text
stringlengths
56
1.16k
[2023-09-02 08:09:53,190::train::INFO] [train] Iter 07788 | loss 2.0405 | loss(rot) 1.4177 | loss(pos) 0.1488 | loss(seq) 0.4740 | grad 5.3354 | lr 0.0010 | time_forward 3.8710 | time_backward 5.1570
[2023-09-02 08:10:02,109::train::INFO] [train] Iter 07789 | loss 0.8795 | loss(rot) 0.3919 | loss(pos) 0.1206 | loss(seq) 0.3671 | grad 3.2640 | lr 0.0010 | time_forward 3.7060 | time_backward 5.2090
[2023-09-02 08:10:04,938::train::INFO] [train] Iter 07790 | loss 1.9101 | loss(rot) 0.5450 | loss(pos) 0.9603 | loss(seq) 0.4048 | grad 6.0051 | lr 0.0010 | time_forward 1.3740 | time_backward 1.4500
[2023-09-02 08:10:14,496::train::INFO] [train] Iter 07791 | loss 0.8602 | loss(rot) 0.4019 | loss(pos) 0.1280 | loss(seq) 0.3303 | grad 3.6597 | lr 0.0010 | time_forward 4.1360 | time_backward 5.4200
[2023-09-02 08:10:17,173::train::INFO] [train] Iter 07792 | loss 2.4697 | loss(rot) 2.1840 | loss(pos) 0.0966 | loss(seq) 0.1890 | grad 5.1263 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4000
[2023-09-02 08:10:25,809::train::INFO] [train] Iter 07793 | loss 0.9753 | loss(rot) 0.3150 | loss(pos) 0.5973 | loss(seq) 0.0630 | grad 5.7575 | lr 0.0010 | time_forward 3.6110 | time_backward 5.0220
[2023-09-02 08:10:34,598::train::INFO] [train] Iter 07794 | loss 1.6193 | loss(rot) 1.0802 | loss(pos) 0.1408 | loss(seq) 0.3982 | grad 5.6677 | lr 0.0010 | time_forward 3.6700 | time_backward 5.1150
[2023-09-02 08:10:44,717::train::INFO] [train] Iter 07795 | loss 0.8980 | loss(rot) 0.1448 | loss(pos) 0.7253 | loss(seq) 0.0279 | grad 3.8131 | lr 0.0010 | time_forward 4.1930 | time_backward 5.9220
[2023-09-02 08:10:54,871::train::INFO] [train] Iter 07796 | loss 0.9416 | loss(rot) 0.0921 | loss(pos) 0.8355 | loss(seq) 0.0140 | grad 3.2172 | lr 0.0010 | time_forward 4.7990 | time_backward 5.3520
[2023-09-02 08:11:03,389::train::INFO] [train] Iter 07797 | loss 1.3248 | loss(rot) 0.4858 | loss(pos) 0.6123 | loss(seq) 0.2267 | grad 4.5830 | lr 0.0010 | time_forward 3.6140 | time_backward 4.9000
[2023-09-02 08:11:13,501::train::INFO] [train] Iter 07798 | loss 2.5502 | loss(rot) 2.2923 | loss(pos) 0.1976 | loss(seq) 0.0603 | grad 3.5263 | lr 0.0010 | time_forward 4.2970 | time_backward 5.8110
[2023-09-02 08:11:23,923::train::INFO] [train] Iter 07799 | loss 2.7546 | loss(rot) 1.7762 | loss(pos) 0.4316 | loss(seq) 0.5468 | grad 3.3501 | lr 0.0010 | time_forward 4.4710 | time_backward 5.9470
[2023-09-02 08:11:26,666::train::INFO] [train] Iter 07800 | loss 0.8842 | loss(rot) 0.2054 | loss(pos) 0.5815 | loss(seq) 0.0973 | grad 4.2860 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4540
[2023-09-02 08:11:35,410::train::INFO] [train] Iter 07801 | loss 2.3506 | loss(rot) 0.0053 | loss(pos) 2.3453 | loss(seq) 0.0000 | grad 8.0075 | lr 0.0010 | time_forward 3.7240 | time_backward 5.0160
