text
stringlengths
56
1.16k
[2023-09-02 06:45:45,669::train::INFO] [train] Iter 07088 | loss 2.3310 | loss(rot) 2.1354 | loss(pos) 0.1077 | loss(seq) 0.0879 | grad 2.4626 | lr 0.0010 | time_forward 3.7810 | time_backward 5.2760
[2023-09-02 06:45:54,290::train::INFO] [train] Iter 07089 | loss 1.1992 | loss(rot) 0.5422 | loss(pos) 0.3252 | loss(seq) 0.3318 | grad 4.6192 | lr 0.0010 | time_forward 3.6350 | time_backward 4.9830
[2023-09-02 06:46:04,114::train::INFO] [train] Iter 07090 | loss 2.2807 | loss(rot) 2.1254 | loss(pos) 0.1466 | loss(seq) 0.0087 | grad 3.5424 | lr 0.0010 | time_forward 3.9920 | time_backward 5.8280
[2023-09-02 06:46:13,829::train::INFO] [train] Iter 07091 | loss 2.7412 | loss(rot) 2.4845 | loss(pos) 0.1051 | loss(seq) 0.1515 | grad 5.1150 | lr 0.0010 | time_forward 4.3060 | time_backward 5.4050
[2023-09-02 06:46:23,019::train::INFO] [train] Iter 07092 | loss 2.8148 | loss(rot) 2.3527 | loss(pos) 0.1805 | loss(seq) 0.2816 | grad 8.3069 | lr 0.0010 | time_forward 3.8580 | time_backward 5.3290
[2023-09-02 06:46:25,707::train::INFO] [train] Iter 07093 | loss 1.5336 | loss(rot) 0.5618 | loss(pos) 0.4523 | loss(seq) 0.5196 | grad 5.3263 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4390
[2023-09-02 06:46:28,471::train::INFO] [train] Iter 07094 | loss 1.3755 | loss(rot) 0.6172 | loss(pos) 0.2789 | loss(seq) 0.4794 | grad 4.6027 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4390
[2023-09-02 06:46:36,886::train::INFO] [train] Iter 07095 | loss 2.6691 | loss(rot) 2.0785 | loss(pos) 0.2067 | loss(seq) 0.3840 | grad 7.2638 | lr 0.0010 | time_forward 3.5760 | time_backward 4.8350
[2023-09-02 06:46:45,893::train::INFO] [train] Iter 07096 | loss 1.6253 | loss(rot) 0.0355 | loss(pos) 1.5875 | loss(seq) 0.0023 | grad 8.5556 | lr 0.0010 | time_forward 3.7970 | time_backward 5.2060
[2023-09-02 06:46:48,646::train::INFO] [train] Iter 07097 | loss 1.6244 | loss(rot) 1.3424 | loss(pos) 0.2298 | loss(seq) 0.0522 | grad 6.7478 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4650
[2023-09-02 06:46:57,327::train::INFO] [train] Iter 07098 | loss 2.2669 | loss(rot) 2.1303 | loss(pos) 0.1143 | loss(seq) 0.0223 | grad 3.7335 | lr 0.0010 | time_forward 3.6610 | time_backward 4.9900
[2023-09-02 06:47:07,227::train::INFO] [train] Iter 07099 | loss 1.7987 | loss(rot) 0.5878 | loss(pos) 0.6626 | loss(seq) 0.5482 | grad 5.9461 | lr 0.0010 | time_forward 4.0020 | time_backward 5.8940
[2023-09-02 06:47:16,351::train::INFO] [train] Iter 07100 | loss 1.7463 | loss(rot) 1.5225 | loss(pos) 0.1914 | loss(seq) 0.0324 | grad 5.2297 | lr 0.0010 | time_forward 3.8450 | time_backward 5.2730
[2023-09-02 06:47:25,480::train::INFO] [train] Iter 07101 | loss 1.5994 | loss(rot) 0.9002 | loss(pos) 0.2400 | loss(seq) 0.4592 | grad 3.6975 | lr 0.0010 | time_forward 3.8590 | time_backward 5.2670
