text
stringlengths 56
1.16k
|
---|
[2023-09-02 07:34:44,057::train::INFO] [train] Iter 07488 | loss 2.6024 | loss(rot) 2.3131 | loss(pos) 0.2859 | loss(seq) 0.0033 | grad 3.9962 | lr 0.0010 | time_forward 4.0150 | time_backward 5.8730 |
[2023-09-02 07:34:52,225::train::INFO] [train] Iter 07489 | loss 1.0023 | loss(rot) 0.1057 | loss(pos) 0.6358 | loss(seq) 0.2608 | grad 5.1487 | lr 0.0010 | time_forward 3.3490 | time_backward 4.8150 |
[2023-09-02 07:35:02,862::train::INFO] [train] Iter 07490 | loss 2.0987 | loss(rot) 1.1847 | loss(pos) 0.3461 | loss(seq) 0.5679 | grad 2.7081 | lr 0.0010 | time_forward 4.7090 | time_backward 5.9260 |
[2023-09-02 07:35:05,530::train::INFO] [train] Iter 07491 | loss 2.0366 | loss(rot) 0.8923 | loss(pos) 0.5816 | loss(seq) 0.5626 | grad 5.0649 | lr 0.0010 | time_forward 1.2680 | time_backward 1.3960 |
[2023-09-02 07:35:11,165::train::INFO] [train] Iter 07492 | loss 1.0208 | loss(rot) 0.3997 | loss(pos) 0.5796 | loss(seq) 0.0415 | grad 4.1609 | lr 0.0010 | time_forward 2.4070 | time_backward 3.2250 |
[2023-09-02 07:35:20,544::train::INFO] [train] Iter 07493 | loss 2.4080 | loss(rot) 2.2344 | loss(pos) 0.1637 | loss(seq) 0.0099 | grad 2.7380 | lr 0.0010 | time_forward 3.9660 | time_backward 5.4090 |
[2023-09-02 07:35:23,193::train::INFO] [train] Iter 07494 | loss 2.4608 | loss(rot) 1.4277 | loss(pos) 0.4651 | loss(seq) 0.5681 | grad 4.4457 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4000 |
[2023-09-02 07:35:31,921::train::INFO] [train] Iter 07495 | loss 1.8936 | loss(rot) 1.5953 | loss(pos) 0.1942 | loss(seq) 0.1041 | grad 5.3608 | lr 0.0010 | time_forward 3.7990 | time_backward 4.9250 |
[2023-09-02 07:35:34,177::train::INFO] [train] Iter 07496 | loss 1.9305 | loss(rot) 1.3652 | loss(pos) 0.2410 | loss(seq) 0.3243 | grad 4.8456 | lr 0.0010 | time_forward 1.0470 | time_backward 1.2070 |
[2023-09-02 07:35:42,765::train::INFO] [train] Iter 07497 | loss 1.6440 | loss(rot) 1.3535 | loss(pos) 0.0816 | loss(seq) 0.2088 | grad 3.5740 | lr 0.0010 | time_forward 3.6720 | time_backward 4.9120 |
[2023-09-02 07:35:52,860::train::INFO] [train] Iter 07498 | loss 2.4016 | loss(rot) 1.9090 | loss(pos) 0.1377 | loss(seq) 0.3549 | grad 4.9597 | lr 0.0010 | time_forward 4.1200 | time_backward 5.9720 |
[2023-09-02 07:36:02,374::train::INFO] [train] Iter 07499 | loss 2.0447 | loss(rot) 1.2716 | loss(pos) 0.3270 | loss(seq) 0.4461 | grad 4.0837 | lr 0.0010 | time_forward 4.1230 | time_backward 5.3870 |
[2023-09-02 07:36:12,809::train::INFO] [train] Iter 07500 | loss 2.1887 | loss(rot) 1.8318 | loss(pos) 0.1005 | loss(seq) 0.2564 | grad 3.4812 | lr 0.0010 | time_forward 4.3110 | time_backward 6.1200 |
[2023-09-02 07:36:23,031::train::INFO] [train] Iter 07501 | loss 1.6118 | loss(rot) 0.7080 | loss(pos) 0.4944 | loss(seq) 0.4094 | grad 3.7488 | lr 0.0010 | time_forward 4.1400 | time_backward 6.0790 |