[2023-09-02 08:11:44,656::train::INFO] [train] Iter 07802 | loss 1.0897 | loss(rot) 0.9117 | loss(pos) 0.1542 | loss(seq) 0.0237 | grad 5.7420 | lr 0.0010 | time_forward 3.9030 | time_backward 5.3400
[2023-09-02 08:11:55,056::train::INFO] [train] Iter 07803 | loss 1.7306 | loss(rot) 0.3920 | loss(pos) 1.0565 | loss(seq) 0.2821 | grad 5.8780 | lr 0.0010 | time_forward 4.4100 | time_backward 5.9870
[2023-09-02 08:12:03,791::train::INFO] [train] Iter 07804 | loss 0.9378 | loss(rot) 0.4145 | loss(pos) 0.1463 | loss(seq) 0.3769 | grad 3.3178 | lr 0.0010 | time_forward 3.6810 | time_backward 5.0510
[2023-09-02 08:12:06,514::train::INFO] [train] Iter 07805 | loss 0.8793 | loss(rot) 0.1872 | loss(pos) 0.4566 | loss(seq) 0.2355 | grad 3.8749 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4230
[2023-09-02 08:12:15,487::train::INFO] [train] Iter 07806 | loss 2.0306 | loss(rot) 1.4303 | loss(pos) 0.2300 | loss(seq) 0.3703 | grad 5.9004 | lr 0.0010 | time_forward 3.7500 | time_backward 5.2190
[2023-09-02 08:12:23,111::train::INFO] [train] Iter 07807 | loss 1.4727 | loss(rot) 0.7517 | loss(pos) 0.2365 | loss(seq) 0.4845 | grad 5.0023 | lr 0.0010 | time_forward 3.2150 | time_backward 4.3900
[2023-09-02 08:12:25,807::train::INFO] [train] Iter 07808 | loss 3.6917 | loss(rot) 0.0100 | loss(pos) 3.6817 | loss(seq) 0.0000 | grad 8.6527 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4250
[2023-09-02 08:12:34,035::train::INFO] [train] Iter 07809 | loss 0.6736 | loss(rot) 0.3091 | loss(pos) 0.3015 | loss(seq) 0.0630 | grad 2.9997 | lr 0.0010 | time_forward 3.6080 | time_backward 4.6160
[2023-09-02 08:12:36,593::train::INFO] [train] Iter 07810 | loss 3.2833 | loss(rot) 2.6741 | loss(pos) 0.2139 | loss(seq) 0.3953 | grad 5.0696 | lr 0.0010 | time_forward 1.2800 | time_backward 1.2740
[2023-09-02 08:12:39,354::train::INFO] [train] Iter 07811 | loss 2.5140 | loss(rot) 2.1836 | loss(pos) 0.1561 | loss(seq) 0.1744 | grad 4.2466 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4420
[2023-09-02 08:12:42,116::train::INFO] [train] Iter 07812 | loss 2.0907 | loss(rot) 1.3186 | loss(pos) 0.2268 | loss(seq) 0.5452 | grad 4.2947 | lr 0.0010 | time_forward 1.3230 | time_backward 1.4350
[2023-09-02 08:12:51,380::train::INFO] [train] Iter 07813 | loss 1.5362 | loss(rot) 0.1962 | loss(pos) 1.3146 | loss(seq) 0.0254 | grad 7.0698 | lr 0.0010 | time_forward 3.8970 | time_backward 5.3640
[2023-09-02 08:12:58,518::train::INFO] [train] Iter 07814 | loss 2.6300 | loss(rot) 2.4449 | loss(pos) 0.1168 | loss(seq) 0.0684 | grad 3.9825 | lr 0.0010 | time_forward 2.9850 | time_backward 4.1500
[2023-09-02 08:13:06,202::train::INFO] [train] Iter 07815 | loss 3.3160 | loss(rot) 3.1509 | loss(pos) 0.1470 | loss(seq) 0.0181 | grad 4.7104 | lr 0.0010 | time_forward 3.1850 | time_backward 4.4960
