text
stringlengths 56
1.16k
|
---|
[2023-09-02 03:44:17,016::train::INFO] [train] Iter 05590 | loss 1.6505 | loss(rot) 0.8681 | loss(pos) 0.2815 | loss(seq) 0.5009 | grad 5.6343 | lr 0.0010 | time_forward 3.4490 | time_backward 4.8610 |
[2023-09-02 03:44:25,736::train::INFO] [train] Iter 05591 | loss 1.2356 | loss(rot) 0.0435 | loss(pos) 1.1868 | loss(seq) 0.0054 | grad 6.2769 | lr 0.0010 | time_forward 3.6520 | time_backward 5.0650 |
[2023-09-02 03:44:34,406::train::INFO] [train] Iter 05592 | loss 1.7979 | loss(rot) 1.1313 | loss(pos) 0.3749 | loss(seq) 0.2916 | grad 5.3204 | lr 0.0010 | time_forward 3.6280 | time_backward 5.0380 |
[2023-09-02 03:44:43,068::train::INFO] [train] Iter 05593 | loss 1.1304 | loss(rot) 0.3785 | loss(pos) 0.7223 | loss(seq) 0.0296 | grad 3.2070 | lr 0.0010 | time_forward 3.6250 | time_backward 5.0340 |
[2023-09-02 03:44:45,787::train::INFO] [train] Iter 05594 | loss 2.3943 | loss(rot) 1.5001 | loss(pos) 0.2467 | loss(seq) 0.6474 | grad 3.3958 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4260 |
[2023-09-02 03:44:48,521::train::INFO] [train] Iter 05595 | loss 1.8332 | loss(rot) 0.7207 | loss(pos) 0.5415 | loss(seq) 0.5710 | grad 6.1186 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4150 |
[2023-09-02 03:44:58,914::train::INFO] [train] Iter 05596 | loss 1.9841 | loss(rot) 1.4896 | loss(pos) 0.4773 | loss(seq) 0.0172 | grad 8.6551 | lr 0.0010 | time_forward 4.2320 | time_backward 6.1580 |
[2023-09-02 03:45:08,982::train::INFO] [train] Iter 05597 | loss 2.1302 | loss(rot) 1.4395 | loss(pos) 0.2980 | loss(seq) 0.3927 | grad 3.9540 | lr 0.0010 | time_forward 4.2150 | time_backward 5.8480 |
[2023-09-02 03:45:17,251::train::INFO] [train] Iter 05598 | loss 2.0244 | loss(rot) 1.4850 | loss(pos) 0.5255 | loss(seq) 0.0139 | grad 8.4026 | lr 0.0010 | time_forward 3.5310 | time_backward 4.7350 |
[2023-09-02 03:45:23,426::train::INFO] [train] Iter 05599 | loss 1.8171 | loss(rot) 1.2756 | loss(pos) 0.1202 | loss(seq) 0.4213 | grad 3.9252 | lr 0.0010 | time_forward 2.6980 | time_backward 3.4750 |
[2023-09-02 03:45:31,901::train::INFO] [train] Iter 05600 | loss 0.6272 | loss(rot) 0.0569 | loss(pos) 0.5539 | loss(seq) 0.0164 | grad 7.0405 | lr 0.0010 | time_forward 3.5800 | time_backward 4.8910 |
[2023-09-02 03:45:40,856::train::INFO] [train] Iter 05601 | loss 1.9236 | loss(rot) 1.3949 | loss(pos) 0.1167 | loss(seq) 0.4120 | grad 3.3288 | lr 0.0010 | time_forward 3.8270 | time_backward 5.1240 |
[2023-09-02 03:45:48,408::train::INFO] [train] Iter 05602 | loss 2.2870 | loss(rot) 1.9506 | loss(pos) 0.0763 | loss(seq) 0.2601 | grad 4.0458 | lr 0.0010 | time_forward 3.3380 | time_backward 4.2080 |
[2023-09-02 03:45:56,975::train::INFO] [train] Iter 05603 | loss 2.8737 | loss(rot) 2.6957 | loss(pos) 0.1697 | loss(seq) 0.0082 | grad 6.9324 | lr 0.0010 | time_forward 3.6140 | time_backward 4.9500 |