[2023-09-02 07:36:25,901::train::INFO] [train] Iter 07502 | loss 1.9259 | loss(rot) 1.6024 | loss(pos) 0.2009 | loss(seq) 0.1226 | grad 4.8603 | lr 0.0010 | time_forward 1.3010 | time_backward 1.5650 |
[2023-09-02 07:36:28,277::train::INFO] [train] Iter 07503 | loss 1.6239 | loss(rot) 1.3575 | loss(pos) 0.1940 | loss(seq) 0.0724 | grad 4.6816 | lr 0.0010 | time_forward 1.0800 | time_backward 1.2930 |
[2023-09-02 07:36:31,194::train::INFO] [train] Iter 07504 | loss 1.2310 | loss(rot) 0.1467 | loss(pos) 1.0538 | loss(seq) 0.0305 | grad 6.9787 | lr 0.0010 | time_forward 1.3270 | time_backward 1.5650 |
[2023-09-02 07:36:40,093::train::INFO] [train] Iter 07505 | loss 1.0507 | loss(rot) 0.2926 | loss(pos) 0.1584 | loss(seq) 0.5998 | grad 4.2338 | lr 0.0010 | time_forward 3.7930 | time_backward 5.1030 |
[2023-09-02 07:36:42,903::train::INFO] [train] Iter 07506 | loss 1.5575 | loss(rot) 0.8611 | loss(pos) 0.2056 | loss(seq) 0.4908 | grad 3.5700 | lr 0.0010 | time_forward 1.2530 | time_backward 1.5540 |
[2023-09-02 07:36:53,046::train::INFO] [train] Iter 07507 | loss 1.3157 | loss(rot) 0.3964 | loss(pos) 0.3678 | loss(seq) 0.5515 | grad 4.1800 | lr 0.0010 | time_forward 4.1710 | time_backward 5.9680 |
[2023-09-02 07:37:01,892::train::INFO] [train] Iter 07508 | loss 1.7454 | loss(rot) 0.0371 | loss(pos) 1.7073 | loss(seq) 0.0011 | grad 6.3427 | lr 0.0010 | time_forward 3.7720 | time_backward 5.0710 |
[2023-09-02 07:37:09,156::train::INFO] [train] Iter 07509 | loss 2.2997 | loss(rot) 1.6392 | loss(pos) 0.1830 | loss(seq) 0.4776 | grad 5.2411 | lr 0.0010 | time_forward 3.1300 | time_backward 4.1180 |
[2023-09-02 07:37:17,229::train::INFO] [train] Iter 07510 | loss 2.5758 | loss(rot) 2.4283 | loss(pos) 0.1463 | loss(seq) 0.0012 | grad 4.4047 | lr 0.0010 | time_forward 3.3350 | time_backward 4.7350 |
[2023-09-02 07:37:27,231::train::INFO] [train] Iter 07511 | loss 2.1572 | loss(rot) 1.9209 | loss(pos) 0.1695 | loss(seq) 0.0668 | grad 5.1218 | lr 0.0010 | time_forward 4.0590 | time_backward 5.9400 |
[2023-09-02 07:37:34,506::train::INFO] [train] Iter 07512 | loss 1.5960 | loss(rot) 0.9976 | loss(pos) 0.1861 | loss(seq) 0.4123 | grad 4.6951 | lr 0.0010 | time_forward 3.0890 | time_backward 4.1840 |
[2023-09-02 07:37:37,230::train::INFO] [train] Iter 07513 | loss 0.5923 | loss(rot) 0.0894 | loss(pos) 0.4753 | loss(seq) 0.0276 | grad 2.9806 | lr 0.0010 | time_forward 1.3080 | time_backward 1.4130 |
[2023-09-02 07:37:46,305::train::INFO] [train] Iter 07514 | loss 1.4121 | loss(rot) 0.5246 | loss(pos) 0.4955 | loss(seq) 0.3920 | grad 3.0536 | lr 0.0010 | time_forward 3.8150 | time_backward 5.2560 |
[2023-09-02 07:37:56,302::train::INFO] [train] Iter 07515 | loss 2.0038 | loss(rot) 1.7499 | loss(pos) 0.2520 | loss(seq) 0.0019 | grad 6.3138 | lr 0.0010 | time_forward 4.0520 | time_backward 5.9410 |
[2023-09-02 07:38:04,732::train::INFO] [train] Iter 07516 | loss 1.2174 | loss(rot) 0.2672 | loss(pos) 0.5789 | loss(seq) 0.3713 | grad 4.0191 | lr 0.0010 | time_forward 3.5120 | time_backward 4.9150 |