[2023-09-02 08:13:16,856::train::INFO] [train] Iter 07816 | loss 2.1434 | loss(rot) 1.4993 | loss(pos) 0.2354 | loss(seq) 0.4087 | grad 4.4959 | lr 0.0010 | time_forward 4.5290 | time_backward 6.1210
[2023-09-02 08:13:27,191::train::INFO] [train] Iter 07817 | loss 2.2544 | loss(rot) 1.9100 | loss(pos) 0.2771 | loss(seq) 0.0674 | grad 6.2311 | lr 0.0010 | time_forward 4.2440 | time_backward 6.0870
[2023-09-02 08:13:37,593::train::INFO] [train] Iter 07818 | loss 1.6108 | loss(rot) 0.6580 | loss(pos) 0.6873 | loss(seq) 0.2655 | grad 3.7008 | lr 0.0010 | time_forward 4.3970 | time_backward 6.0010
[2023-09-02 08:13:40,262::train::INFO] [train] Iter 07819 | loss 1.7873 | loss(rot) 0.8055 | loss(pos) 0.5913 | loss(seq) 0.3904 | grad 4.6393 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4090
[2023-09-02 08:13:50,577::train::INFO] [train] Iter 07820 | loss 2.1851 | loss(rot) 2.0216 | loss(pos) 0.1587 | loss(seq) 0.0049 | grad 4.5657 | lr 0.0010 | time_forward 4.2080 | time_backward 6.1040
[2023-09-02 08:13:59,993::train::INFO] [train] Iter 07821 | loss 2.7268 | loss(rot) 0.0556 | loss(pos) 2.6684 | loss(seq) 0.0028 | grad 7.4743 | lr 0.0010 | time_forward 3.9360 | time_backward 5.4770
[2023-09-02 08:14:07,570::train::INFO] [train] Iter 07822 | loss 2.1416 | loss(rot) 1.2166 | loss(pos) 0.2634 | loss(seq) 0.6616 | grad 6.7346 | lr 0.0010 | time_forward 3.1390 | time_backward 4.4330
[2023-09-02 08:14:17,301::train::INFO] [train] Iter 07823 | loss 2.0579 | loss(rot) 1.4848 | loss(pos) 0.1778 | loss(seq) 0.3953 | grad 3.9929 | lr 0.0010 | time_forward 4.0310 | time_backward 5.6960
[2023-09-02 08:14:25,872::train::INFO] [train] Iter 07824 | loss 1.9443 | loss(rot) 1.0609 | loss(pos) 0.5144 | loss(seq) 0.3689 | grad 4.1320 | lr 0.0010 | time_forward 3.6650 | time_backward 4.9030
[2023-09-02 08:14:36,024::train::INFO] [train] Iter 07825 | loss 1.7227 | loss(rot) 0.9575 | loss(pos) 0.3465 | loss(seq) 0.4187 | grad 4.3928 | lr 0.0010 | time_forward 4.0430 | time_backward 6.1070
[2023-09-02 08:14:47,748::train::INFO] [train] Iter 07826 | loss 1.8368 | loss(rot) 0.5614 | loss(pos) 1.2237 | loss(seq) 0.0518 | grad 5.8018 | lr 0.0010 | time_forward 5.5630 | time_backward 6.1570
[2023-09-02 08:14:58,721::train::INFO] [train] Iter 07827 | loss 2.8576 | loss(rot) 2.5081 | loss(pos) 0.1451 | loss(seq) 0.2044 | grad 3.2845 | lr 0.0010 | time_forward 4.5260 | time_backward 6.4430
[2023-09-02 08:15:00,948::train::INFO] [train] Iter 07828 | loss 1.4856 | loss(rot) 0.6618 | loss(pos) 0.2415 | loss(seq) 0.5823 | grad 4.3784 | lr 0.0010 | time_forward 1.0620 | time_backward 1.1610
[2023-09-02 08:15:03,436::train::INFO] [train] Iter 07829 | loss 2.0131 | loss(rot) 1.4669 | loss(pos) 0.1143 | loss(seq) 0.4319 | grad 4.5744 | lr 0.0010 | time_forward 1.2180 | time_backward 1.2660
[2023-09-02 08:15:06,158::train::INFO] [train] Iter 07830 | loss 2.6542 | loss(rot) 2.4556 | loss(pos) 0.1835 | loss(seq) 0.0152 | grad 5.3088 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4080