[2023-09-02 03:45:59,733::train::INFO] [train] Iter 05604 | loss 2.1990 | loss(rot) 1.5379 | loss(pos) 0.2881 | loss(seq) 0.3730 | grad 8.0799 | lr 0.0010 | time_forward 1.2690 | time_backward 1.4850 |
[2023-09-02 03:46:08,746::train::INFO] [train] Iter 05605 | loss 2.3794 | loss(rot) 1.8029 | loss(pos) 0.2077 | loss(seq) 0.3689 | grad 4.0697 | lr 0.0010 | time_forward 3.8020 | time_backward 5.2080 |
[2023-09-02 03:46:18,764::train::INFO] [train] Iter 05606 | loss 3.1988 | loss(rot) 2.5621 | loss(pos) 0.2838 | loss(seq) 0.3529 | grad 3.3662 | lr 0.0010 | time_forward 4.1550 | time_backward 5.8590 |
[2023-09-02 03:46:25,452::train::INFO] [train] Iter 05607 | loss 2.3770 | loss(rot) 2.2418 | loss(pos) 0.0712 | loss(seq) 0.0639 | grad 3.2915 | lr 0.0010 | time_forward 2.8430 | time_backward 3.8430 |
[2023-09-02 03:46:32,193::train::INFO] [train] Iter 05608 | loss 2.6112 | loss(rot) 2.3310 | loss(pos) 0.1244 | loss(seq) 0.1558 | grad 4.5956 | lr 0.0010 | time_forward 2.9450 | time_backward 3.7910 |
[2023-09-02 03:46:32,761::train::INFO] [train] Iter 05609 | loss 3.3256 | loss(rot) 2.5701 | loss(pos) 0.3933 | loss(seq) 0.3622 | grad 5.3487 | lr 0.0010 | time_forward 0.2400 | time_backward 0.3250 |
[2023-09-02 03:46:36,089::train::INFO] [train] Iter 05610 | loss 1.8075 | loss(rot) 0.0299 | loss(pos) 1.7747 | loss(seq) 0.0030 | grad 4.4690 | lr 0.0010 | time_forward 1.4290 | time_backward 1.8940 |
[2023-09-02 03:46:38,305::train::INFO] [train] Iter 05611 | loss 2.5340 | loss(rot) 1.1705 | loss(pos) 0.7367 | loss(seq) 0.6268 | grad 4.7676 | lr 0.0010 | time_forward 1.0240 | time_backward 1.1890 |
[2023-09-02 03:46:49,025::train::INFO] [train] Iter 05612 | loss 2.1603 | loss(rot) 0.9816 | loss(pos) 0.7128 | loss(seq) 0.4659 | grad 3.6907 | lr 0.0010 | time_forward 4.5940 | time_backward 6.1210 |
[2023-09-02 03:46:59,248::train::INFO] [train] Iter 05613 | loss 1.8347 | loss(rot) 1.5964 | loss(pos) 0.1308 | loss(seq) 0.1074 | grad 2.7603 | lr 0.0010 | time_forward 4.2840 | time_backward 5.9350 |
[2023-09-02 03:47:08,584::train::INFO] [train] Iter 05614 | loss 2.0468 | loss(rot) 1.1273 | loss(pos) 0.3260 | loss(seq) 0.5935 | grad 4.1938 | lr 0.0010 | time_forward 3.8640 | time_backward 5.4680 |
[2023-09-02 03:47:17,604::train::INFO] [train] Iter 05615 | loss 2.8402 | loss(rot) 2.0679 | loss(pos) 0.2244 | loss(seq) 0.5480 | grad 3.4822 | lr 0.0010 | time_forward 3.6540 | time_backward 5.3620 |
[2023-09-02 03:47:20,391::train::INFO] [train] Iter 05616 | loss 2.6689 | loss(rot) 2.3638 | loss(pos) 0.3039 | loss(seq) 0.0012 | grad 6.9719 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4970 |
[2023-09-02 03:47:29,169::train::INFO] [train] Iter 05617 | loss 2.1703 | loss(rot) 1.5244 | loss(pos) 0.2100 | loss(seq) 0.4358 | grad 3.2258 | lr 0.0010 | time_forward 3.7840 | time_backward 4.9890 |
[2023-09-02 03:47:31,868::train::INFO] [train] Iter 05618 | loss 0.5849 | loss(rot) 0.1342 | loss(pos) 0.4118 | loss(seq) 0.0389 | grad 2.9896 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4390 |