[2023-09-02 07:38:13,352::train::INFO] [train] Iter 07517 | loss 2.3386 | loss(rot) 1.4556 | loss(pos) 0.3469 | loss(seq) 0.5361 | grad 4.3034 | lr 0.0010 | time_forward 3.6350 | time_backward 4.9810 |
[2023-09-02 07:38:21,844::train::INFO] [train] Iter 07518 | loss 1.3670 | loss(rot) 0.5937 | loss(pos) 0.2439 | loss(seq) 0.5294 | grad 4.0442 | lr 0.0010 | time_forward 3.5520 | time_backward 4.9360 |
[2023-09-02 07:38:31,754::train::INFO] [train] Iter 07519 | loss 2.8138 | loss(rot) 2.6002 | loss(pos) 0.1101 | loss(seq) 0.1035 | grad 5.5086 | lr 0.0010 | time_forward 4.1180 | time_backward 5.7880 |
[2023-09-02 07:38:40,473::train::INFO] [train] Iter 07520 | loss 2.4075 | loss(rot) 1.8774 | loss(pos) 0.2235 | loss(seq) 0.3066 | grad 3.8078 | lr 0.0010 | time_forward 3.7430 | time_backward 4.9730 |
[2023-09-02 07:38:47,242::train::INFO] [train] Iter 07521 | loss 1.7749 | loss(rot) 0.8776 | loss(pos) 0.5039 | loss(seq) 0.3934 | grad 2.7321 | lr 0.0010 | time_forward 3.0580 | time_backward 3.6850 |
[2023-09-02 07:38:55,521::train::INFO] [train] Iter 07522 | loss 1.4155 | loss(rot) 0.6399 | loss(pos) 0.2783 | loss(seq) 0.4973 | grad 5.8192 | lr 0.0010 | time_forward 3.5770 | time_backward 4.6980 |
[2023-09-02 07:39:03,913::train::INFO] [train] Iter 07523 | loss 2.7264 | loss(rot) 1.6570 | loss(pos) 0.5413 | loss(seq) 0.5281 | grad 4.8751 | lr 0.0010 | time_forward 3.5910 | time_backward 4.7990 |
[2023-09-02 07:39:12,872::train::INFO] [train] Iter 07524 | loss 1.6281 | loss(rot) 0.4348 | loss(pos) 1.1817 | loss(seq) 0.0117 | grad 5.3773 | lr 0.0010 | time_forward 3.8000 | time_backward 5.1550 |
[2023-09-02 07:39:23,200::train::INFO] [train] Iter 07525 | loss 1.5336 | loss(rot) 0.3596 | loss(pos) 0.9161 | loss(seq) 0.2578 | grad 4.2907 | lr 0.0010 | time_forward 4.4650 | time_backward 5.8600 |
[2023-09-02 07:39:32,867::train::INFO] [train] Iter 07526 | loss 2.9326 | loss(rot) 2.4946 | loss(pos) 0.1602 | loss(seq) 0.2777 | grad 4.0130 | lr 0.0010 | time_forward 3.9680 | time_backward 5.6960 |
[2023-09-02 07:39:42,762::train::INFO] [train] Iter 07527 | loss 0.7829 | loss(rot) 0.1804 | loss(pos) 0.5174 | loss(seq) 0.0851 | grad 3.9665 | lr 0.0010 | time_forward 4.1230 | time_backward 5.7500 |
[2023-09-02 07:39:51,727::train::INFO] [train] Iter 07528 | loss 1.3962 | loss(rot) 0.4799 | loss(pos) 0.8379 | loss(seq) 0.0784 | grad 4.1017 | lr 0.0010 | time_forward 3.8050 | time_backward 5.1570 |
[2023-09-02 07:40:01,630::train::INFO] [train] Iter 07529 | loss 2.1889 | loss(rot) 0.7970 | loss(pos) 1.0765 | loss(seq) 0.3155 | grad 4.6495 | lr 0.0010 | time_forward 4.0640 | time_backward 5.8370 |
[2023-09-02 07:40:04,454::train::INFO] [train] Iter 07530 | loss 1.7453 | loss(rot) 0.8658 | loss(pos) 0.3534 | loss(seq) 0.5261 | grad 4.5782 | lr 0.0010 | time_forward 1.4300 | time_backward 1.3900 |
