text
stringlengths 56
1.16k
|
---|
[2023-09-02 04:45:30,278::train::INFO] [train] Iter 06089 | loss 1.6002 | loss(rot) 0.8858 | loss(pos) 0.2117 | loss(seq) 0.5027 | grad 3.7055 | lr 0.0010 | time_forward 1.3280 | time_backward 1.4040 |
[2023-09-02 04:45:32,976::train::INFO] [train] Iter 06090 | loss 1.5878 | loss(rot) 0.4971 | loss(pos) 1.0101 | loss(seq) 0.0806 | grad 7.3232 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4220 |
[2023-09-02 04:45:39,390::train::INFO] [train] Iter 06091 | loss 1.9898 | loss(rot) 1.2188 | loss(pos) 0.1525 | loss(seq) 0.6185 | grad 3.0391 | lr 0.0010 | time_forward 2.6720 | time_backward 3.7390 |
[2023-09-02 04:45:42,212::train::INFO] [train] Iter 06092 | loss 1.6130 | loss(rot) 1.1025 | loss(pos) 0.1210 | loss(seq) 0.3895 | grad 3.7255 | lr 0.0010 | time_forward 1.3410 | time_backward 1.4770 |
[2023-09-02 04:45:50,093::train::INFO] [train] Iter 06093 | loss 2.5561 | loss(rot) 2.4311 | loss(pos) 0.1247 | loss(seq) 0.0003 | grad 2.8670 | lr 0.0010 | time_forward 3.5340 | time_backward 4.3430 |
[2023-09-02 04:45:56,000::train::INFO] [train] Iter 06094 | loss 1.9926 | loss(rot) 1.2570 | loss(pos) 0.2872 | loss(seq) 0.4484 | grad 3.3803 | lr 0.0010 | time_forward 2.5310 | time_backward 3.3720 |
[2023-09-02 04:46:05,369::train::INFO] [train] Iter 06095 | loss 3.3386 | loss(rot) 1.0791 | loss(pos) 1.9915 | loss(seq) 0.2680 | grad 6.9310 | lr 0.0010 | time_forward 4.0170 | time_backward 5.3500 |
[2023-09-02 04:46:15,135::train::INFO] [train] Iter 06096 | loss 2.2132 | loss(rot) 0.2227 | loss(pos) 1.7566 | loss(seq) 0.2339 | grad 3.8926 | lr 0.0010 | time_forward 4.1200 | time_backward 5.6430 |
[2023-09-02 04:46:25,029::train::INFO] [train] Iter 06097 | loss 2.1149 | loss(rot) 1.3627 | loss(pos) 0.4346 | loss(seq) 0.3176 | grad 5.1964 | lr 0.0010 | time_forward 4.0740 | time_backward 5.8170 |
[2023-09-02 04:46:33,611::train::INFO] [train] Iter 06098 | loss 0.9955 | loss(rot) 0.2188 | loss(pos) 0.6879 | loss(seq) 0.0887 | grad 3.5846 | lr 0.0010 | time_forward 3.6180 | time_backward 4.9600 |
[2023-09-02 04:46:42,361::train::INFO] [train] Iter 06099 | loss 2.0692 | loss(rot) 1.4744 | loss(pos) 0.2217 | loss(seq) 0.3731 | grad 3.9476 | lr 0.0010 | time_forward 3.6170 | time_backward 5.1290 |
[2023-09-02 04:46:49,620::train::INFO] [train] Iter 06100 | loss 2.1528 | loss(rot) 1.9383 | loss(pos) 0.0845 | loss(seq) 0.1300 | grad 4.2397 | lr 0.0010 | time_forward 3.0290 | time_backward 4.2270 |
[2023-09-02 04:46:58,571::train::INFO] [train] Iter 06101 | loss 1.5682 | loss(rot) 0.5811 | loss(pos) 0.2694 | loss(seq) 0.7177 | grad 3.3799 | lr 0.0010 | time_forward 3.7430 | time_backward 5.2040 |
[2023-09-02 04:47:06,764::train::INFO] [train] Iter 06102 | loss 1.5371 | loss(rot) 1.3617 | loss(pos) 0.1754 | loss(seq) 0.0000 | grad 5.5404 | lr 0.0010 | time_forward 3.3840 | time_backward 4.8060 |