[2023-09-02 03:47:39,914::train::INFO] [train] Iter 05619 | loss 1.4687 | loss(rot) 0.2666 | loss(pos) 0.3467 | loss(seq) 0.8553 | grad 3.2975 | lr 0.0010 | time_forward 3.4730 | time_backward 4.5700 |
[2023-09-02 03:47:43,251::train::INFO] [train] Iter 05620 | loss 2.6413 | loss(rot) 2.2960 | loss(pos) 0.2539 | loss(seq) 0.0914 | grad 4.2012 | lr 0.0010 | time_forward 1.4200 | time_backward 1.9140 |
[2023-09-02 03:47:45,492::train::INFO] [train] Iter 05621 | loss 2.5850 | loss(rot) 2.3293 | loss(pos) 0.1403 | loss(seq) 0.1154 | grad 4.2941 | lr 0.0010 | time_forward 1.0380 | time_backward 1.1990 |
[2023-09-02 03:47:52,108::train::INFO] [train] Iter 05622 | loss 2.1019 | loss(rot) 1.6409 | loss(pos) 0.1815 | loss(seq) 0.2795 | grad 3.8179 | lr 0.0010 | time_forward 2.7040 | time_backward 3.9100 |
[2023-09-02 03:48:02,156::train::INFO] [train] Iter 05623 | loss 2.4638 | loss(rot) 1.9959 | loss(pos) 0.1263 | loss(seq) 0.3416 | grad 3.9042 | lr 0.0010 | time_forward 4.0140 | time_backward 6.0300 |
[2023-09-02 03:48:12,295::train::INFO] [train] Iter 05624 | loss 3.1763 | loss(rot) 2.9435 | loss(pos) 0.2328 | loss(seq) 0.0000 | grad 4.6871 | lr 0.0010 | time_forward 4.0170 | time_backward 6.1040 |
[2023-09-02 03:48:22,504::train::INFO] [train] Iter 05625 | loss 1.4114 | loss(rot) 0.5431 | loss(pos) 0.6334 | loss(seq) 0.2349 | grad 6.2900 | lr 0.0010 | time_forward 4.0820 | time_backward 6.1240 |
[2023-09-02 03:48:31,326::train::INFO] [train] Iter 05626 | loss 1.3834 | loss(rot) 0.3488 | loss(pos) 0.5429 | loss(seq) 0.4918 | grad 3.8860 | lr 0.0010 | time_forward 3.6800 | time_backward 5.1390 |
[2023-09-02 03:48:41,409::train::INFO] [train] Iter 05627 | loss 1.7589 | loss(rot) 1.3071 | loss(pos) 0.1897 | loss(seq) 0.2620 | grad 3.1331 | lr 0.0010 | time_forward 4.0890 | time_backward 5.9900 |
[2023-09-02 03:48:44,092::train::INFO] [train] Iter 05628 | loss 1.7672 | loss(rot) 0.0414 | loss(pos) 1.7197 | loss(seq) 0.0060 | grad 5.2347 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4370 |
[2023-09-02 03:48:52,735::train::INFO] [train] Iter 05629 | loss 2.7902 | loss(rot) 2.2799 | loss(pos) 0.1288 | loss(seq) 0.3814 | grad 4.0423 | lr 0.0010 | time_forward 3.5880 | time_backward 5.0520 |
[2023-09-02 03:48:55,457::train::INFO] [train] Iter 05630 | loss 0.4239 | loss(rot) 0.1812 | loss(pos) 0.1825 | loss(seq) 0.0602 | grad 3.2136 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4730 |
[2023-09-02 03:49:03,626::train::INFO] [train] Iter 05631 | loss 2.0189 | loss(rot) 1.3823 | loss(pos) 0.2485 | loss(seq) 0.3881 | grad 5.3055 | lr 0.0010 | time_forward 3.3590 | time_backward 4.7840 |
[2023-09-02 03:49:11,126::train::INFO] [train] Iter 05632 | loss 2.5736 | loss(rot) 2.2211 | loss(pos) 0.3524 | loss(seq) 0.0000 | grad 5.2239 | lr 0.0010 | time_forward 3.1720 | time_backward 4.3240 |