[2023-09-02 07:40:13,430::train::INFO] [train] Iter 07531 | loss 0.8925 | loss(rot) 0.1848 | loss(pos) 0.2874 | loss(seq) 0.4203 | grad 5.0570 | lr 0.0010 | time_forward 3.8310 | time_backward 5.1410 |
[2023-09-02 07:40:20,423::train::INFO] [train] Iter 07532 | loss 1.6673 | loss(rot) 0.4610 | loss(pos) 1.1885 | loss(seq) 0.0177 | grad 5.6038 | lr 0.0010 | time_forward 2.9800 | time_backward 4.0110 |
[2023-09-02 07:40:29,405::train::INFO] [train] Iter 07533 | loss 2.5870 | loss(rot) 2.2942 | loss(pos) 0.2859 | loss(seq) 0.0069 | grad 5.5393 | lr 0.0010 | time_forward 3.8400 | time_backward 5.1390 |
[2023-09-02 07:40:40,686::train::INFO] [train] Iter 07534 | loss 1.5346 | loss(rot) 0.0643 | loss(pos) 1.4629 | loss(seq) 0.0074 | grad 7.0690 | lr 0.0010 | time_forward 3.9120 | time_backward 7.3650 |
[2023-09-02 07:40:47,376::train::INFO] [train] Iter 07535 | loss 1.6898 | loss(rot) 1.1437 | loss(pos) 0.1678 | loss(seq) 0.3782 | grad 4.8061 | lr 0.0010 | time_forward 2.9400 | time_backward 3.7450 |
[2023-09-02 07:40:56,498::train::INFO] [train] Iter 07536 | loss 1.5249 | loss(rot) 0.6835 | loss(pos) 0.5049 | loss(seq) 0.3365 | grad 4.5299 | lr 0.0010 | time_forward 4.2310 | time_backward 4.8880 |
[2023-09-02 07:41:05,640::train::INFO] [train] Iter 07537 | loss 1.9825 | loss(rot) 1.1447 | loss(pos) 0.5017 | loss(seq) 0.3361 | grad 6.4120 | lr 0.0010 | time_forward 3.8680 | time_backward 5.2720 |
[2023-09-02 07:41:08,052::train::INFO] [train] Iter 07538 | loss 0.7356 | loss(rot) 0.1997 | loss(pos) 0.4792 | loss(seq) 0.0568 | grad 3.6636 | lr 0.0010 | time_forward 1.1760 | time_backward 1.2320 |
[2023-09-02 07:41:16,803::train::INFO] [train] Iter 07539 | loss 0.5224 | loss(rot) 0.1869 | loss(pos) 0.2760 | loss(seq) 0.0595 | grad 3.2099 | lr 0.0010 | time_forward 3.6490 | time_backward 5.0790 |
[2023-09-02 07:41:19,448::train::INFO] [train] Iter 07540 | loss 1.1199 | loss(rot) 0.4570 | loss(pos) 0.5624 | loss(seq) 0.1005 | grad 4.2866 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4040 |
[2023-09-02 07:41:22,119::train::INFO] [train] Iter 07541 | loss 2.6111 | loss(rot) 1.8350 | loss(pos) 0.4873 | loss(seq) 0.2889 | grad 5.6739 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4180 |
[2023-09-02 07:41:24,841::train::INFO] [train] Iter 07542 | loss 1.9765 | loss(rot) 0.9158 | loss(pos) 0.6043 | loss(seq) 0.4564 | grad 8.0981 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4760 |
[2023-09-02 07:41:32,925::train::INFO] [train] Iter 07543 | loss 1.1723 | loss(rot) 0.1627 | loss(pos) 0.8606 | loss(seq) 0.1491 | grad 4.5587 | lr 0.0010 | time_forward 3.4440 | time_backward 4.6350 |
[2023-09-02 07:41:35,587::train::INFO] [train] Iter 07544 | loss 2.5482 | loss(rot) 2.3365 | loss(pos) 0.1370 | loss(seq) 0.0747 | grad 3.8372 | lr 0.0010 | time_forward 1.2610 | time_backward 1.3980 |