[2023-09-02 04:47:09,626::train::INFO] [train] Iter 06103 | loss 2.3009 | loss(rot) 1.9843 | loss(pos) 0.3081 | loss(seq) 0.0084 | grad 4.8653 | lr 0.0010 | time_forward 1.3770 | time_backward 1.4810 |
[2023-09-02 04:47:12,457::train::INFO] [train] Iter 06104 | loss 0.8160 | loss(rot) 0.3050 | loss(pos) 0.2687 | loss(seq) 0.2423 | grad 4.3428 | lr 0.0010 | time_forward 1.3200 | time_backward 1.5070 |
[2023-09-02 04:47:15,315::train::INFO] [train] Iter 06105 | loss 2.2449 | loss(rot) 1.5236 | loss(pos) 0.1545 | loss(seq) 0.5669 | grad 2.8182 | lr 0.0010 | time_forward 1.3510 | time_backward 1.5020 |
[2023-09-02 04:47:25,453::train::INFO] [train] Iter 06106 | loss 2.0800 | loss(rot) 1.9401 | loss(pos) 0.1221 | loss(seq) 0.0178 | grad 3.9232 | lr 0.0010 | time_forward 4.2180 | time_backward 5.9160 |
[2023-09-02 04:47:34,152::train::INFO] [train] Iter 06107 | loss 2.9839 | loss(rot) 2.4132 | loss(pos) 0.2992 | loss(seq) 0.2715 | grad 3.3700 | lr 0.0010 | time_forward 3.6810 | time_backward 5.0150 |
[2023-09-02 04:47:42,598::train::INFO] [train] Iter 06108 | loss 3.0659 | loss(rot) 3.0032 | loss(pos) 0.0543 | loss(seq) 0.0084 | grad 4.9195 | lr 0.0010 | time_forward 3.5920 | time_backward 4.8500 |
[2023-09-02 04:47:51,827::train::INFO] [train] Iter 06109 | loss 1.8083 | loss(rot) 1.6813 | loss(pos) 0.0742 | loss(seq) 0.0527 | grad 3.9698 | lr 0.0010 | time_forward 3.8650 | time_backward 5.3610 |
[2023-09-02 04:48:01,640::train::INFO] [train] Iter 06110 | loss 2.4192 | loss(rot) 2.0877 | loss(pos) 0.1865 | loss(seq) 0.1451 | grad 4.2142 | lr 0.0010 | time_forward 3.9980 | time_backward 5.8120 |
[2023-09-02 04:48:04,386::train::INFO] [train] Iter 06111 | loss 2.3994 | loss(rot) 1.5364 | loss(pos) 0.3686 | loss(seq) 0.4944 | grad 4.4658 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4640 |
[2023-09-02 04:48:12,002::train::INFO] [train] Iter 06112 | loss 2.5838 | loss(rot) 0.0246 | loss(pos) 2.5578 | loss(seq) 0.0014 | grad 7.0888 | lr 0.0010 | time_forward 3.3060 | time_backward 4.3060 |
[2023-09-02 04:48:21,276::train::INFO] [train] Iter 06113 | loss 2.3802 | loss(rot) 2.2091 | loss(pos) 0.0976 | loss(seq) 0.0734 | grad 4.5827 | lr 0.0010 | time_forward 3.9770 | time_backward 5.2930 |
[2023-09-02 04:48:31,404::train::INFO] [train] Iter 06114 | loss 2.2765 | loss(rot) 1.8399 | loss(pos) 0.1607 | loss(seq) 0.2759 | grad 4.3843 | lr 0.0010 | time_forward 4.1210 | time_backward 6.0030 |
[2023-09-02 04:48:34,399::train::INFO] [train] Iter 06115 | loss 2.8700 | loss(rot) 1.5280 | loss(pos) 0.5726 | loss(seq) 0.7694 | grad 5.6438 | lr 0.0010 | time_forward 1.5010 | time_backward 1.4910 |
[2023-09-02 04:48:44,224::train::INFO] [train] Iter 06116 | loss 3.0189 | loss(rot) 2.7028 | loss(pos) 0.3154 | loss(seq) 0.0007 | grad 3.9473 | lr 0.0010 | time_forward 4.0650 | time_backward 5.7560 |
[2023-09-02 04:48:52,762::train::INFO] [train] Iter 06117 | loss 2.8088 | loss(rot) 2.2069 | loss(pos) 0.1782 | loss(seq) 0.4237 | grad 3.1986 | lr 0.0010 | time_forward 3.5760 | time_backward 4.9590 |