[2023-09-02 08:15:13,002::train::INFO] [train] Iter 07831 | loss 0.7565 | loss(rot) 0.2209 | loss(pos) 0.4962 | loss(seq) 0.0394 | grad 4.4470 | lr 0.0010 | time_forward 2.8880 | time_backward 3.9530
[2023-09-02 08:15:16,779::train::INFO] [train] Iter 07832 | loss 2.1882 | loss(rot) 1.9068 | loss(pos) 0.1637 | loss(seq) 0.1176 | grad 4.1213 | lr 0.0010 | time_forward 1.7780 | time_backward 1.9930
[2023-09-02 08:15:25,048::train::INFO] [train] Iter 07833 | loss 1.3193 | loss(rot) 0.2106 | loss(pos) 0.4230 | loss(seq) 0.6857 | grad 4.4842 | lr 0.0010 | time_forward 3.5810 | time_backward 4.6840
[2023-09-02 08:15:27,839::train::INFO] [train] Iter 07834 | loss 1.9333 | loss(rot) 1.3711 | loss(pos) 0.2470 | loss(seq) 0.3152 | grad 6.5620 | lr 0.0010 | time_forward 1.2630 | time_backward 1.5250
[2023-09-02 08:15:34,723::train::INFO] [train] Iter 07835 | loss 2.0207 | loss(rot) 0.0137 | loss(pos) 2.0037 | loss(seq) 0.0033 | grad 8.7628 | lr 0.0010 | time_forward 3.1830 | time_backward 3.6970
[2023-09-02 08:15:37,406::train::INFO] [train] Iter 07836 | loss 0.9310 | loss(rot) 0.0412 | loss(pos) 0.8837 | loss(seq) 0.0061 | grad 4.0666 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4310
[2023-09-02 08:15:45,388::train::INFO] [train] Iter 07837 | loss 1.1951 | loss(rot) 0.4513 | loss(pos) 0.1712 | loss(seq) 0.5725 | grad 3.3626 | lr 0.0010 | time_forward 3.3810 | time_backward 4.5990
[2023-09-02 08:15:52,649::train::INFO] [train] Iter 07838 | loss 0.7944 | loss(rot) 0.1951 | loss(pos) 0.5484 | loss(seq) 0.0509 | grad 5.0322 | lr 0.0010 | time_forward 3.1310 | time_backward 4.1260
[2023-09-02 08:16:01,376::train::INFO] [train] Iter 07839 | loss 1.9383 | loss(rot) 1.3320 | loss(pos) 0.1751 | loss(seq) 0.4312 | grad 4.8461 | lr 0.0010 | time_forward 3.7990 | time_backward 4.9240
[2023-09-02 08:16:08,901::train::INFO] [train] Iter 07840 | loss 2.5738 | loss(rot) 2.3333 | loss(pos) 0.1451 | loss(seq) 0.0954 | grad 8.1970 | lr 0.0010 | time_forward 3.2380 | time_backward 4.2840
[2023-09-02 08:16:19,153::train::INFO] [train] Iter 07841 | loss 0.7363 | loss(rot) 0.1551 | loss(pos) 0.4185 | loss(seq) 0.1628 | grad 3.5216 | lr 0.0010 | time_forward 4.2480 | time_backward 6.0000
[2023-09-02 08:16:28,993::train::INFO] [train] Iter 07842 | loss 2.0613 | loss(rot) 1.7099 | loss(pos) 0.3482 | loss(seq) 0.0031 | grad 5.3571 | lr 0.0010 | time_forward 4.0410 | time_backward 5.7960
[2023-09-02 08:16:31,723::train::INFO] [train] Iter 07843 | loss 0.9227 | loss(rot) 0.3327 | loss(pos) 0.2072 | loss(seq) 0.3828 | grad 2.8193 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4420
[2023-09-02 08:16:41,598::train::INFO] [train] Iter 07844 | loss 0.8889 | loss(rot) 0.2783 | loss(pos) 0.5074 | loss(seq) 0.1032 | grad 3.8580 | lr 0.0010 | time_forward 4.0360 | time_backward 5.8090