[2023-09-02 06:47:28,124::train::INFO] [train] Iter 07102 | loss 2.1682 | loss(rot) 1.4930 | loss(pos) 0.1479 | loss(seq) 0.5274 | grad 4.9724 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4000
[2023-09-02 06:47:30,846::train::INFO] [train] Iter 07103 | loss 2.7005 | loss(rot) 2.5087 | loss(pos) 0.0980 | loss(seq) 0.0938 | grad 4.0324 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4250
[2023-09-02 06:47:39,303::train::INFO] [train] Iter 07104 | loss 1.9994 | loss(rot) 1.3990 | loss(pos) 0.3892 | loss(seq) 0.2112 | grad 5.4117 | lr 0.0010 | time_forward 3.5780 | time_backward 4.8760
[2023-09-02 06:47:49,526::train::INFO] [train] Iter 07105 | loss 0.6699 | loss(rot) 0.2994 | loss(pos) 0.2770 | loss(seq) 0.0936 | grad 3.2290 | lr 0.0010 | time_forward 4.3060 | time_backward 5.9130
[2023-09-02 06:47:58,295::train::INFO] [train] Iter 07106 | loss 1.8605 | loss(rot) 1.6684 | loss(pos) 0.1846 | loss(seq) 0.0074 | grad 3.0512 | lr 0.0010 | time_forward 3.7270 | time_backward 5.0390
[2023-09-02 06:48:01,563::train::INFO] [train] Iter 07107 | loss 2.6301 | loss(rot) 1.5685 | loss(pos) 0.5297 | loss(seq) 0.5319 | grad 3.3379 | lr 0.0010 | time_forward 1.4210 | time_backward 1.8430
[2023-09-02 06:48:04,261::train::INFO] [train] Iter 07108 | loss 1.3469 | loss(rot) 0.0976 | loss(pos) 1.2397 | loss(seq) 0.0096 | grad 7.4228 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4210
[2023-09-02 06:48:12,637::train::INFO] [train] Iter 07109 | loss 2.7002 | loss(rot) 1.8297 | loss(pos) 0.3137 | loss(seq) 0.5567 | grad 4.2256 | lr 0.0010 | time_forward 3.5890 | time_backward 4.7830
[2023-09-02 06:48:22,540::train::INFO] [train] Iter 07110 | loss 2.4160 | loss(rot) 2.1460 | loss(pos) 0.1193 | loss(seq) 0.1507 | grad 3.1952 | lr 0.0010 | time_forward 4.2510 | time_backward 5.6490
[2023-09-02 06:48:31,705::train::INFO] [train] Iter 07111 | loss 1.6698 | loss(rot) 0.9614 | loss(pos) 0.1266 | loss(seq) 0.5819 | grad 4.3457 | lr 0.0010 | time_forward 3.9320 | time_backward 5.2290
[2023-09-02 06:48:34,383::train::INFO] [train] Iter 07112 | loss 1.4186 | loss(rot) 1.0931 | loss(pos) 0.1510 | loss(seq) 0.1744 | grad 6.2099 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4280
[2023-09-02 06:48:42,935::train::INFO] [train] Iter 07113 | loss 2.5390 | loss(rot) 2.4526 | loss(pos) 0.0863 | loss(seq) 0.0001 | grad 3.8360 | lr 0.0010 | time_forward 3.6220 | time_backward 4.9140
[2023-09-02 06:48:53,274::train::INFO] [train] Iter 07114 | loss 1.5981 | loss(rot) 0.8336 | loss(pos) 0.2555 | loss(seq) 0.5090 | grad 3.1725 | lr 0.0010 | time_forward 4.2870 | time_backward 6.0490
[2023-09-02 06:49:01,460::train::INFO] [train] Iter 07115 | loss 0.9435 | loss(rot) 0.1462 | loss(pos) 0.7784 | loss(seq) 0.0189 | grad 6.2938 | lr 0.0010 | time_forward 3.3950 | time_backward 4.7860