[2023-09-02 07:41:38,296::train::INFO] [train] Iter 07545 | loss 2.2641 | loss(rot) 0.0232 | loss(pos) 2.2404 | loss(seq) 0.0005 | grad 7.0518 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4180 |
[2023-09-02 07:41:46,334::train::INFO] [train] Iter 07546 | loss 0.8473 | loss(rot) 0.0815 | loss(pos) 0.7408 | loss(seq) 0.0250 | grad 5.8093 | lr 0.0010 | time_forward 3.4270 | time_backward 4.6060 |
[2023-09-02 07:41:53,906::train::INFO] [train] Iter 07547 | loss 2.1771 | loss(rot) 1.9731 | loss(pos) 0.0967 | loss(seq) 0.1073 | grad 4.3717 | lr 0.0010 | time_forward 3.2420 | time_backward 4.3270 |
[2023-09-02 07:42:04,723::train::INFO] [train] Iter 07548 | loss 1.2259 | loss(rot) 0.2827 | loss(pos) 0.9180 | loss(seq) 0.0253 | grad 4.1702 | lr 0.0010 | time_forward 4.9440 | time_backward 5.8690 |
[2023-09-02 07:42:12,811::train::INFO] [train] Iter 07549 | loss 1.6043 | loss(rot) 1.4947 | loss(pos) 0.0970 | loss(seq) 0.0126 | grad 3.6868 | lr 0.0010 | time_forward 3.3310 | time_backward 4.7540 |
[2023-09-02 07:42:21,540::train::INFO] [train] Iter 07550 | loss 1.8778 | loss(rot) 1.5679 | loss(pos) 0.3093 | loss(seq) 0.0006 | grad 6.4941 | lr 0.0010 | time_forward 3.7100 | time_backward 5.0150 |
[2023-09-02 07:42:23,945::train::INFO] [train] Iter 07551 | loss 0.4850 | loss(rot) 0.1206 | loss(pos) 0.2938 | loss(seq) 0.0706 | grad 3.0686 | lr 0.0010 | time_forward 1.2000 | time_backward 1.2010 |
[2023-09-02 07:42:33,331::train::INFO] [train] Iter 07552 | loss 2.4810 | loss(rot) 1.3999 | loss(pos) 0.5634 | loss(seq) 0.5177 | grad 6.0077 | lr 0.0010 | time_forward 4.0900 | time_backward 5.2920 |
[2023-09-02 07:42:42,720::train::INFO] [train] Iter 07553 | loss 2.4298 | loss(rot) 0.0089 | loss(pos) 2.4200 | loss(seq) 0.0009 | grad 8.7176 | lr 0.0010 | time_forward 4.0090 | time_backward 5.3760 |
[2023-09-02 07:42:50,985::train::INFO] [train] Iter 07554 | loss 2.0449 | loss(rot) 1.3735 | loss(pos) 0.1228 | loss(seq) 0.5486 | grad 3.7780 | lr 0.0010 | time_forward 3.5190 | time_backward 4.7430 |
[2023-09-02 07:42:59,186::train::INFO] [train] Iter 07555 | loss 2.2885 | loss(rot) 1.8917 | loss(pos) 0.0593 | loss(seq) 0.3376 | grad 4.0716 | lr 0.0010 | time_forward 3.5680 | time_backward 4.6290 |
[2023-09-02 07:43:08,373::train::INFO] [train] Iter 07556 | loss 1.3776 | loss(rot) 0.5604 | loss(pos) 0.7034 | loss(seq) 0.1138 | grad 3.0349 | lr 0.0010 | time_forward 3.9800 | time_backward 5.2030 |
[2023-09-02 07:43:16,822::train::INFO] [train] Iter 07557 | loss 2.6040 | loss(rot) 2.3167 | loss(pos) 0.2568 | loss(seq) 0.0306 | grad 5.6870 | lr 0.0010 | time_forward 3.5840 | time_backward 4.8610 |
[2023-09-02 07:43:26,914::train::INFO] [train] Iter 07558 | loss 1.9832 | loss(rot) 1.8436 | loss(pos) 0.1395 | loss(seq) 0.0001 | grad 5.8386 | lr 0.0010 | time_forward 4.0470 | time_backward 6.0410 |
[2023-09-02 07:43:30,177::train::INFO] [train] Iter 07559 | loss 2.1673 | loss(rot) 1.9773 | loss(pos) 0.1645 | loss(seq) 0.0255 | grad 5.7340 | lr 0.0010 | time_forward 1.8550 | time_backward 1.4040 |