[2023-09-02 08:16:52,110::train::INFO] [train] Iter 07845 | loss 1.6574 | loss(rot) 1.4985 | loss(pos) 0.1082 | loss(seq) 0.0507 | grad 4.3170 | lr 0.0010 | time_forward 4.1310 | time_backward 6.3780
[2023-09-02 08:17:02,212::train::INFO] [train] Iter 07846 | loss 1.5404 | loss(rot) 0.5998 | loss(pos) 0.4037 | loss(seq) 0.5369 | grad 4.3041 | lr 0.0010 | time_forward 4.0720 | time_backward 6.0270
[2023-09-02 08:17:11,949::train::INFO] [train] Iter 07847 | loss 3.2910 | loss(rot) 0.0127 | loss(pos) 3.2767 | loss(seq) 0.0016 | grad 13.5235 | lr 0.0010 | time_forward 4.0260 | time_backward 5.7070
[2023-09-02 08:17:21,924::train::INFO] [train] Iter 07848 | loss 2.5559 | loss(rot) 2.2836 | loss(pos) 0.1850 | loss(seq) 0.0874 | grad 4.3459 | lr 0.0010 | time_forward 4.1380 | time_backward 5.8340
[2023-09-02 08:17:24,621::train::INFO] [train] Iter 07849 | loss 1.3759 | loss(rot) 0.4816 | loss(pos) 0.8628 | loss(seq) 0.0315 | grad 5.3404 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4130
[2023-09-02 08:17:33,618::train::INFO] [train] Iter 07850 | loss 2.0533 | loss(rot) 1.2997 | loss(pos) 0.2347 | loss(seq) 0.5189 | grad 3.1664 | lr 0.0010 | time_forward 3.6510 | time_backward 5.3150
[2023-09-02 08:17:43,661::train::INFO] [train] Iter 07851 | loss 1.3511 | loss(rot) 0.4243 | loss(pos) 0.5356 | loss(seq) 0.3912 | grad 3.6242 | lr 0.0010 | time_forward 4.2800 | time_backward 5.7590
[2023-09-02 08:17:46,386::train::INFO] [train] Iter 07852 | loss 1.3918 | loss(rot) 0.2901 | loss(pos) 0.8113 | loss(seq) 0.2905 | grad 8.9575 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4540
[2023-09-02 08:17:55,292::train::INFO] [train] Iter 07853 | loss 2.5401 | loss(rot) 1.8236 | loss(pos) 0.3162 | loss(seq) 0.4004 | grad 6.0531 | lr 0.0010 | time_forward 3.7120 | time_backward 5.1900
[2023-09-02 08:17:58,013::train::INFO] [train] Iter 07854 | loss 1.8549 | loss(rot) 1.7053 | loss(pos) 0.1356 | loss(seq) 0.0140 | grad 5.7468 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4540
[2023-09-02 08:18:06,096::train::INFO] [train] Iter 07855 | loss 2.4915 | loss(rot) 2.1185 | loss(pos) 0.1884 | loss(seq) 0.1846 | grad 4.4101 | lr 0.0010 | time_forward 3.4270 | time_backward 4.6520
[2023-09-02 08:18:14,863::train::INFO] [train] Iter 07856 | loss 1.8775 | loss(rot) 1.7453 | loss(pos) 0.1302 | loss(seq) 0.0020 | grad 5.4859 | lr 0.0010 | time_forward 3.6650 | time_backward 5.0980
[2023-09-02 08:18:17,556::train::INFO] [train] Iter 07857 | loss 3.1789 | loss(rot) 2.7435 | loss(pos) 0.2432 | loss(seq) 0.1922 | grad 5.9035 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4030
[2023-09-02 08:18:28,728::train::INFO] [train] Iter 07858 | loss 1.8908 | loss(rot) 0.4927 | loss(pos) 0.9724 | loss(seq) 0.4257 | grad 5.8609 | lr 0.0010 | time_forward 5.0490 | time_backward 6.0910
