text
stringlengths 56
1.16k
|
---|
[2023-09-02 05:09:37,969::train::INFO] [train] Iter 06289 | loss 0.5163 | loss(rot) 0.0495 | loss(pos) 0.4454 | loss(seq) 0.0214 | grad 3.4493 | lr 0.0010 | time_forward 3.0390 | time_backward 4.0580 |
[2023-09-02 05:09:48,331::train::INFO] [train] Iter 06290 | loss 2.5007 | loss(rot) 1.7255 | loss(pos) 0.2759 | loss(seq) 0.4993 | grad 2.7460 | lr 0.0010 | time_forward 4.3580 | time_backward 6.0010 |
[2023-09-02 05:09:50,554::train::INFO] [train] Iter 06291 | loss 1.5121 | loss(rot) 0.5881 | loss(pos) 0.5226 | loss(seq) 0.4014 | grad 4.2110 | lr 0.0010 | time_forward 1.0370 | time_backward 1.1830 |
[2023-09-02 05:10:00,826::train::INFO] [train] Iter 06292 | loss 3.3029 | loss(rot) 0.0110 | loss(pos) 3.2919 | loss(seq) 0.0000 | grad 6.4676 | lr 0.0010 | time_forward 4.2040 | time_backward 6.0640 |
[2023-09-02 05:10:11,162::train::INFO] [train] Iter 06293 | loss 2.8278 | loss(rot) 1.9905 | loss(pos) 0.3609 | loss(seq) 0.4764 | grad 5.3648 | lr 0.0010 | time_forward 4.1910 | time_backward 6.1410 |
[2023-09-02 05:10:21,014::train::INFO] [train] Iter 06294 | loss 1.8212 | loss(rot) 0.8279 | loss(pos) 0.3029 | loss(seq) 0.6903 | grad 3.0601 | lr 0.0010 | time_forward 4.0750 | time_backward 5.7730 |
[2023-09-02 05:10:29,091::train::INFO] [train] Iter 06295 | loss 1.7944 | loss(rot) 1.4634 | loss(pos) 0.0895 | loss(seq) 0.2415 | grad 3.3593 | lr 0.0010 | time_forward 3.4560 | time_backward 4.6160 |
[2023-09-02 05:10:34,821::train::INFO] [train] Iter 06296 | loss 1.4232 | loss(rot) 0.4983 | loss(pos) 0.8567 | loss(seq) 0.0682 | grad 7.3299 | lr 0.0010 | time_forward 2.4370 | time_backward 3.2890 |
[2023-09-02 05:10:37,484::train::INFO] [train] Iter 06297 | loss 1.4959 | loss(rot) 0.7674 | loss(pos) 0.3521 | loss(seq) 0.3765 | grad 3.1638 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4190 |
[2023-09-02 05:10:39,730::train::INFO] [train] Iter 06298 | loss 2.7660 | loss(rot) 2.3561 | loss(pos) 0.1113 | loss(seq) 0.2986 | grad 2.9420 | lr 0.0010 | time_forward 1.0620 | time_backward 1.1810 |
[2023-09-02 05:10:48,645::train::INFO] [train] Iter 06299 | loss 2.5992 | loss(rot) 1.5061 | loss(pos) 0.6139 | loss(seq) 0.4791 | grad 3.9923 | lr 0.0010 | time_forward 3.7900 | time_backward 5.1210 |
[2023-09-02 05:10:51,906::train::INFO] [train] Iter 06300 | loss 2.8628 | loss(rot) 0.0298 | loss(pos) 2.8324 | loss(seq) 0.0007 | grad 4.2702 | lr 0.0010 | time_forward 1.4120 | time_backward 1.8460 |
[2023-09-02 05:11:00,632::train::INFO] [train] Iter 06301 | loss 2.1388 | loss(rot) 1.5714 | loss(pos) 0.1752 | loss(seq) 0.3922 | grad 5.5164 | lr 0.0010 | time_forward 3.7560 | time_backward 4.9670 |
[2023-09-02 05:11:10,550::train::INFO] [train] Iter 06302 | loss 2.3596 | loss(rot) 1.7955 | loss(pos) 0.1720 | loss(seq) 0.3921 | grad 3.7441 | lr 0.0010 | time_forward 4.0930 | time_backward 5.8220 |