[2023-09-02 07:43:40,144::train::INFO] [train] Iter 07560 | loss 1.8343 | loss(rot) 0.0309 | loss(pos) 1.8009 | loss(seq) 0.0026 | grad 8.8877 | lr 0.0010 | time_forward 4.1280 | time_backward 5.8350 |
[2023-09-02 07:43:48,624::train::INFO] [train] Iter 07561 | loss 1.8595 | loss(rot) 1.6926 | loss(pos) 0.1663 | loss(seq) 0.0007 | grad 5.1127 | lr 0.0010 | time_forward 3.6670 | time_backward 4.8090 |
[2023-09-02 07:43:51,351::train::INFO] [train] Iter 07562 | loss 1.2464 | loss(rot) 0.2064 | loss(pos) 1.0288 | loss(seq) 0.0112 | grad 4.3428 | lr 0.0010 | time_forward 1.3110 | time_backward 1.4120 |
[2023-09-02 07:44:00,085::train::INFO] [train] Iter 07563 | loss 2.0732 | loss(rot) 1.7650 | loss(pos) 0.2927 | loss(seq) 0.0154 | grad 5.8995 | lr 0.0010 | time_forward 3.6070 | time_backward 5.1220 |
[2023-09-02 07:44:08,773::train::INFO] [train] Iter 07564 | loss 2.5045 | loss(rot) 1.8198 | loss(pos) 0.2531 | loss(seq) 0.4316 | grad 7.1392 | lr 0.0010 | time_forward 3.7600 | time_backward 4.9240 |
[2023-09-02 07:44:17,019::train::INFO] [train] Iter 07565 | loss 2.3802 | loss(rot) 1.2465 | loss(pos) 0.5714 | loss(seq) 0.5624 | grad 4.0280 | lr 0.0010 | time_forward 3.5060 | time_backward 4.7370 |
[2023-09-02 07:44:27,398::train::INFO] [train] Iter 07566 | loss 2.1870 | loss(rot) 1.4727 | loss(pos) 0.3452 | loss(seq) 0.3690 | grad 4.9121 | lr 0.0010 | time_forward 4.4420 | time_backward 5.9340 |
[2023-09-02 07:44:37,560::train::INFO] [train] Iter 07567 | loss 2.2524 | loss(rot) 1.4923 | loss(pos) 0.2883 | loss(seq) 0.4717 | grad 4.7419 | lr 0.0010 | time_forward 4.3720 | time_backward 5.7860 |
[2023-09-02 07:44:46,723::train::INFO] [train] Iter 07568 | loss 1.1747 | loss(rot) 0.7363 | loss(pos) 0.1772 | loss(seq) 0.2612 | grad 4.8826 | lr 0.0010 | time_forward 3.8520 | time_backward 5.3070 |
[2023-09-02 07:44:54,143::train::INFO] [train] Iter 07569 | loss 2.5708 | loss(rot) 1.9411 | loss(pos) 0.1869 | loss(seq) 0.4428 | grad 4.5151 | lr 0.0010 | time_forward 3.1470 | time_backward 4.2700 |
[2023-09-02 07:44:56,807::train::INFO] [train] Iter 07570 | loss 1.7598 | loss(rot) 1.5977 | loss(pos) 0.0921 | loss(seq) 0.0700 | grad 4.3407 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4120 |
[2023-09-02 07:44:59,115::train::INFO] [train] Iter 07571 | loss 1.5191 | loss(rot) 0.6463 | loss(pos) 0.3701 | loss(seq) 0.5027 | grad 4.4701 | lr 0.0010 | time_forward 1.1270 | time_backward 1.1770 |
[2023-09-02 07:45:08,084::train::INFO] [train] Iter 07572 | loss 2.2673 | loss(rot) 1.7975 | loss(pos) 0.1461 | loss(seq) 0.3237 | grad 5.3138 | lr 0.0010 | time_forward 3.8980 | time_backward 5.0670 |
[2023-09-02 07:45:17,489::train::INFO] [train] Iter 07573 | loss 1.8670 | loss(rot) 1.0435 | loss(pos) 0.2896 | loss(seq) 0.5338 | grad 4.2056 | lr 0.0010 | time_forward 4.0490 | time_backward 5.3520 |