[2023-09-02 04:49:03,190::train::INFO] [train] Iter 06118 | loss 1.8170 | loss(rot) 1.1738 | loss(pos) 0.2660 | loss(seq) 0.3772 | grad 3.7034 | lr 0.0010 | time_forward 4.4530 | time_backward 5.9730 |
[2023-09-02 04:49:11,720::train::INFO] [train] Iter 06119 | loss 2.5430 | loss(rot) 1.2169 | loss(pos) 0.8699 | loss(seq) 0.4562 | grad 4.9664 | lr 0.0010 | time_forward 3.5720 | time_backward 4.9540 |
[2023-09-02 04:49:20,964::train::INFO] [train] Iter 06120 | loss 1.8239 | loss(rot) 1.6799 | loss(pos) 0.1101 | loss(seq) 0.0339 | grad 5.9235 | lr 0.0010 | time_forward 3.9040 | time_backward 5.3360 |
[2023-09-02 04:49:28,393::train::INFO] [train] Iter 06121 | loss 2.1769 | loss(rot) 1.7684 | loss(pos) 0.1401 | loss(seq) 0.2684 | grad 4.4552 | lr 0.0010 | time_forward 3.1690 | time_backward 4.2560 |
[2023-09-02 04:49:31,674::train::INFO] [train] Iter 06122 | loss 2.7696 | loss(rot) 2.3926 | loss(pos) 0.2173 | loss(seq) 0.1596 | grad 4.6390 | lr 0.0010 | time_forward 1.4110 | time_backward 1.8670 |
[2023-09-02 04:49:40,663::train::INFO] [train] Iter 06123 | loss 1.8093 | loss(rot) 1.7439 | loss(pos) 0.0592 | loss(seq) 0.0062 | grad 4.1850 | lr 0.0010 | time_forward 3.9370 | time_backward 5.0370 |
[2023-09-02 04:49:50,580::train::INFO] [train] Iter 06124 | loss 2.7710 | loss(rot) 2.0856 | loss(pos) 0.2604 | loss(seq) 0.4249 | grad 3.9216 | lr 0.0010 | time_forward 4.0380 | time_backward 5.8750 |
[2023-09-02 04:49:53,230::train::INFO] [train] Iter 06125 | loss 1.9294 | loss(rot) 1.8113 | loss(pos) 0.1096 | loss(seq) 0.0086 | grad 3.5826 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4170 |
[2023-09-02 04:50:03,312::train::INFO] [train] Iter 06126 | loss 0.9977 | loss(rot) 0.5014 | loss(pos) 0.1395 | loss(seq) 0.3568 | grad 3.1677 | lr 0.0010 | time_forward 4.1920 | time_backward 5.8880 |
[2023-09-02 04:50:11,590::train::INFO] [train] Iter 06127 | loss 2.2558 | loss(rot) 2.0241 | loss(pos) 0.1923 | loss(seq) 0.0393 | grad 5.5427 | lr 0.0010 | time_forward 3.4900 | time_backward 4.7830 |
[2023-09-02 04:50:20,422::train::INFO] [train] Iter 06128 | loss 3.1721 | loss(rot) 2.5959 | loss(pos) 0.2061 | loss(seq) 0.3701 | grad 5.5005 | lr 0.0010 | time_forward 3.7530 | time_backward 5.0750 |
[2023-09-02 04:50:23,118::train::INFO] [train] Iter 06129 | loss 3.1777 | loss(rot) 3.0436 | loss(pos) 0.1340 | loss(seq) 0.0000 | grad 2.0700 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4400 |
[2023-09-02 04:50:31,972::train::INFO] [train] Iter 06130 | loss 1.5435 | loss(rot) 0.7202 | loss(pos) 0.3677 | loss(seq) 0.4556 | grad 4.5381 | lr 0.0010 | time_forward 3.7540 | time_backward 5.0840 |
[2023-09-02 04:50:40,535::train::INFO] [train] Iter 06131 | loss 2.0985 | loss(rot) 1.5915 | loss(pos) 0.1004 | loss(seq) 0.4066 | grad 3.0230 | lr 0.0010 | time_forward 3.5860 | time_backward 4.9740 |