[2023-09-02 06:49:11,440::train::INFO] [train] Iter 07116 | loss 0.9574 | loss(rot) 0.1179 | loss(pos) 0.8245 | loss(seq) 0.0150 | grad 4.3337 | lr 0.0010 | time_forward 4.0950 | time_backward 5.8810
[2023-09-02 06:49:20,078::train::INFO] [train] Iter 07117 | loss 1.8028 | loss(rot) 1.5557 | loss(pos) 0.0847 | loss(seq) 0.1625 | grad 4.7080 | lr 0.0010 | time_forward 3.6480 | time_backward 4.9860
[2023-09-02 06:49:28,917::train::INFO] [train] Iter 07118 | loss 1.6217 | loss(rot) 1.3557 | loss(pos) 0.2119 | loss(seq) 0.0540 | grad 4.9242 | lr 0.0010 | time_forward 3.7420 | time_backward 5.0930
[2023-09-02 06:49:32,339::train::INFO] [train] Iter 07119 | loss 1.5253 | loss(rot) 0.7046 | loss(pos) 0.3408 | loss(seq) 0.4799 | grad 2.7367 | lr 0.0010 | time_forward 1.4350 | time_backward 1.9840
[2023-09-02 06:49:40,867::train::INFO] [train] Iter 07120 | loss 1.9712 | loss(rot) 1.2560 | loss(pos) 0.2188 | loss(seq) 0.4964 | grad 4.3558 | lr 0.0010 | time_forward 3.6780 | time_backward 4.8470
[2023-09-02 06:49:49,344::train::INFO] [train] Iter 07121 | loss 2.4420 | loss(rot) 1.3404 | loss(pos) 0.6715 | loss(seq) 0.4301 | grad 5.1871 | lr 0.0010 | time_forward 3.6300 | time_backward 4.8440
[2023-09-02 06:49:59,629::train::INFO] [train] Iter 07122 | loss 2.5074 | loss(rot) 2.4126 | loss(pos) 0.0852 | loss(seq) 0.0096 | grad 3.6223 | lr 0.0010 | time_forward 4.2220 | time_backward 6.0590
[2023-09-02 06:50:02,351::train::INFO] [train] Iter 07123 | loss 1.5756 | loss(rot) 0.8298 | loss(pos) 0.2971 | loss(seq) 0.4487 | grad 4.1978 | lr 0.0010 | time_forward 1.3040 | time_backward 1.4140
[2023-09-02 06:50:05,081::train::INFO] [train] Iter 07124 | loss 0.6922 | loss(rot) 0.1133 | loss(pos) 0.5463 | loss(seq) 0.0326 | grad 4.2482 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4390
[2023-09-02 06:50:07,933::train::INFO] [train] Iter 07125 | loss 2.7526 | loss(rot) 2.6056 | loss(pos) 0.1425 | loss(seq) 0.0045 | grad 5.2316 | lr 0.0010 | time_forward 1.3070 | time_backward 1.5420
[2023-09-02 06:50:16,595::train::INFO] [train] Iter 07126 | loss 2.1874 | loss(rot) 1.9447 | loss(pos) 0.2150 | loss(seq) 0.0277 | grad 4.9377 | lr 0.0010 | time_forward 3.7490 | time_backward 4.9100
[2023-09-02 06:50:25,803::train::INFO] [train] Iter 07127 | loss 2.8892 | loss(rot) 2.6281 | loss(pos) 0.1577 | loss(seq) 0.1033 | grad 3.9285 | lr 0.0010 | time_forward 3.8810 | time_backward 5.3230
[2023-09-02 06:50:34,663::train::INFO] [train] Iter 07128 | loss 1.5882 | loss(rot) 0.8295 | loss(pos) 0.1786 | loss(seq) 0.5802 | grad 3.0029 | lr 0.0010 | time_forward 3.7550 | time_backward 5.1010
[2023-09-02 06:50:43,093::train::INFO] [train] Iter 07129 | loss 2.4656 | loss(rot) 2.3015 | loss(pos) 0.1640 | loss(seq) 0.0000 | grad 4.9258 | lr 0.0010 | time_forward 3.5120 | time_backward 4.9150
[2023-09-02 06:50:53,209::train::INFO] [train] Iter 07130 | loss 2.0231 | loss(rot) 1.5551 | loss(pos) 0.1590 | loss(seq) 0.3091 | grad 3.9537 | lr 0.0010 | time_forward 4.1720 | time_backward 5.9400