[2023-09-02 07:45:25,143::train::INFO] [train] Iter 07574 | loss 1.6579 | loss(rot) 1.2911 | loss(pos) 0.0595 | loss(seq) 0.3073 | grad 3.5805 | lr 0.0010 | time_forward 3.3280 | time_backward 4.3230 |
[2023-09-02 07:45:35,336::train::INFO] [train] Iter 07575 | loss 1.1788 | loss(rot) 0.3067 | loss(pos) 0.6455 | loss(seq) 0.2265 | grad 4.5165 | lr 0.0010 | time_forward 4.2210 | time_backward 5.9690 |
[2023-09-02 07:45:45,427::train::INFO] [train] Iter 07576 | loss 1.6446 | loss(rot) 1.3977 | loss(pos) 0.0613 | loss(seq) 0.1856 | grad 2.9603 | lr 0.0010 | time_forward 4.3410 | time_backward 5.7460 |
[2023-09-02 07:45:47,646::train::INFO] [train] Iter 07577 | loss 2.4909 | loss(rot) 2.1517 | loss(pos) 0.3388 | loss(seq) 0.0003 | grad 4.9084 | lr 0.0010 | time_forward 1.0460 | time_backward 1.1700 |
[2023-09-02 07:45:57,353::train::INFO] [train] Iter 07578 | loss 1.5411 | loss(rot) 0.6808 | loss(pos) 0.6085 | loss(seq) 0.2518 | grad 3.1229 | lr 0.0010 | time_forward 4.0190 | time_backward 5.6620 |
[2023-09-02 07:45:59,551::train::INFO] [train] Iter 07579 | loss 1.7262 | loss(rot) 0.0183 | loss(pos) 1.7056 | loss(seq) 0.0023 | grad 7.8054 | lr 0.0010 | time_forward 1.0320 | time_backward 1.1620 |
[2023-09-02 07:46:10,390::train::INFO] [train] Iter 07580 | loss 1.6177 | loss(rot) 0.4841 | loss(pos) 0.3581 | loss(seq) 0.7755 | grad 4.2097 | lr 0.0010 | time_forward 4.7340 | time_backward 6.1010 |
[2023-09-02 07:46:19,254::train::INFO] [train] Iter 07581 | loss 1.6715 | loss(rot) 0.9959 | loss(pos) 0.1765 | loss(seq) 0.4991 | grad 3.9052 | lr 0.0010 | time_forward 3.6810 | time_backward 5.1790 |
[2023-09-02 07:46:21,968::train::INFO] [train] Iter 07582 | loss 2.4045 | loss(rot) 1.7688 | loss(pos) 0.1517 | loss(seq) 0.4840 | grad 4.9150 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4140 |
[2023-09-02 07:46:31,953::train::INFO] [train] Iter 07583 | loss 1.9251 | loss(rot) 1.1968 | loss(pos) 0.2874 | loss(seq) 0.4410 | grad 4.0957 | lr 0.0010 | time_forward 4.0180 | time_backward 5.9640 |
[2023-09-02 07:46:40,929::train::INFO] [train] Iter 07584 | loss 2.0337 | loss(rot) 1.6208 | loss(pos) 0.3697 | loss(seq) 0.0431 | grad 6.4244 | lr 0.0010 | time_forward 3.8410 | time_backward 5.1310 |
[2023-09-02 07:46:44,147::train::INFO] [train] Iter 07585 | loss 2.6827 | loss(rot) 1.6444 | loss(pos) 0.5205 | loss(seq) 0.5178 | grad 5.8082 | lr 0.0010 | time_forward 1.4170 | time_backward 1.7980 |
[2023-09-02 07:46:53,358::train::INFO] [train] Iter 07586 | loss 1.3218 | loss(rot) 0.5502 | loss(pos) 0.4315 | loss(seq) 0.3401 | grad 2.8412 | lr 0.0010 | time_forward 3.8980 | time_backward 5.3090 |
[2023-09-02 07:46:56,135::train::INFO] [train] Iter 07587 | loss 1.6309 | loss(rot) 1.0144 | loss(pos) 0.2025 | loss(seq) 0.4140 | grad 7.2256 | lr 0.0010 | time_forward 1.3200 | time_backward 1.4540 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.