[2023-09-02 04:50:48,391::train::INFO] [train] Iter 06132 | loss 1.1839 | loss(rot) 0.5750 | loss(pos) 0.3663 | loss(seq) 0.2426 | grad 2.6599 | lr 0.0010 | time_forward 3.2730 | time_backward 4.5800 |
[2023-09-02 04:50:51,067::train::INFO] [train] Iter 06133 | loss 1.9325 | loss(rot) 1.7026 | loss(pos) 0.1824 | loss(seq) 0.0475 | grad 3.7733 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4190 |
[2023-09-02 04:50:53,800::train::INFO] [train] Iter 06134 | loss 2.1369 | loss(rot) 1.4356 | loss(pos) 0.2594 | loss(seq) 0.4420 | grad 3.9350 | lr 0.0010 | time_forward 1.3140 | time_backward 1.4160 |
[2023-09-02 04:51:02,863::train::INFO] [train] Iter 06135 | loss 1.0469 | loss(rot) 0.1504 | loss(pos) 0.8593 | loss(seq) 0.0373 | grad 5.0898 | lr 0.0010 | time_forward 3.7980 | time_backward 5.2610 |
[2023-09-02 04:51:10,843::train::INFO] [train] Iter 06136 | loss 4.4032 | loss(rot) 0.0444 | loss(pos) 4.3588 | loss(seq) 0.0000 | grad 8.5255 | lr 0.0010 | time_forward 3.3820 | time_backward 4.5950 |
[2023-09-02 04:51:13,681::train::INFO] [train] Iter 06137 | loss 1.1640 | loss(rot) 0.4041 | loss(pos) 0.6969 | loss(seq) 0.0630 | grad 4.5177 | lr 0.0010 | time_forward 1.3530 | time_backward 1.4830 |
[2023-09-02 04:51:16,641::train::INFO] [train] Iter 06138 | loss 1.9595 | loss(rot) 1.7370 | loss(pos) 0.2192 | loss(seq) 0.0034 | grad 4.4841 | lr 0.0010 | time_forward 1.5080 | time_backward 1.4480 |
[2023-09-02 04:51:24,326::train::INFO] [train] Iter 06139 | loss 2.4221 | loss(rot) 0.4862 | loss(pos) 1.9311 | loss(seq) 0.0048 | grad 6.7441 | lr 0.0010 | time_forward 3.3860 | time_backward 4.2950 |
[2023-09-02 04:51:33,384::train::INFO] [train] Iter 06140 | loss 2.2805 | loss(rot) 1.8025 | loss(pos) 0.1018 | loss(seq) 0.3763 | grad 3.9689 | lr 0.0010 | time_forward 3.8660 | time_backward 5.1890 |
[2023-09-02 04:51:42,100::train::INFO] [train] Iter 06141 | loss 1.6205 | loss(rot) 1.2231 | loss(pos) 0.1323 | loss(seq) 0.2651 | grad 3.6924 | lr 0.0010 | time_forward 3.6720 | time_backward 5.0410 |
[2023-09-02 04:51:52,201::train::INFO] [train] Iter 06142 | loss 2.1935 | loss(rot) 1.3464 | loss(pos) 0.2901 | loss(seq) 0.5570 | grad 4.0126 | lr 0.0010 | time_forward 4.1370 | time_backward 5.9600 |
[2023-09-02 04:51:54,923::train::INFO] [train] Iter 06143 | loss 1.3123 | loss(rot) 0.5135 | loss(pos) 0.5445 | loss(seq) 0.2543 | grad 3.6589 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4010 |
[2023-09-02 04:52:04,272::train::INFO] [train] Iter 06144 | loss 1.9572 | loss(rot) 1.4152 | loss(pos) 0.0942 | loss(seq) 0.4478 | grad 4.8717 | lr 0.0010 | time_forward 4.0170 | time_backward 5.3290 |
[2023-09-02 04:52:06,496::train::INFO] [train] Iter 06145 | loss 1.9128 | loss(rot) 1.5802 | loss(pos) 0.2017 | loss(seq) 0.1310 | grad 3.9320 | lr 0.0010 | time_forward 1.0610 | time_backward 1.1590 |