[2023-09-02 06:51:02,460::train::INFO] [train] Iter 07131 | loss 2.3182 | loss(rot) 1.7661 | loss(pos) 0.1449 | loss(seq) 0.4071 | grad 4.6803 | lr 0.0010 | time_forward 3.8180 | time_backward 5.4300
[2023-09-02 06:51:12,383::train::INFO] [train] Iter 07132 | loss 1.2542 | loss(rot) 0.6023 | loss(pos) 0.3377 | loss(seq) 0.3143 | grad 4.0201 | lr 0.0010 | time_forward 4.0510 | time_backward 5.8690
[2023-09-02 06:51:15,060::train::INFO] [train] Iter 07133 | loss 1.6840 | loss(rot) 1.5877 | loss(pos) 0.0698 | loss(seq) 0.0264 | grad 3.1966 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4010
[2023-09-02 06:51:25,200::train::INFO] [train] Iter 07134 | loss 1.4669 | loss(rot) 0.5405 | loss(pos) 0.3077 | loss(seq) 0.6187 | grad 2.7522 | lr 0.0010 | time_forward 4.2350 | time_backward 5.9020
[2023-09-02 06:51:35,222::train::INFO] [train] Iter 07135 | loss 4.0610 | loss(rot) 0.2428 | loss(pos) 3.8174 | loss(seq) 0.0007 | grad 11.0420 | lr 0.0010 | time_forward 4.1340 | time_backward 5.8840
[2023-09-02 06:51:44,073::train::INFO] [train] Iter 07136 | loss 2.3286 | loss(rot) 1.5183 | loss(pos) 0.3878 | loss(seq) 0.4225 | grad 3.1430 | lr 0.0010 | time_forward 3.7180 | time_backward 5.1300
[2023-09-02 06:51:52,960::train::INFO] [train] Iter 07137 | loss 1.7814 | loss(rot) 0.8370 | loss(pos) 0.5188 | loss(seq) 0.4257 | grad 6.7981 | lr 0.0010 | time_forward 3.7900 | time_backward 5.0940
[2023-09-02 06:51:55,671::train::INFO] [train] Iter 07138 | loss 2.1167 | loss(rot) 0.4464 | loss(pos) 1.6212 | loss(seq) 0.0491 | grad 8.3683 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4060
[2023-09-02 06:51:58,571::train::INFO] [train] Iter 07139 | loss 2.4713 | loss(rot) 0.2026 | loss(pos) 2.2687 | loss(seq) 0.0000 | grad 7.0787 | lr 0.0010 | time_forward 1.4780 | time_backward 1.4190
[2023-09-02 06:52:06,445::train::INFO] [train] Iter 07140 | loss 2.3373 | loss(rot) 1.6795 | loss(pos) 0.1704 | loss(seq) 0.4874 | grad 3.6094 | lr 0.0010 | time_forward 3.2940 | time_backward 4.5770
[2023-09-02 06:52:15,115::train::INFO] [train] Iter 07141 | loss 2.6830 | loss(rot) 2.4927 | loss(pos) 0.0598 | loss(seq) 0.1306 | grad 3.9809 | lr 0.0010 | time_forward 3.6970 | time_backward 4.9700
[2023-09-02 06:52:23,711::train::INFO] [train] Iter 07142 | loss 1.5142 | loss(rot) 0.3867 | loss(pos) 1.0119 | loss(seq) 0.1156 | grad 7.6170 | lr 0.0010 | time_forward 3.6260 | time_backward 4.9660
[2023-09-02 06:52:27,206::train::INFO] [train] Iter 07143 | loss 2.2339 | loss(rot) 1.7090 | loss(pos) 0.1810 | loss(seq) 0.3439 | grad 4.8215 | lr 0.0010 | time_forward 1.4310 | time_backward 2.0610
[2023-09-02 06:52:29,861::train::INFO] [train] Iter 07144 | loss 2.3800 | loss(rot) 1.3456 | loss(pos) 0.4367 | loss(seq) 0.5977 | grad 4.1694 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4070