[2023-09-02 05:11:13,210::train::INFO] [train] Iter 06303 | loss 0.8903 | loss(rot) 0.1221 | loss(pos) 0.7178 | loss(seq) 0.0504 | grad 5.3696 | lr 0.0010 | time_forward 1.2540 | time_backward 1.3850 |
[2023-09-02 05:11:21,309::train::INFO] [train] Iter 06304 | loss 2.6124 | loss(rot) 2.2316 | loss(pos) 0.1103 | loss(seq) 0.2705 | grad 3.1323 | lr 0.0010 | time_forward 3.3880 | time_backward 4.7070 |
[2023-09-02 05:11:31,300::train::INFO] [train] Iter 06305 | loss 2.7542 | loss(rot) 2.4075 | loss(pos) 0.2035 | loss(seq) 0.1433 | grad 4.8237 | lr 0.0010 | time_forward 4.0060 | time_backward 5.9830 |
[2023-09-02 05:11:37,734::train::INFO] [train] Iter 06306 | loss 1.8418 | loss(rot) 1.2953 | loss(pos) 0.1896 | loss(seq) 0.3569 | grad 9.5370 | lr 0.0010 | time_forward 2.7020 | time_backward 3.7280 |
[2023-09-02 05:11:47,756::train::INFO] [train] Iter 06307 | loss 0.7209 | loss(rot) 0.1166 | loss(pos) 0.5916 | loss(seq) 0.0128 | grad 3.2092 | lr 0.0010 | time_forward 4.1950 | time_backward 5.8240 |
[2023-09-02 05:11:55,659::train::INFO] [train] Iter 06308 | loss 2.7884 | loss(rot) 2.0602 | loss(pos) 0.2767 | loss(seq) 0.4515 | grad 5.1452 | lr 0.0010 | time_forward 3.2720 | time_backward 4.6270 |
[2023-09-02 05:12:05,148::train::INFO] [train] Iter 06309 | loss 2.7914 | loss(rot) 2.6064 | loss(pos) 0.1829 | loss(seq) 0.0021 | grad 2.8342 | lr 0.0010 | time_forward 3.9160 | time_backward 5.5700 |
[2023-09-02 05:12:15,053::train::INFO] [train] Iter 06310 | loss 2.0751 | loss(rot) 1.8687 | loss(pos) 0.1028 | loss(seq) 0.1035 | grad 3.5635 | lr 0.0010 | time_forward 4.0530 | time_backward 5.8310 |
[2023-09-02 05:12:24,528::train::INFO] [train] Iter 06311 | loss 2.6604 | loss(rot) 2.4705 | loss(pos) 0.1853 | loss(seq) 0.0046 | grad 4.6062 | lr 0.0010 | time_forward 4.7190 | time_backward 4.7530 |
[2023-09-02 05:12:32,834::train::INFO] [train] Iter 06312 | loss 1.7182 | loss(rot) 0.0657 | loss(pos) 1.3520 | loss(seq) 0.3004 | grad 5.0766 | lr 0.0010 | time_forward 3.5220 | time_backward 4.7800 |
[2023-09-02 05:12:40,191::train::INFO] [train] Iter 06313 | loss 1.7375 | loss(rot) 1.5509 | loss(pos) 0.1709 | loss(seq) 0.0157 | grad 3.5600 | lr 0.0010 | time_forward 3.0650 | time_backward 4.2890 |
[2023-09-02 05:12:49,376::train::INFO] [train] Iter 06314 | loss 1.4224 | loss(rot) 0.3183 | loss(pos) 1.0644 | loss(seq) 0.0397 | grad 6.0079 | lr 0.0010 | time_forward 3.8930 | time_backward 5.2880 |
[2023-09-02 05:12:51,988::train::INFO] [train] Iter 06315 | loss 2.1380 | loss(rot) 1.9415 | loss(pos) 0.1963 | loss(seq) 0.0001 | grad 4.4713 | lr 0.0010 | time_forward 1.2460 | time_backward 1.3630 |
[2023-09-02 05:12:54,662::train::INFO] [train] Iter 06316 | loss 3.2177 | loss(rot) 0.0138 | loss(pos) 3.2033 | loss(seq) 0.0006 | grad 7.6449 | lr 0.0010 | time_forward 1.2810 | time_backward 1.3910 |
[2023-09-02 05:12:57,465::train::INFO] [train] Iter 06317 | loss 1.7185 | loss(rot) 0.7436 | loss(pos) 0.4010 | loss(seq) 0.5739 | grad 3.9052 | lr 0.0010 | time_forward 1.3230 | time_backward 1.4420 |