[2023-09-02 04:52:15,993::train::INFO] [train] Iter 06146 | loss 3.2372 | loss(rot) 0.0135 | loss(pos) 3.2236 | loss(seq) 0.0000 | grad 7.8061 | lr 0.0010 | time_forward 3.9820 | time_backward 5.4860 |
[2023-09-02 04:52:25,345::train::INFO] [train] Iter 06147 | loss 1.4964 | loss(rot) 1.2417 | loss(pos) 0.1308 | loss(seq) 0.1239 | grad 4.8856 | lr 0.0010 | time_forward 3.9530 | time_backward 5.3960 |
[2023-09-02 04:52:28,061::train::INFO] [train] Iter 06148 | loss 1.4466 | loss(rot) 1.3328 | loss(pos) 0.0802 | loss(seq) 0.0336 | grad 4.4573 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4350 |
[2023-09-02 04:52:32,949::train::INFO] [train] Iter 06149 | loss 2.0658 | loss(rot) 1.7550 | loss(pos) 0.3107 | loss(seq) 0.0000 | grad 5.4292 | lr 0.0010 | time_forward 2.1880 | time_backward 2.6960 |
[2023-09-02 04:52:42,087::train::INFO] [train] Iter 06150 | loss 2.4282 | loss(rot) 0.1013 | loss(pos) 2.3172 | loss(seq) 0.0097 | grad 7.5444 | lr 0.0010 | time_forward 3.9190 | time_backward 5.2160 |
[2023-09-02 04:52:52,408::train::INFO] [train] Iter 06151 | loss 1.1828 | loss(rot) 0.4394 | loss(pos) 0.6163 | loss(seq) 0.1271 | grad 4.7114 | lr 0.0010 | time_forward 4.1320 | time_backward 6.1210 |
[2023-09-02 04:53:01,380::train::INFO] [train] Iter 06152 | loss 2.4051 | loss(rot) 2.1438 | loss(pos) 0.1468 | loss(seq) 0.1145 | grad 6.0764 | lr 0.0010 | time_forward 3.8200 | time_backward 5.1480 |
[2023-09-02 04:53:11,698::train::INFO] [train] Iter 06153 | loss 1.8247 | loss(rot) 0.8187 | loss(pos) 0.3436 | loss(seq) 0.6623 | grad 3.2659 | lr 0.0010 | time_forward 4.1270 | time_backward 6.1870 |
[2023-09-02 04:53:22,607::train::INFO] [train] Iter 06154 | loss 2.7007 | loss(rot) 2.5605 | loss(pos) 0.1356 | loss(seq) 0.0046 | grad 3.2908 | lr 0.0010 | time_forward 4.6180 | time_backward 6.2870 |
[2023-09-02 04:53:31,464::train::INFO] [train] Iter 06155 | loss 1.1947 | loss(rot) 0.6143 | loss(pos) 0.3967 | loss(seq) 0.1836 | grad 3.9926 | lr 0.0010 | time_forward 3.7930 | time_backward 5.0600 |
[2023-09-02 04:53:34,783::train::INFO] [train] Iter 06156 | loss 2.8532 | loss(rot) 2.5249 | loss(pos) 0.1395 | loss(seq) 0.1889 | grad 3.7790 | lr 0.0010 | time_forward 1.4830 | time_backward 1.8320 |
[2023-09-02 04:53:37,730::train::INFO] [train] Iter 06157 | loss 2.6898 | loss(rot) 2.4480 | loss(pos) 0.2296 | loss(seq) 0.0122 | grad 2.6225 | lr 0.0010 | time_forward 1.5090 | time_backward 1.4350 |
[2023-09-02 04:53:46,350::train::INFO] [train] Iter 06158 | loss 0.6962 | loss(rot) 0.1709 | loss(pos) 0.4267 | loss(seq) 0.0986 | grad 4.9377 | lr 0.0010 | time_forward 3.6920 | time_backward 4.9260 |
[2023-09-02 04:53:54,610::train::INFO] [train] Iter 06159 | loss 1.4167 | loss(rot) 0.6185 | loss(pos) 0.1830 | loss(seq) 0.6152 | grad 3.4057 | lr 0.0010 | time_forward 3.5510 | time_backward 4.7050 |
[2023-09-02 04:54:01,926::train::INFO] [train] Iter 06160 | loss 2.2738 | loss(rot) 2.0950 | loss(pos) 0.1576 | loss(seq) 0.0211 | grad 3.0716 | lr 0.0010 | time_forward 3.0950 | time_backward 4.2180 |
