos) 0.1910 | loss(seq) 0.5023 | grad 2.9563 | lr 0.0010 | time_forward 3.6840 | time_backward 4.9700 |
[2023-09-02 08:54:11,684::train::INFO] [train] Iter 08157 | loss 1.5746 | loss(rot) 0.5447 | loss(pos) 0.5528 | loss(seq) 0.4771 | grad 4.4217 | lr 0.0010 | time_forward 1.0850 | time_backward 1.1810 |
[2023-09-02 08:54:19,905::train::INFO] [train] Iter 08158 | loss 0.9142 | loss(rot) 0.2643 | loss(pos) 0.4124 | loss(seq) 0.2375 | grad 4.2890 | lr 0.0010 | time_forward 3.4450 | time_backward 4.7720 |
[2023-09-02 08:54:22,630::train::INFO] [train] Iter 08159 | loss 1.5563 | loss(rot) 0.0984 | loss(pos) 1.4498 | loss(seq) 0.0081 | grad 7.2025 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4430 |
[2023-09-02 08:54:24,844::train::INFO] [train] Iter 08160 | loss 2.6684 | loss(rot) 1.7207 | loss(pos) 0.4195 | loss(seq) 0.5282 | grad 4.0765 | lr 0.0010 | time_forward 1.0240 | time_backward 1.1670 |
[2023-09-02 08:54:33,469::train::INFO] [train] Iter 08161 | loss 2.2815 | loss(rot) 1.8123 | loss(pos) 0.1571 | loss(seq) 0.3121 | grad 4.8338 | lr 0.0010 | time_forward 3.6810 | time_backward 4.9410 |
[2023-09-02 08:54:36,104::train::INFO] [train] Iter 08162 | loss 1.4043 | loss(rot) 0.5864 | loss(pos) 0.5275 | loss(seq) 0.2904 | grad 4.7899 | lr 0.0010 | time_forward 1.2630 | time_backward 1.3690 |
[2023-09-02 08:54:46,236::train::INFO] [train] Iter 08163 | loss 2.8015 | loss(rot) 2.6154 | loss(pos) 0.1861 | loss(seq) 0.0000 | grad 5.0496 | lr 0.0010 | time_forward 4.1440 | time_backward 5.9840 |
[2023-09-02 08:54:49,583::train::INFO] [train] Iter 08164 | loss 2.1592 | loss(rot) 1.6422 | loss(pos) 0.1708 | loss(seq) 0.3461 | grad 3.8996 | lr 0.0010 | time_forward 1.4060 | time_backward 1.9390 |
[2023-09-02 08:54:57,860::train::INFO] [train] Iter 08165 | loss 1.7406 | loss(rot) 1.5690 | loss(pos) 0.1373 | loss(seq) 0.0343 | grad 4.0975 | lr 0.0010 | time_forward 3.5530 | time_backward 4.7200 |
[2023-09-02 08:55:00,253::train::INFO] [train] Iter 08166 | loss 1.9602 | loss(rot) 1.6435 | loss(pos) 0.2080 | loss(seq) 0.1087 | grad 6.4603 | lr 0.0010 | time_forward 1.1440 | time_backward 1.2450 |
[2023-09-02 08:55:09,965::train::INFO] [train] Iter 08167 | loss 2.1669 | loss(rot) 1.9305 | loss(pos) 0.1712 | loss(seq) 0.0651 | grad 5.1825 | lr 0.0010 | time_forward 3.9560 | time_backward 5.7530 |
[2023-09-02 08:55:12,653::train::INFO] [train] Iter 08168 | loss 2.2421 | loss(rot) 2.0331 | loss(pos) 0.1047 | loss(seq) 0.1043 | grad 4.2888 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4480 |
[2023-09-02 08:55:15,365::train::INFO] [train] Iter 08169 | loss 3.8348 | loss(rot) 0.0144 | loss(pos) 3.8204 | loss(seq) 0.0000 | grad 9.3814 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4310 |
[2023-09-02 08:55:23,635::train::INFO] [train] Iter 08170 | loss 1.4117 | loss(rot) 0.8091 | loss(pos) 0.1120 | loss(seq) 0.4906 | grad 2.9409 | lr 0.0010 | time_forward 3.4550 | time_backward 4.7840 |
[2023-09-02 08:55:33,774::train::INFO] [train] Iter 08171 | loss 1.3368 | loss(rot) 0.2480 | loss(pos) 1.0616 | loss(seq) 0.0273 | grad 3.1600 | lr 0.0010 | time_forward 4.2740 | time_backward 5.8620 |