[2023-09-02 05:13:05,390::train::INFO] [train] Iter 06318 | loss 1.2340 | loss(rot) 0.3015 | loss(pos) 0.8721 | loss(seq) 0.0603 | grad 4.1311 | lr 0.0010 | time_forward 3.3390 | time_backward 4.5810 |
[2023-09-02 05:13:14,983::train::INFO] [train] Iter 06319 | loss 1.3297 | loss(rot) 0.1339 | loss(pos) 0.9961 | loss(seq) 0.1997 | grad 3.9226 | lr 0.0010 | time_forward 3.9750 | time_backward 5.6150 |
[2023-09-02 05:13:23,389::train::INFO] [train] Iter 06320 | loss 1.5307 | loss(rot) 1.4096 | loss(pos) 0.1047 | loss(seq) 0.0163 | grad 4.3570 | lr 0.0010 | time_forward 3.6360 | time_backward 4.7660 |
[2023-09-02 05:13:32,042::train::INFO] [train] Iter 06321 | loss 1.5033 | loss(rot) 0.0109 | loss(pos) 1.4900 | loss(seq) 0.0025 | grad 6.2852 | lr 0.0010 | time_forward 3.7090 | time_backward 4.9400 |
[2023-09-02 05:13:40,182::train::INFO] [train] Iter 06322 | loss 1.3965 | loss(rot) 0.0461 | loss(pos) 1.3427 | loss(seq) 0.0077 | grad 8.7754 | lr 0.0010 | time_forward 3.2940 | time_backward 4.8420 |
[2023-09-02 05:13:48,817::train::INFO] [train] Iter 06323 | loss 1.5177 | loss(rot) 0.8168 | loss(pos) 0.3389 | loss(seq) 0.3620 | grad 4.6138 | lr 0.0010 | time_forward 3.8000 | time_backward 4.8310 |
[2023-09-02 05:13:57,567::train::INFO] [train] Iter 06324 | loss 2.9337 | loss(rot) 1.9759 | loss(pos) 0.4049 | loss(seq) 0.5529 | grad 6.2497 | lr 0.0010 | time_forward 3.8270 | time_backward 4.9190 |
[2023-09-02 05:14:01,016::train::INFO] [train] Iter 06325 | loss 1.6824 | loss(rot) 0.0320 | loss(pos) 1.6422 | loss(seq) 0.0083 | grad 11.1432 | lr 0.0010 | time_forward 1.5020 | time_backward 1.9440 |
[2023-09-02 05:14:09,524::train::INFO] [train] Iter 06326 | loss 0.6869 | loss(rot) 0.1345 | loss(pos) 0.2875 | loss(seq) 0.2648 | grad 4.1669 | lr 0.0010 | time_forward 3.5810 | time_backward 4.9230 |
[2023-09-02 05:14:18,987::train::INFO] [train] Iter 06327 | loss 1.3629 | loss(rot) 0.5000 | loss(pos) 0.3764 | loss(seq) 0.4866 | grad 3.1266 | lr 0.0010 | time_forward 4.0020 | time_backward 5.4570 |
[2023-09-02 05:14:29,026::train::INFO] [train] Iter 06328 | loss 1.8920 | loss(rot) 1.5693 | loss(pos) 0.3226 | loss(seq) 0.0000 | grad 4.7348 | lr 0.0010 | time_forward 4.2210 | time_backward 5.8140 |
[2023-09-02 05:14:39,079::train::INFO] [train] Iter 06329 | loss 0.9188 | loss(rot) 0.1427 | loss(pos) 0.7382 | loss(seq) 0.0379 | grad 4.0399 | lr 0.0010 | time_forward 4.2370 | time_backward 5.8120 |
[2023-09-02 05:14:41,714::train::INFO] [train] Iter 06330 | loss 0.7019 | loss(rot) 0.1789 | loss(pos) 0.4784 | loss(seq) 0.0445 | grad 3.9133 | lr 0.0010 | time_forward 1.2190 | time_backward 1.4130 |
[2023-09-02 05:14:48,414::train::INFO] [train] Iter 06331 | loss 2.2453 | loss(rot) 0.8897 | loss(pos) 0.8063 | loss(seq) 0.5493 | grad 4.7743 | lr 0.0010 | time_forward 2.8220 | time_backward 3.8610 |