[2023-09-02 04:54:10,292::train::INFO] [train] Iter 06161 | loss 2.3063 | loss(rot) 2.1620 | loss(pos) 0.1073 | loss(seq) 0.0370 | grad 3.4387 | lr 0.0010 | time_forward 3.5630 | time_backward 4.7990 |
[2023-09-02 04:54:18,694::train::INFO] [train] Iter 06162 | loss 1.8377 | loss(rot) 1.0037 | loss(pos) 0.2730 | loss(seq) 0.5610 | grad 4.8131 | lr 0.0010 | time_forward 3.6530 | time_backward 4.7460 |
[2023-09-02 04:54:21,972::train::INFO] [train] Iter 06163 | loss 1.2893 | loss(rot) 0.0466 | loss(pos) 1.2367 | loss(seq) 0.0061 | grad 5.2627 | lr 0.0010 | time_forward 1.4210 | time_backward 1.8530 |
[2023-09-02 04:54:30,565::train::INFO] [train] Iter 06164 | loss 2.3042 | loss(rot) 1.6057 | loss(pos) 0.3058 | loss(seq) 0.3926 | grad 4.3499 | lr 0.0010 | time_forward 3.5840 | time_backward 5.0050 |
[2023-09-02 04:54:33,139::train::INFO] [train] Iter 06165 | loss 0.6093 | loss(rot) 0.1878 | loss(pos) 0.1562 | loss(seq) 0.2653 | grad 2.5354 | lr 0.0010 | time_forward 1.2400 | time_backward 1.3310 |
[2023-09-02 04:54:42,300::train::INFO] [train] Iter 06166 | loss 0.8839 | loss(rot) 0.2518 | loss(pos) 0.4215 | loss(seq) 0.2107 | grad 4.8913 | lr 0.0010 | time_forward 3.8380 | time_backward 5.2870 |
[2023-09-02 04:54:51,032::train::INFO] [train] Iter 06167 | loss 2.9388 | loss(rot) 2.0139 | loss(pos) 0.3982 | loss(seq) 0.5268 | grad 3.9963 | lr 0.0010 | time_forward 3.7690 | time_backward 4.9580 |
[2023-09-02 04:55:02,042::train::INFO] [train] Iter 06168 | loss 1.1210 | loss(rot) 0.4555 | loss(pos) 0.4253 | loss(seq) 0.2401 | grad 3.3376 | lr 0.0010 | time_forward 4.5310 | time_backward 6.4750 |
[2023-09-02 04:55:10,651::train::INFO] [train] Iter 06169 | loss 3.0974 | loss(rot) 2.7331 | loss(pos) 0.2286 | loss(seq) 0.1356 | grad 2.9107 | lr 0.0010 | time_forward 3.6280 | time_backward 4.9780 |
[2023-09-02 04:55:19,243::train::INFO] [train] Iter 06170 | loss 2.3593 | loss(rot) 2.0946 | loss(pos) 0.2481 | loss(seq) 0.0165 | grad 4.8557 | lr 0.0010 | time_forward 3.6410 | time_backward 4.9470 |
[2023-09-02 04:55:27,696::train::INFO] [train] Iter 06171 | loss 0.6840 | loss(rot) 0.0848 | loss(pos) 0.5853 | loss(seq) 0.0139 | grad 3.8936 | lr 0.0010 | time_forward 3.5260 | time_backward 4.9230 |
[2023-09-02 04:55:37,673::train::INFO] [train] Iter 06172 | loss 1.0021 | loss(rot) 0.1822 | loss(pos) 0.5901 | loss(seq) 0.2299 | grad 3.5518 | lr 0.0010 | time_forward 4.0700 | time_backward 5.9030 |
[2023-09-02 04:55:40,629::train::INFO] [train] Iter 06173 | loss 2.4086 | loss(rot) 1.4486 | loss(pos) 0.3165 | loss(seq) 0.6435 | grad 3.3744 | lr 0.0010 | time_forward 1.3700 | time_backward 1.5830 |
[2023-09-02 04:55:49,131::train::INFO] [train] Iter 06174 | loss 2.1242 | loss(rot) 1.9281 | loss(pos) 0.1644 | loss(seq) 0.0318 | grad 3.8394 | lr 0.0010 | time_forward 3.6170 | time_backward 4.8650 |