[2023-09-02 08:18:37,908::train::INFO] [train] Iter 07859 | loss 1.6934 | loss(rot) 0.4462 | loss(pos) 0.8009 | loss(seq) 0.4463 | grad 4.4175 | lr 0.0010 | time_forward 3.8220 | time_backward 5.3540
[2023-09-02 08:18:47,162::train::INFO] [train] Iter 07860 | loss 0.6113 | loss(rot) 0.0866 | loss(pos) 0.4517 | loss(seq) 0.0730 | grad 4.1335 | lr 0.0010 | time_forward 3.9360 | time_backward 5.3140
[2023-09-02 08:18:56,399::train::INFO] [train] Iter 07861 | loss 1.6451 | loss(rot) 1.3818 | loss(pos) 0.1197 | loss(seq) 0.1436 | grad 6.4128 | lr 0.0010 | time_forward 3.8870 | time_backward 5.3460
[2023-09-02 08:19:06,285::train::INFO] [train] Iter 07862 | loss 2.0569 | loss(rot) 1.3008 | loss(pos) 0.2823 | loss(seq) 0.4739 | grad 3.5357 | lr 0.0010 | time_forward 4.0880 | time_backward 5.7940
[2023-09-02 08:19:17,070::train::INFO] [train] Iter 07863 | loss 0.8655 | loss(rot) 0.2278 | loss(pos) 0.3751 | loss(seq) 0.2627 | grad 2.7637 | lr 0.0010 | time_forward 4.2830 | time_backward 6.4980
[2023-09-02 08:19:19,838::train::INFO] [train] Iter 07864 | loss 2.2216 | loss(rot) 1.4792 | loss(pos) 0.2222 | loss(seq) 0.5202 | grad 4.3345 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4710
[2023-09-02 08:19:30,160::train::INFO] [train] Iter 07865 | loss 2.0697 | loss(rot) 1.3425 | loss(pos) 0.2878 | loss(seq) 0.4394 | grad 4.5836 | lr 0.0010 | time_forward 4.3230 | time_backward 5.9960
[2023-09-02 08:19:39,558::train::INFO] [train] Iter 07866 | loss 1.2150 | loss(rot) 0.3158 | loss(pos) 0.3933 | loss(seq) 0.5059 | grad 4.0507 | lr 0.0010 | time_forward 4.0530 | time_backward 5.3410
[2023-09-02 08:19:42,259::train::INFO] [train] Iter 07867 | loss 3.0650 | loss(rot) 2.7407 | loss(pos) 0.2662 | loss(seq) 0.0581 | grad 3.6346 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4570
[2023-09-02 08:19:45,010::train::INFO] [train] Iter 07868 | loss 1.5189 | loss(rot) 0.6231 | loss(pos) 0.2810 | loss(seq) 0.6148 | grad 4.3592 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4460
[2023-09-02 08:19:53,882::train::INFO] [train] Iter 07869 | loss 1.7126 | loss(rot) 1.5399 | loss(pos) 0.1250 | loss(seq) 0.0477 | grad 4.7746 | lr 0.0010 | time_forward 3.7520 | time_backward 5.1160
[2023-09-02 08:19:56,605::train::INFO] [train] Iter 07870 | loss 1.8392 | loss(rot) 0.9591 | loss(pos) 0.3428 | loss(seq) 0.5373 | grad 3.0807 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4610
[2023-09-02 08:19:59,362::train::INFO] [train] Iter 07871 | loss 1.0459 | loss(rot) 0.1555 | loss(pos) 0.6094 | loss(seq) 0.2809 | grad 4.1899 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4680
[2023-09-02 08:20:09,261::train::INFO] [train] Iter 07872 | loss 2.1111 | loss(rot) 1.8539 | loss(pos) 0.1286 | loss(seq) 0.1286 | grad 5.5219 | lr 0.0010 | time_forward 4.1150 | time_backward 5.7800
[2023-09-02 08:20:12,033::train::INFO] [train] Iter 07873 | loss 2.5332 | loss(rot) 2.4107 | loss(pos) 0.0986 | loss(seq) 0.0239 | grad 4.0476 | lr 0.0010 | time_forward 1.3220 | time_backward 1.4460