[2023-09-02 06:52:35,919::train::INFO] [train] Iter 07145 | loss 2.0660 | loss(rot) 1.7145 | loss(pos) 0.0909 | loss(seq) 0.2605 | grad 2.9540 | lr 0.0010 | time_forward 2.6120 | time_backward 3.4420
[2023-09-02 06:52:45,230::train::INFO] [train] Iter 07146 | loss 1.2928 | loss(rot) 0.3331 | loss(pos) 0.5087 | loss(seq) 0.4510 | grad 3.5656 | lr 0.0010 | time_forward 3.7800 | time_backward 5.5280
[2023-09-02 06:52:55,096::train::INFO] [train] Iter 07147 | loss 2.4509 | loss(rot) 2.1980 | loss(pos) 0.1640 | loss(seq) 0.0888 | grad 4.5089 | lr 0.0010 | time_forward 4.5500 | time_backward 5.3130
[2023-09-02 06:53:03,599::train::INFO] [train] Iter 07148 | loss 2.4266 | loss(rot) 2.3250 | loss(pos) 0.1010 | loss(seq) 0.0007 | grad 5.2468 | lr 0.0010 | time_forward 3.5270 | time_backward 4.9720
[2023-09-02 06:53:06,366::train::INFO] [train] Iter 07149 | loss 1.6321 | loss(rot) 0.3668 | loss(pos) 0.8119 | loss(seq) 0.4534 | grad 4.3417 | lr 0.0010 | time_forward 1.3080 | time_backward 1.4560
[2023-09-02 06:53:09,191::train::INFO] [train] Iter 07150 | loss 2.1785 | loss(rot) 1.7414 | loss(pos) 0.3146 | loss(seq) 0.1225 | grad 5.3017 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4820
[2023-09-02 06:53:16,252::train::INFO] [train] Iter 07151 | loss 2.0935 | loss(rot) 1.9749 | loss(pos) 0.1180 | loss(seq) 0.0006 | grad 3.8407 | lr 0.0010 | time_forward 2.9920 | time_backward 4.0650
[2023-09-02 06:53:23,395::train::INFO] [train] Iter 07152 | loss 2.5826 | loss(rot) 2.3056 | loss(pos) 0.1793 | loss(seq) 0.0977 | grad 3.8944 | lr 0.0010 | time_forward 3.0810 | time_backward 4.0590
[2023-09-02 06:53:31,751::train::INFO] [train] Iter 07153 | loss 1.4331 | loss(rot) 0.2453 | loss(pos) 1.1724 | loss(seq) 0.0154 | grad 4.9870 | lr 0.0010 | time_forward 3.5460 | time_backward 4.8070
[2023-09-02 06:53:39,743::train::INFO] [train] Iter 07154 | loss 3.0240 | loss(rot) 2.3552 | loss(pos) 0.2359 | loss(seq) 0.4329 | grad 3.9746 | lr 0.0010 | time_forward 3.3470 | time_backward 4.6420
[2023-09-02 06:53:48,157::train::INFO] [train] Iter 07155 | loss 2.7360 | loss(rot) 2.4739 | loss(pos) 0.1845 | loss(seq) 0.0776 | grad 4.0518 | lr 0.0010 | time_forward 3.5120 | time_backward 4.8990
[2023-09-02 06:53:55,823::train::INFO] [train] Iter 07156 | loss 2.7870 | loss(rot) 2.6077 | loss(pos) 0.1787 | loss(seq) 0.0007 | grad 4.6158 | lr 0.0010 | time_forward 3.3300 | time_backward 4.3320
[2023-09-02 06:54:04,267::train::INFO] [train] Iter 07157 | loss 2.0002 | loss(rot) 1.7851 | loss(pos) 0.1748 | loss(seq) 0.0403 | grad 6.8282 | lr 0.0010 | time_forward 3.5460 | time_backward 4.8940
[2023-09-02 06:54:12,753::train::INFO] [train] Iter 07158 | loss 0.9950 | loss(rot) 0.4696 | loss(pos) 0.3279 | loss(seq) 0.1975 | grad 2.9082 | lr 0.0010 | time_forward 3.5950 | time_backward 4.8880