[2023-09-02 05:14:58,644::train::INFO] [train] Iter 06332 | loss 2.9554 | loss(rot) 2.4866 | loss(pos) 0.2223 | loss(seq) 0.2464 | grad 4.2145 | lr 0.0010 | time_forward 4.1690 | time_backward 6.0570 |
[2023-09-02 05:15:07,417::train::INFO] [train] Iter 06333 | loss 1.3269 | loss(rot) 0.8352 | loss(pos) 0.1106 | loss(seq) 0.3811 | grad 4.8738 | lr 0.0010 | time_forward 3.8440 | time_backward 4.9250 |
[2023-09-02 05:15:17,601::train::INFO] [train] Iter 06334 | loss 0.8058 | loss(rot) 0.2320 | loss(pos) 0.4705 | loss(seq) 0.1033 | grad 3.9183 | lr 0.0010 | time_forward 4.2860 | time_backward 5.8920 |
[2023-09-02 05:15:20,225::train::INFO] [train] Iter 06335 | loss 2.4736 | loss(rot) 1.0959 | loss(pos) 0.8489 | loss(seq) 0.5288 | grad 6.1563 | lr 0.0010 | time_forward 1.2340 | time_backward 1.3860 |
[2023-09-02 05:15:22,899::train::INFO] [train] Iter 06336 | loss 2.6205 | loss(rot) 2.3749 | loss(pos) 0.1387 | loss(seq) 0.1068 | grad 3.9916 | lr 0.0010 | time_forward 1.2870 | time_backward 1.3850 |
[2023-09-02 05:15:25,582::train::INFO] [train] Iter 06337 | loss 2.8372 | loss(rot) 2.3416 | loss(pos) 0.1404 | loss(seq) 0.3552 | grad 3.9833 | lr 0.0010 | time_forward 1.2920 | time_backward 1.3870 |
[2023-09-02 05:15:28,270::train::INFO] [train] Iter 06338 | loss 1.7921 | loss(rot) 0.2328 | loss(pos) 1.5426 | loss(seq) 0.0168 | grad 7.8202 | lr 0.0010 | time_forward 1.2940 | time_backward 1.3900 |
[2023-09-02 05:15:31,018::train::INFO] [train] Iter 06339 | loss 2.9618 | loss(rot) 2.7667 | loss(pos) 0.1951 | loss(seq) 0.0000 | grad 3.9775 | lr 0.0010 | time_forward 1.3220 | time_backward 1.4240 |
[2023-09-02 05:15:38,583::train::INFO] [train] Iter 06340 | loss 2.1149 | loss(rot) 1.2119 | loss(pos) 0.1985 | loss(seq) 0.7045 | grad 3.4850 | lr 0.0010 | time_forward 3.2550 | time_backward 4.3060 |
[2023-09-02 05:15:48,406::train::INFO] [train] Iter 06341 | loss 1.5310 | loss(rot) 1.3648 | loss(pos) 0.1594 | loss(seq) 0.0069 | grad 4.2620 | lr 0.0010 | time_forward 4.7860 | time_backward 5.0350 |
[2023-09-02 05:15:50,696::train::INFO] [train] Iter 06342 | loss 2.4742 | loss(rot) 2.1118 | loss(pos) 0.1318 | loss(seq) 0.2305 | grad 2.4112 | lr 0.0010 | time_forward 1.0850 | time_backward 1.2010 |
[2023-09-02 05:15:59,409::train::INFO] [train] Iter 06343 | loss 2.0653 | loss(rot) 1.8825 | loss(pos) 0.1739 | loss(seq) 0.0089 | grad 7.9768 | lr 0.0010 | time_forward 3.6990 | time_backward 5.0100 |
[2023-09-02 05:16:02,099::train::INFO] [train] Iter 06344 | loss 3.0047 | loss(rot) 2.6961 | loss(pos) 0.1617 | loss(seq) 0.1469 | grad 5.0901 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4060 |
[2023-09-02 05:16:09,260::train::INFO] [train] Iter 06345 | loss 2.1578 | loss(rot) 2.0008 | loss(pos) 0.1475 | loss(seq) 0.0095 | grad 3.0130 | lr 0.0010 | time_forward 3.0300 | time_backward 4.1270 |