[2023-09-02 03:49:21,135::train::INFO] [train] Iter 05633 | loss 2.9354 | loss(rot) 2.5024 | loss(pos) 0.4137 | loss(seq) 0.0193 | grad 5.4093 | lr 0.0010 | time_forward 4.0510 | time_backward 5.9550 |
[2023-09-02 03:49:29,486::train::INFO] [train] Iter 05634 | loss 2.8329 | loss(rot) 2.4816 | loss(pos) 0.2353 | loss(seq) 0.1160 | grad 4.3272 | lr 0.0010 | time_forward 3.5670 | time_backward 4.7810 |
[2023-09-02 03:49:39,797::train::INFO] [train] Iter 05635 | loss 2.3347 | loss(rot) 1.1753 | loss(pos) 0.5929 | loss(seq) 0.5666 | grad 3.9493 | lr 0.0010 | time_forward 4.3880 | time_backward 5.9190 |
[2023-09-02 03:49:42,528::train::INFO] [train] Iter 05636 | loss 2.1727 | loss(rot) 1.6334 | loss(pos) 0.1513 | loss(seq) 0.3879 | grad 3.6056 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4650 |
[2023-09-02 03:49:50,699::train::INFO] [train] Iter 05637 | loss 1.6055 | loss(rot) 1.1711 | loss(pos) 0.0697 | loss(seq) 0.3647 | grad 4.0690 | lr 0.0010 | time_forward 3.4910 | time_backward 4.6760 |
[2023-09-02 03:49:59,409::train::INFO] [train] Iter 05638 | loss 3.0696 | loss(rot) 2.7258 | loss(pos) 0.1579 | loss(seq) 0.1859 | grad 3.9061 | lr 0.0010 | time_forward 3.7350 | time_backward 4.9650 |
[2023-09-02 03:50:01,732::train::INFO] [train] Iter 05639 | loss 2.0022 | loss(rot) 1.8699 | loss(pos) 0.1311 | loss(seq) 0.0012 | grad 5.1354 | lr 0.0010 | time_forward 1.1120 | time_backward 1.2080 |
[2023-09-02 03:50:11,986::train::INFO] [train] Iter 05640 | loss 1.0631 | loss(rot) 0.3168 | loss(pos) 0.6676 | loss(seq) 0.0787 | grad 3.7252 | lr 0.0010 | time_forward 4.2270 | time_backward 6.0240 |
[2023-09-02 03:50:14,718::train::INFO] [train] Iter 05641 | loss 0.9438 | loss(rot) 0.0137 | loss(pos) 0.9272 | loss(seq) 0.0030 | grad 3.5882 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4210 |
[2023-09-02 03:50:17,466::train::INFO] [train] Iter 05642 | loss 2.5487 | loss(rot) 0.8025 | loss(pos) 1.1614 | loss(seq) 0.5849 | grad 6.0576 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4510 |
[2023-09-02 03:50:25,025::train::INFO] [train] Iter 05643 | loss 1.6688 | loss(rot) 1.0119 | loss(pos) 0.0955 | loss(seq) 0.5614 | grad 3.3840 | lr 0.0010 | time_forward 3.2280 | time_backward 4.3270 |
[2023-09-02 03:50:27,773::train::INFO] [train] Iter 05644 | loss 2.4367 | loss(rot) 1.6560 | loss(pos) 0.2120 | loss(seq) 0.5686 | grad 5.3980 | lr 0.0010 | time_forward 1.3250 | time_backward 1.4200 |
[2023-09-02 03:50:30,560::train::INFO] [train] Iter 05645 | loss 0.9720 | loss(rot) 0.3449 | loss(pos) 0.3697 | loss(seq) 0.2574 | grad 3.4519 | lr 0.0010 | time_forward 1.3170 | time_backward 1.4670 |
[2023-09-02 03:50:40,612::train::INFO] [train] Iter 05646 | loss 2.0992 | loss(rot) 0.0299 | loss(pos) 2.0678 | loss(seq) 0.0016 | grad 3.9943 | lr 0.0010 | time_forward 4.2140 | time_backward 5.8350 |