[2023-09-02 08:55:42,558::train::INFO] [train] Iter 08172 | loss 1.5699 | loss(rot) 1.4066 | loss(pos) 0.1359 | loss(seq) 0.0275 | grad 4.6684 | lr 0.0010 | time_forward 3.7470 | time_backward 5.0330 |
[2023-09-02 08:55:50,622::train::INFO] [train] Iter 08173 | loss 1.3781 | loss(rot) 0.7104 | loss(pos) 0.3887 | loss(seq) 0.2790 | grad 3.5221 | lr 0.0010 | time_forward 3.4250 | time_backward 4.6350 |
[2023-09-02 08:55:53,335::train::INFO] [train] Iter 08174 | loss 2.8942 | loss(rot) 1.9828 | loss(pos) 0.4244 | loss(seq) 0.4870 | grad 5.7713 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4500 |
[2023-09-02 08:55:55,642::train::INFO] [train] Iter 08175 | loss 2.2886 | loss(rot) 0.9015 | loss(pos) 1.0408 | loss(seq) 0.3463 | grad 4.6706 | lr 0.0010 | time_forward 1.1070 | time_backward 1.1960 |
[2023-09-02 08:56:04,651::train::INFO] [train] Iter 08176 | loss 2.1995 | loss(rot) 0.8799 | loss(pos) 0.6102 | loss(seq) 0.7094 | grad 5.7388 | lr 0.0010 | time_forward 3.7710 | time_backward 5.2340 |
[2023-09-02 08:56:11,855::train::INFO] [train] Iter 08177 | loss 2.1750 | loss(rot) 1.9671 | loss(pos) 0.1060 | loss(seq) 0.1019 | grad 5.1239 | lr 0.0010 | time_forward 3.0790 | time_backward 4.1210 |
[2023-09-02 08:56:14,528::train::INFO] [train] Iter 08178 | loss 0.6507 | loss(rot) 0.1763 | loss(pos) 0.4036 | loss(seq) 0.0708 | grad 3.0023 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4070 |
[2023-09-02 08:56:17,212::train::INFO] [train] Iter 08179 | loss 1.6380 | loss(rot) 1.2687 | loss(pos) 0.0919 | loss(seq) 0.2774 | grad 4.4554 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4150 |
[2023-09-02 08:56:25,916::train::INFO] [train] Iter 08180 | loss 1.6348 | loss(rot) 0.4927 | loss(pos) 0.5726 | loss(seq) 0.5695 | grad 5.2835 | lr 0.0010 | time_forward 3.7030 | time_backward 4.9980 |
[2023-09-02 08:56:32,714::train::INFO] [train] Iter 08181 | loss 1.3167 | loss(rot) 0.4291 | loss(pos) 0.6227 | loss(seq) 0.2649 | grad 4.5516 | lr 0.0010 | time_forward 2.8460 | time_backward 3.9480 |
[2023-09-02 08:56:35,413::train::INFO] [train] Iter 08182 | loss 1.7550 | loss(rot) 1.5644 | loss(pos) 0.1046 | loss(seq) 0.0860 | grad 4.5223 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4290 |
[2023-09-02 08:56:38,145::train::INFO] [train] Iter 08183 | loss 1.8176 | loss(rot) 1.6572 | loss(pos) 0.1603 | loss(seq) 0.0001 | grad 6.1090 | lr 0.0010 | time_forward 1.3110 | time_backward 1.4180 |
[2023-09-02 08:56:46,742::train::INFO] [train] Iter 08184 | loss 2.2231 | loss(rot) 1.6009 | loss(pos) 0.2573 | loss(seq) 0.3649 | grad 3.7008 | lr 0.0010 | time_forward 3.6640 | time_backward 4.9300 |
[2023-09-02 08:56:56,959::train::INFO] [train] Iter 08185 | loss 1.9427 | loss(rot) 1.7125 | loss(pos) 0.1036 | loss(seq) 0.1266 | grad 3.9069 | lr 0.0010 | time_forward 4.1920 | time_backward 6.0200 |
[2023-09-02 08:57:07,011::train::INFO] [train] Iter 08186 | loss 2.7568 | loss(rot) 2.4741 | loss(pos) 0.2578 | loss(seq) 0.0249 | grad 5.7990 | lr 0.0010 | time_forward 4.0280 | time_backward 6.0210 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.