[2023-09-02 04:55:59,096::train::INFO] [train] Iter 06175 | loss 1.1795 | loss(rot) 0.2590 | loss(pos) 0.4878 | loss(seq) 0.4327 | grad 3.0044 | lr 0.0010 | time_forward 4.0110 | time_backward 5.9500 |
[2023-09-02 04:56:01,771::train::INFO] [train] Iter 06176 | loss 1.7666 | loss(rot) 1.5540 | loss(pos) 0.2126 | loss(seq) 0.0000 | grad 4.7969 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4110 |
[2023-09-02 04:56:05,727::train::INFO] [train] Iter 06177 | loss 2.8106 | loss(rot) 2.3944 | loss(pos) 0.2417 | loss(seq) 0.1745 | grad 4.9866 | lr 0.0010 | time_forward 2.5230 | time_backward 1.4110 |
[2023-09-02 04:56:15,508::train::INFO] [train] Iter 06178 | loss 0.8150 | loss(rot) 0.2983 | loss(pos) 0.3173 | loss(seq) 0.1993 | grad 1.9302 | lr 0.0010 | time_forward 4.0720 | time_backward 5.7070 |
[2023-09-02 04:56:25,315::train::INFO] [train] Iter 06179 | loss 1.9936 | loss(rot) 1.5166 | loss(pos) 0.1686 | loss(seq) 0.3083 | grad 3.7147 | lr 0.0010 | time_forward 3.9500 | time_backward 5.8520 |
[2023-09-02 04:56:33,595::train::INFO] [train] Iter 06180 | loss 2.5080 | loss(rot) 1.9759 | loss(pos) 0.0787 | loss(seq) 0.4533 | grad 4.2950 | lr 0.0010 | time_forward 3.5230 | time_backward 4.7540 |
[2023-09-02 04:56:42,078::train::INFO] [train] Iter 06181 | loss 1.9494 | loss(rot) 1.2735 | loss(pos) 0.2268 | loss(seq) 0.4490 | grad 4.1227 | lr 0.0010 | time_forward 3.4740 | time_backward 5.0060 |
[2023-09-02 04:56:50,802::train::INFO] [train] Iter 06182 | loss 0.8204 | loss(rot) 0.1733 | loss(pos) 0.6100 | loss(seq) 0.0370 | grad 4.2215 | lr 0.0010 | time_forward 3.5740 | time_backward 5.1470 |
[2023-09-02 04:56:58,942::train::INFO] [train] Iter 06183 | loss 2.3077 | loss(rot) 2.2489 | loss(pos) 0.0499 | loss(seq) 0.0089 | grad 4.8929 | lr 0.0010 | time_forward 3.3190 | time_backward 4.8190 |
[2023-09-02 04:57:01,930::train::INFO] [train] Iter 06184 | loss 2.1131 | loss(rot) 1.9877 | loss(pos) 0.1157 | loss(seq) 0.0097 | grad 5.5486 | lr 0.0010 | time_forward 1.4650 | time_backward 1.5190 |
[2023-09-02 04:57:09,889::train::INFO] [train] Iter 06185 | loss 0.5002 | loss(rot) 0.0245 | loss(pos) 0.4718 | loss(seq) 0.0040 | grad 5.3352 | lr 0.0010 | time_forward 3.2460 | time_backward 4.6910 |
[2023-09-02 04:57:18,380::train::INFO] [train] Iter 06186 | loss 3.0352 | loss(rot) 2.9074 | loss(pos) 0.1209 | loss(seq) 0.0069 | grad 3.5916 | lr 0.0010 | time_forward 3.5950 | time_backward 4.8920 |
[2023-09-02 04:57:28,431::train::INFO] [train] Iter 06187 | loss 1.7614 | loss(rot) 1.2632 | loss(pos) 0.1386 | loss(seq) 0.3595 | grad 4.3046 | lr 0.0010 | time_forward 4.1600 | time_backward 5.8890 |
[2023-09-02 04:57:31,635::train::INFO] [train] Iter 06188 | loss 0.9089 | loss(rot) 0.2822 | loss(pos) 0.5793 | loss(seq) 0.0474 | grad 5.2505 | lr 0.0010 | time_forward 1.7980 | time_backward 1.4020 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.