[2023-09-02 03:50:50,525::train::INFO] [train] Iter 05647 | loss 2.5123 | loss(rot) 1.8120 | loss(pos) 0.3493 | loss(seq) 0.3509 | grad 4.5584 | lr 0.0010 | time_forward 4.0410 | time_backward 5.8570 |
[2023-09-02 03:51:01,152::train::INFO] [train] Iter 05648 | loss 3.9420 | loss(rot) 0.0545 | loss(pos) 3.8875 | loss(seq) 0.0000 | grad 5.5871 | lr 0.0010 | time_forward 4.4590 | time_backward 6.1630 |
[2023-09-02 03:51:09,633::train::INFO] [train] Iter 05649 | loss 2.2701 | loss(rot) 2.0218 | loss(pos) 0.1575 | loss(seq) 0.0907 | grad 3.1509 | lr 0.0010 | time_forward 3.6300 | time_backward 4.8470 |
[2023-09-02 03:51:17,802::train::INFO] [train] Iter 05650 | loss 1.8994 | loss(rot) 0.9258 | loss(pos) 0.4210 | loss(seq) 0.5526 | grad 3.4780 | lr 0.0010 | time_forward 3.4160 | time_backward 4.7490 |
[2023-09-02 03:51:26,507::train::INFO] [train] Iter 05651 | loss 2.0674 | loss(rot) 1.8994 | loss(pos) 0.0979 | loss(seq) 0.0702 | grad 3.3011 | lr 0.0010 | time_forward 3.6860 | time_backward 5.0160 |
[2023-09-02 03:51:36,681::train::INFO] [train] Iter 05652 | loss 2.7834 | loss(rot) 2.0325 | loss(pos) 0.2890 | loss(seq) 0.4619 | grad 6.0350 | lr 0.0010 | time_forward 4.1060 | time_backward 6.0640 |
[2023-09-02 03:51:45,326::train::INFO] [train] Iter 05653 | loss 1.6300 | loss(rot) 0.6803 | loss(pos) 0.5317 | loss(seq) 0.4180 | grad 4.5743 | lr 0.0010 | time_forward 3.4990 | time_backward 5.1420 |
[2023-09-02 03:51:54,558::train::INFO] [train] Iter 05654 | loss 2.2486 | loss(rot) 1.8663 | loss(pos) 0.0868 | loss(seq) 0.2955 | grad 3.9359 | lr 0.0010 | time_forward 3.8340 | time_backward 5.3950 |
[2023-09-02 03:51:57,313::train::INFO] [train] Iter 05655 | loss 0.9545 | loss(rot) 0.4981 | loss(pos) 0.2698 | loss(seq) 0.1866 | grad 4.3359 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4750 |
[2023-09-02 03:52:06,423::train::INFO] [train] Iter 05656 | loss 2.8481 | loss(rot) 2.3476 | loss(pos) 0.1265 | loss(seq) 0.3741 | grad 4.7442 | lr 0.0010 | time_forward 3.8430 | time_backward 5.2630 |
[2023-09-02 03:52:16,416::train::INFO] [train] Iter 05657 | loss 1.2460 | loss(rot) 0.1077 | loss(pos) 1.1275 | loss(seq) 0.0108 | grad 5.4629 | lr 0.0010 | time_forward 3.9840 | time_backward 6.0050 |
[2023-09-02 03:52:25,906::train::INFO] [train] Iter 05658 | loss 1.7947 | loss(rot) 1.0432 | loss(pos) 0.5861 | loss(seq) 0.1653 | grad 4.1650 | lr 0.0010 | time_forward 3.8230 | time_backward 5.6630 |
[2023-09-02 03:52:28,594::train::INFO] [train] Iter 05659 | loss 2.0282 | loss(rot) 0.6578 | loss(pos) 0.7011 | loss(seq) 0.6693 | grad 6.6452 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4140 |
[2023-09-02 03:52:36,675::train::INFO] [train] Iter 05660 | loss 1.9804 | loss(rot) 0.9957 | loss(pos) 0.4791 | loss(seq) 0.5056 | grad 4.3939 | lr 0.0010 | time_forward 3.4600 | time_backward 4.6170 |
[2023-09-02 03:52:39,373::train::INFO] [train] Iter 05661 | loss 2.8882 | loss(rot) 0.0129 | loss(pos) 2.8753 | loss(seq) 0.0000 | grad 6.4840 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4300 |