[2023-09-02 08:20:15,341::train::INFO] [train] Iter 07874 | loss 2.1766 | loss(rot) 1.3195 | loss(pos) 0.3277 | loss(seq) 0.5294 | grad 4.7289 | lr 0.0010 | time_forward 1.4790 | time_backward 1.8260
[2023-09-02 08:20:24,563::train::INFO] [train] Iter 07875 | loss 2.1102 | loss(rot) 1.8091 | loss(pos) 0.2489 | loss(seq) 0.0523 | grad 4.3673 | lr 0.0010 | time_forward 3.9090 | time_backward 5.3090
[2023-09-02 08:20:34,461::train::INFO] [train] Iter 07876 | loss 3.0829 | loss(rot) 1.9480 | loss(pos) 0.4787 | loss(seq) 0.6563 | grad 5.7186 | lr 0.0010 | time_forward 3.9650 | time_backward 5.9300
[2023-09-02 08:20:36,729::train::INFO] [train] Iter 07877 | loss 1.9263 | loss(rot) 0.9386 | loss(pos) 0.4275 | loss(seq) 0.5603 | grad 3.5893 | lr 0.0010 | time_forward 1.0570 | time_backward 1.2070
[2023-09-02 08:20:44,682::train::INFO] [train] Iter 07878 | loss 0.5343 | loss(rot) 0.1099 | loss(pos) 0.3801 | loss(seq) 0.0444 | grad 4.1042 | lr 0.0010 | time_forward 3.3640 | time_backward 4.5860
[2023-09-02 08:20:54,704::train::INFO] [train] Iter 07879 | loss 2.1188 | loss(rot) 1.8065 | loss(pos) 0.2846 | loss(seq) 0.0278 | grad 4.1892 | lr 0.0010 | time_forward 4.1800 | time_backward 5.8380
[2023-09-02 08:21:03,541::train::INFO] [train] Iter 07880 | loss 1.5334 | loss(rot) 0.8602 | loss(pos) 0.1725 | loss(seq) 0.5006 | grad 5.9837 | lr 0.0010 | time_forward 3.8070 | time_backward 5.0260
[2023-09-02 08:21:13,416::train::INFO] [train] Iter 07881 | loss 2.5437 | loss(rot) 2.0350 | loss(pos) 0.1558 | loss(seq) 0.3528 | grad 4.1818 | lr 0.0010 | time_forward 4.0650 | time_backward 5.8070
[2023-09-02 08:21:16,295::train::INFO] [train] Iter 07882 | loss 1.6240 | loss(rot) 0.9181 | loss(pos) 0.1992 | loss(seq) 0.5067 | grad 6.8811 | lr 0.0010 | time_forward 1.3560 | time_backward 1.5190
[2023-09-02 08:21:26,437::train::INFO] [train] Iter 07883 | loss 1.4032 | loss(rot) 0.3884 | loss(pos) 0.4640 | loss(seq) 0.5508 | grad 3.3680 | lr 0.0010 | time_forward 4.1430 | time_backward 5.9960
[2023-09-02 08:21:35,180::train::INFO] [train] Iter 07884 | loss 2.1435 | loss(rot) 1.2304 | loss(pos) 0.2436 | loss(seq) 0.6694 | grad 5.0196 | lr 0.0010 | time_forward 3.7160 | time_backward 5.0230
[2023-09-02 08:21:44,506::train::INFO] [train] Iter 07885 | loss 2.0057 | loss(rot) 1.0136 | loss(pos) 0.5097 | loss(seq) 0.4825 | grad 4.1204 | lr 0.0010 | time_forward 3.8920 | time_backward 5.4300
[2023-09-02 08:21:54,412::train::INFO] [train] Iter 07886 | loss 2.1842 | loss(rot) 1.0688 | loss(pos) 0.6080 | loss(seq) 0.5073 | grad 4.2401 | lr 0.0010 | time_forward 4.1640 | time_backward 5.7390
[2023-09-02 08:22:04,298::train::INFO] [train] Iter 07887 | loss 2.2338 | loss(rot) 2.1204 | loss(pos) 0.1131 | loss(seq) 0.0003 | grad 4.5343 | lr 0.0010 | time_forward 4.0550 | time_backward 5.8270