[2023-09-02 06:54:21,519::train::INFO] [train] Iter 07159 | loss 1.3145 | loss(rot) 0.2316 | loss(pos) 1.0464 | loss(seq) 0.0364 | grad 5.5330 | lr 0.0010 | time_forward 3.8050 | time_backward 4.9570
[2023-09-02 06:54:31,808::train::INFO] [train] Iter 07160 | loss 1.9640 | loss(rot) 1.0507 | loss(pos) 0.4130 | loss(seq) 0.5004 | grad 4.6114 | lr 0.0010 | time_forward 4.2850 | time_backward 6.0000
[2023-09-02 06:54:34,476::train::INFO] [train] Iter 07161 | loss 2.3511 | loss(rot) 0.1486 | loss(pos) 2.2011 | loss(seq) 0.0013 | grad 7.1744 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4060
[2023-09-02 06:54:42,868::train::INFO] [train] Iter 07162 | loss 2.3431 | loss(rot) 1.9934 | loss(pos) 0.1235 | loss(seq) 0.2261 | grad 4.2633 | lr 0.0010 | time_forward 3.5590 | time_backward 4.8300
[2023-09-02 06:54:53,912::train::INFO] [train] Iter 07163 | loss 2.2283 | loss(rot) 2.0879 | loss(pos) 0.1311 | loss(seq) 0.0094 | grad 4.8867 | lr 0.0010 | time_forward 4.0760 | time_backward 6.9650
[2023-09-02 06:54:56,635::train::INFO] [train] Iter 07164 | loss 1.6818 | loss(rot) 0.8791 | loss(pos) 0.3999 | loss(seq) 0.4028 | grad 3.5658 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4080
[2023-09-02 06:55:05,012::train::INFO] [train] Iter 07165 | loss 2.1696 | loss(rot) 1.8468 | loss(pos) 0.1289 | loss(seq) 0.1938 | grad 4.5464 | lr 0.0010 | time_forward 3.5590 | time_backward 4.8150
[2023-09-02 06:55:15,199::train::INFO] [train] Iter 07166 | loss 2.6061 | loss(rot) 2.4319 | loss(pos) 0.1539 | loss(seq) 0.0202 | grad 3.1623 | lr 0.0010 | time_forward 4.1780 | time_backward 6.0070
[2023-09-02 06:55:18,083::train::INFO] [train] Iter 07167 | loss 1.5223 | loss(rot) 0.7516 | loss(pos) 0.1361 | loss(seq) 0.6345 | grad 5.5089 | lr 0.0010 | time_forward 1.4100 | time_backward 1.4700
[2023-09-02 06:55:27,174::train::INFO] [train] Iter 07168 | loss 1.2125 | loss(rot) 0.3811 | loss(pos) 0.6313 | loss(seq) 0.2001 | grad 3.6561 | lr 0.0010 | time_forward 3.8730 | time_backward 5.2140
[2023-09-02 06:55:29,428::train::INFO] [train] Iter 07169 | loss 1.5482 | loss(rot) 1.1900 | loss(pos) 0.1376 | loss(seq) 0.2207 | grad 4.5245 | lr 0.0010 | time_forward 1.0550 | time_backward 1.1950
[2023-09-02 06:55:38,230::train::INFO] [train] Iter 07170 | loss 1.7884 | loss(rot) 0.8399 | loss(pos) 0.5663 | loss(seq) 0.3822 | grad 7.6969 | lr 0.0010 | time_forward 3.5960 | time_backward 5.1840
[2023-09-02 06:55:46,897::train::INFO] [train] Iter 07171 | loss 2.7430 | loss(rot) 2.5652 | loss(pos) 0.1120 | loss(seq) 0.0658 | grad 3.2163 | lr 0.0010 | time_forward 3.7750 | time_backward 4.8880
[2023-09-02 06:55:56,880::train::INFO] [train] Iter 07172 | loss 3.1348 | loss(rot) 2.9813 | loss(pos) 0.1147 | loss(seq) 0.0388 | grad 3.0975 | lr 0.0010 | time_forward 4.7630 | time_backward 5.2180
[2023-09-02 06:56:07,076::train::INFO] [train] Iter 07173 | loss 2.5964 | loss(rot) 2.4675 | loss(pos) 0.0958 | loss(seq) 0.0332 | grad 5.1913 | lr 0.0010 | time_forward 4.2480 | time_backward 5.9440