[2023-09-02 03:52:42,666::train::INFO] [train] Iter 05662 | loss 2.2270 | loss(rot) 2.0508 | loss(pos) 0.1760 | loss(seq) 0.0003 | grad 3.9542 | lr 0.0010 | time_forward 1.4280 | time_backward 1.8620 |
[2023-09-02 03:52:45,493::train::INFO] [train] Iter 05663 | loss 2.2902 | loss(rot) 2.0625 | loss(pos) 0.1659 | loss(seq) 0.0619 | grad 5.8197 | lr 0.0010 | time_forward 1.3820 | time_backward 1.4420 |
[2023-09-02 03:52:55,468::train::INFO] [train] Iter 05664 | loss 2.0251 | loss(rot) 1.8195 | loss(pos) 0.1983 | loss(seq) 0.0072 | grad 4.2402 | lr 0.0010 | time_forward 4.1060 | time_backward 5.8650 |
[2023-09-02 03:53:04,744::train::INFO] [train] Iter 05665 | loss 1.4993 | loss(rot) 0.1929 | loss(pos) 0.8041 | loss(seq) 0.5023 | grad 5.8477 | lr 0.0010 | time_forward 3.8920 | time_backward 5.3800 |
[2023-09-02 03:53:13,200::train::INFO] [train] Iter 05666 | loss 2.6700 | loss(rot) 2.5251 | loss(pos) 0.1199 | loss(seq) 0.0250 | grad 4.5211 | lr 0.0010 | time_forward 3.5650 | time_backward 4.8870 |
[2023-09-02 03:53:22,479::train::INFO] [train] Iter 05667 | loss 2.1452 | loss(rot) 1.9379 | loss(pos) 0.1156 | loss(seq) 0.0917 | grad 3.2181 | lr 0.0010 | time_forward 3.8840 | time_backward 5.3910 |
[2023-09-02 03:53:32,647::train::INFO] [train] Iter 05668 | loss 1.9347 | loss(rot) 0.6419 | loss(pos) 0.9858 | loss(seq) 0.3070 | grad 7.3614 | lr 0.0010 | time_forward 4.0970 | time_backward 6.0680 |
[2023-09-02 03:53:40,889::train::INFO] [train] Iter 05669 | loss 2.2938 | loss(rot) 1.8234 | loss(pos) 0.0737 | loss(seq) 0.3968 | grad 4.9889 | lr 0.0010 | time_forward 3.4520 | time_backward 4.7870 |
[2023-09-02 03:53:51,920::train::INFO] [train] Iter 05670 | loss 0.9352 | loss(rot) 0.6194 | loss(pos) 0.2338 | loss(seq) 0.0820 | grad 3.7912 | lr 0.0010 | time_forward 4.2160 | time_backward 6.8110 |
[2023-09-02 03:53:59,948::train::INFO] [train] Iter 05671 | loss 2.0129 | loss(rot) 1.2365 | loss(pos) 0.2251 | loss(seq) 0.5513 | grad 4.4076 | lr 0.0010 | time_forward 3.3500 | time_backward 4.6740 |
[2023-09-02 03:54:09,695::train::INFO] [train] Iter 05672 | loss 2.3277 | loss(rot) 2.1135 | loss(pos) 0.0713 | loss(seq) 0.1429 | grad 4.2502 | lr 0.0010 | time_forward 4.1380 | time_backward 5.6070 |
[2023-09-02 03:54:13,130::train::INFO] [train] Iter 05673 | loss 1.8868 | loss(rot) 0.6882 | loss(pos) 1.0110 | loss(seq) 0.1876 | grad 3.2838 | lr 0.0010 | time_forward 1.5060 | time_backward 1.9260 |
[2023-09-02 03:54:25,328::train::INFO] [train] Iter 05674 | loss 2.2283 | loss(rot) 0.0286 | loss(pos) 2.1992 | loss(seq) 0.0005 | grad 4.2585 | lr 0.0010 | time_forward 5.3330 | time_backward 6.8310 |
[2023-09-02 03:54:27,578::train::INFO] [train] Iter 05675 | loss 2.9203 | loss(rot) 2.6882 | loss(pos) 0.1956 | loss(seq) 0.0364 | grad 4.5979 | lr 0.0010 | time_forward 1.0820 | time_backward 1.1640 |