[2023-09-02 05:16:19,368::train::INFO] [train] Iter 06346 | loss 2.7131 | loss(rot) 2.5222 | loss(pos) 0.1906 | loss(seq) 0.0003 | grad 3.9823 | lr 0.0010 | time_forward 4.2230 | time_backward 5.8820 |
[2023-09-02 05:16:28,671::train::INFO] [train] Iter 06347 | loss 1.3710 | loss(rot) 0.7798 | loss(pos) 0.1873 | loss(seq) 0.4040 | grad 3.6031 | lr 0.0010 | time_forward 3.9170 | time_backward 5.3820 |
[2023-09-02 05:16:38,694::train::INFO] [train] Iter 06348 | loss 1.4957 | loss(rot) 0.0398 | loss(pos) 1.4478 | loss(seq) 0.0082 | grad 5.6185 | lr 0.0010 | time_forward 4.1330 | time_backward 5.8880 |
[2023-09-02 05:16:48,918::train::INFO] [train] Iter 06349 | loss 2.6422 | loss(rot) 1.7295 | loss(pos) 0.2665 | loss(seq) 0.6462 | grad 2.5316 | lr 0.0010 | time_forward 4.0970 | time_backward 6.1240 |
[2023-09-02 05:16:57,380::train::INFO] [train] Iter 06350 | loss 1.1045 | loss(rot) 1.0207 | loss(pos) 0.0817 | loss(seq) 0.0020 | grad 3.5322 | lr 0.0010 | time_forward 3.5470 | time_backward 4.9120 |
[2023-09-02 05:17:00,032::train::INFO] [train] Iter 06351 | loss 1.6727 | loss(rot) 1.0068 | loss(pos) 0.2749 | loss(seq) 0.3910 | grad 3.2407 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4080 |
[2023-09-02 05:17:03,333::train::INFO] [train] Iter 06352 | loss 1.3919 | loss(rot) 0.5233 | loss(pos) 0.4012 | loss(seq) 0.4674 | grad 3.6665 | lr 0.0010 | time_forward 1.3940 | time_backward 1.8770 |
[2023-09-02 05:17:12,206::train::INFO] [train] Iter 06353 | loss 0.8821 | loss(rot) 0.2465 | loss(pos) 0.5107 | loss(seq) 0.1248 | grad 4.0922 | lr 0.0010 | time_forward 3.8520 | time_backward 5.0180 |
[2023-09-02 05:17:20,709::train::INFO] [train] Iter 06354 | loss 1.7744 | loss(rot) 1.3054 | loss(pos) 0.1351 | loss(seq) 0.3339 | grad 3.7664 | lr 0.0010 | time_forward 3.7030 | time_backward 4.7960 |
[2023-09-02 05:17:29,118::train::INFO] [train] Iter 06355 | loss 2.2585 | loss(rot) 1.3487 | loss(pos) 0.3811 | loss(seq) 0.5286 | grad 3.4875 | lr 0.0010 | time_forward 3.7890 | time_backward 4.6160 |
[2023-09-02 05:17:31,752::train::INFO] [train] Iter 06356 | loss 2.1669 | loss(rot) 2.0142 | loss(pos) 0.1107 | loss(seq) 0.0420 | grad 3.5204 | lr 0.0010 | time_forward 1.2350 | time_backward 1.3950 |
[2023-09-02 05:17:39,354::train::INFO] [train] Iter 06357 | loss 2.5537 | loss(rot) 1.7998 | loss(pos) 0.4401 | loss(seq) 0.3138 | grad 7.6159 | lr 0.0010 | time_forward 3.2400 | time_backward 4.3590 |
[2023-09-02 05:17:48,314::train::INFO] [train] Iter 06358 | loss 0.8805 | loss(rot) 0.0786 | loss(pos) 0.6559 | loss(seq) 0.1460 | grad 2.7782 | lr 0.0010 | time_forward 3.8750 | time_backward 5.0810 |
[2023-09-02 05:17:58,606::train::INFO] [train] Iter 06359 | loss 1.8061 | loss(rot) 1.0250 | loss(pos) 0.2974 | loss(seq) 0.4837 | grad 3.8554 | lr 0.0010 | time_forward 4.2130 | time_backward 6.0750 |
[2023-09-02 05:18:08,717::train::INFO] [train] Iter 06360 | loss 2.7128 | loss(rot) 0.0541 | loss(pos) 2.6580 | loss(seq) 0.0007 | grad 4.6512 | lr 0.0010 | time_forward 4.2370 | time_backward 5.8710 |