[2023-09-02 06:56:09,795::train::INFO] [train] Iter 07174 | loss 1.4033 | loss(rot) 1.0464 | loss(pos) 0.1165 | loss(seq) 0.2404 | grad 4.8654 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4130
[2023-09-02 06:56:17,999::train::INFO] [train] Iter 07175 | loss 1.1385 | loss(rot) 0.2041 | loss(pos) 0.9135 | loss(seq) 0.0210 | grad 6.1235 | lr 0.0010 | time_forward 3.3310 | time_backward 4.8360
[2023-09-02 06:56:26,824::train::INFO] [train] Iter 07176 | loss 1.7174 | loss(rot) 0.1541 | loss(pos) 1.5480 | loss(seq) 0.0152 | grad 6.6617 | lr 0.0010 | time_forward 3.7220 | time_backward 5.0990
[2023-09-02 06:56:29,633::train::INFO] [train] Iter 07177 | loss 1.3740 | loss(rot) 0.4737 | loss(pos) 0.8074 | loss(seq) 0.0930 | grad 3.9355 | lr 0.0010 | time_forward 1.3470 | time_backward 1.4590
[2023-09-02 06:56:32,162::train::INFO] [train] Iter 07178 | loss 2.2980 | loss(rot) 0.3777 | loss(pos) 1.9051 | loss(seq) 0.0152 | grad 7.5813 | lr 0.0010 | time_forward 1.2170 | time_backward 1.3080
[2023-09-02 06:56:42,440::train::INFO] [train] Iter 07179 | loss 2.6808 | loss(rot) 2.1642 | loss(pos) 0.1088 | loss(seq) 0.4079 | grad 3.7007 | lr 0.0010 | time_forward 4.0380 | time_backward 6.2100
[2023-09-02 06:56:45,191::train::INFO] [train] Iter 07180 | loss 2.9608 | loss(rot) 2.6778 | loss(pos) 0.1905 | loss(seq) 0.0926 | grad 4.7035 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4650
[2023-09-02 06:56:53,468::train::INFO] [train] Iter 07181 | loss 2.6339 | loss(rot) 2.5105 | loss(pos) 0.0956 | loss(seq) 0.0278 | grad 3.2561 | lr 0.0010 | time_forward 3.4730 | time_backward 4.8010
[2023-09-02 06:56:56,985::train::INFO] [train] Iter 07182 | loss 2.9013 | loss(rot) 2.6378 | loss(pos) 0.2569 | loss(seq) 0.0067 | grad 5.0776 | lr 0.0010 | time_forward 2.0610 | time_backward 1.4530
[2023-09-02 06:57:07,273::train::INFO] [train] Iter 07183 | loss 2.5768 | loss(rot) 2.4023 | loss(pos) 0.1696 | loss(seq) 0.0050 | grad 3.6784 | lr 0.0010 | time_forward 4.2750 | time_backward 6.0090
[2023-09-02 06:57:17,076::train::INFO] [train] Iter 07184 | loss 1.3260 | loss(rot) 0.6107 | loss(pos) 0.6119 | loss(seq) 0.1034 | grad 4.9385 | lr 0.0010 | time_forward 4.0510 | time_backward 5.7480
[2023-09-02 06:57:19,498::train::INFO] [train] Iter 07185 | loss 1.9412 | loss(rot) 1.8040 | loss(pos) 0.0940 | loss(seq) 0.0432 | grad 4.5589 | lr 0.0010 | time_forward 1.1650 | time_backward 1.2530
[2023-09-02 06:57:28,527::train::INFO] [train] Iter 07186 | loss 1.3321 | loss(rot) 0.6972 | loss(pos) 0.3682 | loss(seq) 0.2667 | grad 5.1817 | lr 0.0010 | time_forward 3.7780 | time_backward 5.2480
[2023-09-02 06:57:37,895::train::INFO] [train] Iter 07187 | loss 1.2610 | loss(rot) 0.6755 | loss(pos) 0.3035 | loss(seq) 0.2820 | grad 3.4525 | lr 0.0010 | time_forward 4.0390 | time_backward 5.3250