[2023-09-02 03:54:36,769::train::INFO] [train] Iter 05676 | loss 2.6970 | loss(rot) 2.5008 | loss(pos) 0.1870 | loss(seq) 0.0092 | grad 4.7836 | lr 0.0010 | time_forward 3.8450 | time_backward 5.3430 |
[2023-09-02 03:54:46,370::train::INFO] [train] Iter 05677 | loss 2.1886 | loss(rot) 0.4974 | loss(pos) 1.1769 | loss(seq) 0.5144 | grad 5.0772 | lr 0.0010 | time_forward 4.0490 | time_backward 5.5480 |
[2023-09-02 03:54:49,022::train::INFO] [train] Iter 05678 | loss 1.9510 | loss(rot) 1.2914 | loss(pos) 0.3989 | loss(seq) 0.2607 | grad 4.9524 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4180 |
[2023-09-02 03:54:51,785::train::INFO] [train] Iter 05679 | loss 2.4503 | loss(rot) 2.0571 | loss(pos) 0.1102 | loss(seq) 0.2830 | grad 3.5660 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4420 |
[2023-09-02 03:55:04,385::train::INFO] [train] Iter 05680 | loss 3.1416 | loss(rot) 2.6035 | loss(pos) 0.1669 | loss(seq) 0.3712 | grad 5.9783 | lr 0.0010 | time_forward 6.0610 | time_backward 6.5110 |
[2023-09-02 03:55:06,662::train::INFO] [train] Iter 05681 | loss 2.7815 | loss(rot) 0.0785 | loss(pos) 2.7014 | loss(seq) 0.0017 | grad 5.3765 | lr 0.0010 | time_forward 1.0550 | time_backward 1.2190 |
[2023-09-02 03:55:16,929::train::INFO] [train] Iter 05682 | loss 2.2322 | loss(rot) 0.0604 | loss(pos) 2.1693 | loss(seq) 0.0025 | grad 5.9599 | lr 0.0010 | time_forward 4.1920 | time_backward 6.0710 |
[2023-09-02 03:55:19,492::train::INFO] [train] Iter 05683 | loss 2.9274 | loss(rot) 2.1535 | loss(pos) 0.3032 | loss(seq) 0.4708 | grad 4.0578 | lr 0.0010 | time_forward 1.1860 | time_backward 1.3730 |
[2023-09-02 03:55:22,382::train::INFO] [train] Iter 05684 | loss 2.4412 | loss(rot) 1.8505 | loss(pos) 0.1117 | loss(seq) 0.4790 | grad 3.1646 | lr 0.0010 | time_forward 1.4130 | time_backward 1.4460 |
[2023-09-02 03:55:25,261::train::INFO] [train] Iter 05685 | loss 1.5246 | loss(rot) 0.0844 | loss(pos) 1.4260 | loss(seq) 0.0141 | grad 5.2849 | lr 0.0010 | time_forward 1.4290 | time_backward 1.4460 |
[2023-09-02 03:55:35,116::train::INFO] [train] Iter 05686 | loss 2.0575 | loss(rot) 1.2593 | loss(pos) 0.2663 | loss(seq) 0.5320 | grad 3.1470 | lr 0.0010 | time_forward 4.0260 | time_backward 5.8250 |
[2023-09-02 03:55:37,889::train::INFO] [train] Iter 05687 | loss 2.6573 | loss(rot) 2.5252 | loss(pos) 0.0806 | loss(seq) 0.0515 | grad 5.4860 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4540 |
[2023-09-02 03:55:40,274::train::INFO] [train] Iter 05688 | loss 2.4401 | loss(rot) 1.9937 | loss(pos) 0.4134 | loss(seq) 0.0331 | grad 4.1825 | lr 0.0010 | time_forward 1.1440 | time_backward 1.2370 |
[2023-09-02 03:55:42,983::train::INFO] [train] Iter 05689 | loss 2.5526 | loss(rot) 2.3913 | loss(pos) 0.1349 | loss(seq) 0.0264 | grad 4.5597 | lr 0.0010 | time_forward 1.3080 | time_backward 1.3980 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.