[2023-09-02 05:18:11,459::train::INFO] [train] Iter 06361 | loss 2.9582 | loss(rot) 2.7293 | loss(pos) 0.2276 | loss(seq) 0.0012 | grad 5.1212 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4430 |
[2023-09-02 05:18:14,199::train::INFO] [train] Iter 06362 | loss 2.5006 | loss(rot) 1.9189 | loss(pos) 0.3216 | loss(seq) 0.2601 | grad 4.2720 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4480 |
[2023-09-02 05:18:24,032::train::INFO] [train] Iter 06363 | loss 1.8560 | loss(rot) 0.1929 | loss(pos) 1.6526 | loss(seq) 0.0105 | grad 5.6148 | lr 0.0010 | time_forward 4.1130 | time_backward 5.7170 |
[2023-09-02 05:18:33,806::train::INFO] [train] Iter 06364 | loss 3.1816 | loss(rot) 2.9917 | loss(pos) 0.1899 | loss(seq) 0.0000 | grad 2.4521 | lr 0.0010 | time_forward 3.9870 | time_backward 5.7830 |
[2023-09-02 05:18:43,035::train::INFO] [train] Iter 06365 | loss 0.8549 | loss(rot) 0.4257 | loss(pos) 0.2048 | loss(seq) 0.2245 | grad 2.9013 | lr 0.0010 | time_forward 3.9370 | time_backward 5.2880 |
[2023-09-02 05:18:52,698::train::INFO] [train] Iter 06366 | loss 2.2817 | loss(rot) 1.6382 | loss(pos) 0.2477 | loss(seq) 0.3957 | grad 4.0774 | lr 0.0010 | time_forward 3.9780 | time_backward 5.6820 |
[2023-09-02 05:18:55,326::train::INFO] [train] Iter 06367 | loss 2.5097 | loss(rot) 2.0784 | loss(pos) 0.1713 | loss(seq) 0.2599 | grad 3.2537 | lr 0.0010 | time_forward 1.2140 | time_backward 1.4100 |
[2023-09-02 05:18:57,997::train::INFO] [train] Iter 06368 | loss 1.3097 | loss(rot) 0.3498 | loss(pos) 0.4304 | loss(seq) 0.5294 | grad 3.2204 | lr 0.0010 | time_forward 1.2820 | time_backward 1.3850 |
[2023-09-02 05:19:01,351::train::INFO] [train] Iter 06369 | loss 2.4770 | loss(rot) 2.1460 | loss(pos) 0.1686 | loss(seq) 0.1624 | grad 4.4155 | lr 0.0010 | time_forward 1.4180 | time_backward 1.8900 |
[2023-09-02 05:19:04,107::train::INFO] [train] Iter 06370 | loss 2.1070 | loss(rot) 1.1474 | loss(pos) 0.3842 | loss(seq) 0.5754 | grad 4.7170 | lr 0.0010 | time_forward 1.3420 | time_backward 1.4110 |
[2023-09-02 05:19:06,840::train::INFO] [train] Iter 06371 | loss 2.5431 | loss(rot) 2.3504 | loss(pos) 0.1927 | loss(seq) 0.0000 | grad 3.5339 | lr 0.0010 | time_forward 1.3300 | time_backward 1.4000 |
[2023-09-02 05:19:16,993::train::INFO] [train] Iter 06372 | loss 1.7375 | loss(rot) 0.8754 | loss(pos) 0.3709 | loss(seq) 0.4912 | grad 3.4934 | lr 0.0010 | time_forward 4.2820 | time_backward 5.8660 |
[2023-09-02 05:19:25,677::train::INFO] [train] Iter 06373 | loss 2.0398 | loss(rot) 1.9016 | loss(pos) 0.1285 | loss(seq) 0.0097 | grad 5.5254 | lr 0.0010 | time_forward 3.6680 | time_backward 5.0120 |
[2023-09-02 05:19:27,560::train::INFO] [train] Iter 06374 | loss 2.6373 | loss(rot) 2.3150 | loss(pos) 0.2847 | loss(seq) 0.0375 | grad 4.5688 | lr 0.0010 | time_forward 0.8540 | time_backward 1.0250 |
[2023-09-02 05:19:30,256::train::INFO] [train] Iter 06375 | loss 2.5207 | loss(rot) 1.6228 | loss(pos) 0.5490 | loss(seq) 0.3488 | grad 5.1937 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4260 |
[2023-09-02 05:19:32,915::train::INFO] [train] Iter 06376 | loss 2.6389 | loss(rot) 2.3629 | loss(pos) 0.2640 | loss(seq) 0.0120 | grad 4.3886 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4000 |
[2023-09-02 05:19:41,446::train::INFO] [train] Iter 06377 | loss 1.3692 | loss(rot) 0.8081 | loss(pos) 0.2213 | loss(seq) 0.3399 | grad 4.2869 | lr 0.0010 | time_forward 3.5960 | time_backward 4.9310 |
[2023-09-02 05:19:51,712::train::INFO] [train] Iter 06378 | loss 2.0765 | loss(rot) 1.7949 | loss(pos) 0.1912 | loss(seq) 0.0904 | grad 3.2481 | lr 0.0010 | time_forward 4.3070 | time_backward 5.9560 |
[2023-09-02 05:19:54,399::train::INFO] [train] Iter 06379 | loss 2.5690 | loss(rot) 2.1631 | loss(pos) 0.1812 | loss(seq) 0.2247 | grad 4.1108 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4130 |
[2023-09-02 05:20:03,200::train::INFO] [train] Iter 06380 | loss 2.0891 | loss(rot) 1.9310 | loss(pos) 0.0625 | loss(seq) 0.0955 | grad 5.5698 | lr 0.0010 | time_forward 3.7070 | time_backward 5.0910 |
[2023-09-02 05:20:11,225::train::INFO] [train] Iter 06381 | loss 2.3138 | loss(rot) 2.1381 | loss(pos) 0.1071 | loss(seq) 0.0686 | grad 5.2086 | lr 0.0010 | time_forward 3.3550 | time_backward 4.6660 |
[2023-09-02 05:20:21,109::train::INFO] [train] Iter 06382 | loss 2.3216 | loss(rot) 1.6016 | loss(pos) 0.4538 | loss(seq) 0.2663 | grad 4.9615 | lr 0.0010 | time_forward 4.0350 | time_backward 5.8450 |
[2023-09-02 05:20:29,920::train::INFO] [train] Iter 06383 | loss 1.9666 | loss(rot) 1.6878 | loss(pos) 0.1693 | loss(seq) 0.1096 | grad 4.3451 | lr 0.0010 | time_forward 3.7420 | time_backward 5.0650 |
[2023-09-02 05:20:38,725::train::INFO] [train] Iter 06384 | loss 1.3621 | loss(rot) 0.0820 | loss(pos) 1.2512 | loss(seq) 0.0288 | grad 7.4864 | lr 0.0010 | time_forward 3.7970 | time_backward 5.0050 |
[2023-09-02 05:20:41,414::train::INFO] [train] Iter 06385 | loss 1.6754 | loss(rot) 1.4282 | loss(pos) 0.0883 | loss(seq) 0.1589 | grad 3.8384 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4500 |
[2023-09-02 05:20:50,676::train::INFO] [train] Iter 06386 | loss 2.0433 | loss(rot) 1.1203 | loss(pos) 0.4623 | loss(seq) 0.4607 | grad 3.4009 | lr 0.0010 | time_forward 3.9590 | time_backward 5.2820 |
[2023-09-02 05:21:00,680::train::INFO] [train] Iter 06387 | loss 1.6985 | loss(rot) 0.1640 | loss(pos) 1.5327 | loss(seq) 0.0018 | grad 5.8383 | lr 0.0010 | time_forward 4.1090 | time_backward 5.8910 |
[2023-09-02 05:21:08,985::train::INFO] [train] Iter 06388 | loss 2.1159 | loss(rot) 0.0200 | loss(pos) 2.0934 | loss(seq) 0.0025 | grad 10.7440 | lr 0.0010 | time_forward 3.4930 | time_backward 4.8090 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.