text
stringlengths
56
1.16k
[2023-09-02 02:17:36,119::train::INFO] [train] Iter 04891 | loss 2.3471 | loss(rot) 1.4477 | loss(pos) 0.4538 | loss(seq) 0.4456 | grad 6.2521 | lr 0.0010 | time_forward 3.6160 | time_backward 4.9130
[2023-09-02 02:17:42,710::train::INFO] [train] Iter 04892 | loss 1.8655 | loss(rot) 1.0809 | loss(pos) 0.2298 | loss(seq) 0.5549 | grad 4.0566 | lr 0.0010 | time_forward 2.7990 | time_backward 3.7880
[2023-09-02 02:17:45,420::train::INFO] [train] Iter 04893 | loss 1.9635 | loss(rot) 1.0679 | loss(pos) 0.3036 | loss(seq) 0.5919 | grad 3.8870 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4400
[2023-09-02 02:17:55,545::train::INFO] [train] Iter 04894 | loss 1.8929 | loss(rot) 1.1573 | loss(pos) 0.2351 | loss(seq) 0.5005 | grad 4.8080 | lr 0.0010 | time_forward 4.0170 | time_backward 6.1040
[2023-09-02 02:18:04,341::train::INFO] [train] Iter 04895 | loss 2.5798 | loss(rot) 1.9689 | loss(pos) 0.4987 | loss(seq) 0.1122 | grad 4.7398 | lr 0.0010 | time_forward 3.6720 | time_backward 5.1210
[2023-09-02 02:18:12,382::train::INFO] [train] Iter 04896 | loss 1.9160 | loss(rot) 1.6690 | loss(pos) 0.2317 | loss(seq) 0.0153 | grad 4.9650 | lr 0.0010 | time_forward 3.4030 | time_backward 4.6340
[2023-09-02 02:18:21,088::train::INFO] [train] Iter 04897 | loss 1.9688 | loss(rot) 0.1515 | loss(pos) 1.8015 | loss(seq) 0.0158 | grad 6.2472 | lr 0.0010 | time_forward 3.7300 | time_backward 4.9720
[2023-09-02 02:18:23,823::train::INFO] [train] Iter 04898 | loss 2.3853 | loss(rot) 1.9491 | loss(pos) 0.1875 | loss(seq) 0.2486 | grad 5.4496 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4670
[2023-09-02 02:18:32,302::train::INFO] [train] Iter 04899 | loss 1.8086 | loss(rot) 0.2354 | loss(pos) 1.3911 | loss(seq) 0.1821 | grad 6.1833 | lr 0.0010 | time_forward 3.5200 | time_backward 4.9560
[2023-09-02 02:18:38,819::train::INFO] [train] Iter 04900 | loss 1.8977 | loss(rot) 1.0044 | loss(pos) 0.4965 | loss(seq) 0.3968 | grad 3.8511 | lr 0.0010 | time_forward 2.7590 | time_backward 3.7540
[2023-09-02 02:18:47,107::train::INFO] [train] Iter 04901 | loss 1.7116 | loss(rot) 0.7793 | loss(pos) 0.3635 | loss(seq) 0.5687 | grad 4.6071 | lr 0.0010 | time_forward 3.6140 | time_backward 4.6700
[2023-09-02 02:18:55,024::train::INFO] [train] Iter 04902 | loss 2.1863 | loss(rot) 1.3515 | loss(pos) 0.3690 | loss(seq) 0.4658 | grad 5.1351 | lr 0.0010 | time_forward 3.3780 | time_backward 4.5350
[2023-09-02 02:19:03,040::train::INFO] [train] Iter 04903 | loss 1.3172 | loss(rot) 0.3811 | loss(pos) 0.7289 | loss(seq) 0.2072 | grad 4.1919 | lr 0.0010 | time_forward 3.3400 | time_backward 4.6720
[2023-09-02 02:19:05,683::train::INFO] [train] Iter 04904 | loss 1.2341 | loss(rot) 0.6217 | loss(pos) 0.3276 | loss(seq) 0.2848 | grad 3.6998 | lr 0.0010 | time_forward 1.2240 | time_backward 1.4150
[2023-09-02 02:19:13,166::train::INFO] [train] Iter 04905 | loss 2.1280 | loss(rot) 0.2370 | loss(pos) 1.8840 | loss(seq) 0.0070 | grad 6.2663 | lr 0.0010 | time_forward 3.2750 | time_backward 4.2050
[2023-09-02 02:19:22,467::train::INFO] [train] Iter 04906 | loss 2.1976 | loss(rot) 2.0189 | loss(pos) 0.0693 | loss(seq) 0.1093 | grad 3.6138 | lr 0.0010 | time_forward 3.8970 | time_backward 5.4000
[2023-09-02 02:19:30,996::train::INFO] [train] Iter 04907 | loss 2.2356 | loss(rot) 1.7888 | loss(pos) 0.1236 | loss(seq) 0.3232 | grad 3.7383 | lr 0.0010 | time_forward 3.4250 | time_backward 5.1000
[2023-09-02 02:19:40,924::train::INFO] [train] Iter 04908 | loss 2.6687 | loss(rot) 1.6792 | loss(pos) 0.3582 | loss(seq) 0.6313 | grad 4.3469 | lr 0.0010 | time_forward 3.9160 | time_backward 6.0080
[2023-09-02 02:19:50,735::train::INFO] [train] Iter 04909 | loss 3.1431 | loss(rot) 2.1281 | loss(pos) 0.4719 | loss(seq) 0.5432 | grad 5.3689 | lr 0.0010 | time_forward 3.9470 | time_backward 5.8620
[2023-09-02 02:20:00,670::train::INFO] [train] Iter 04910 | loss 2.8260 | loss(rot) 2.2698 | loss(pos) 0.3021 | loss(seq) 0.2540 | grad 3.7292 | lr 0.0010 | time_forward 4.0590 | time_backward 5.8720
[2023-09-02 02:20:10,890::train::INFO] [train] Iter 04911 | loss 2.0846 | loss(rot) 1.8166 | loss(pos) 0.2677 | loss(seq) 0.0003 | grad 4.3936 | lr 0.0010 | time_forward 4.2820 | time_backward 5.9340
[2023-09-02 02:20:13,567::train::INFO] [train] Iter 04912 | loss 1.8565 | loss(rot) 0.0242 | loss(pos) 1.8294 | loss(seq) 0.0029 | grad 6.1415 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4000
[2023-09-02 02:20:21,899::train::INFO] [train] Iter 04913 | loss 2.8973 | loss(rot) 2.7718 | loss(pos) 0.1223 | loss(seq) 0.0031 | grad 4.6791 | lr 0.0010 | time_forward 3.4240 | time_backward 4.9050
[2023-09-02 02:20:31,679::train::INFO] [train] Iter 04914 | loss 2.1542 | loss(rot) 1.9162 | loss(pos) 0.1509 | loss(seq) 0.0870 | grad 3.2801 | lr 0.0010 | time_forward 3.9690 | time_backward 5.8070
[2023-09-02 02:20:39,872::train::INFO] [train] Iter 04915 | loss 1.8883 | loss(rot) 1.1516 | loss(pos) 0.1819 | loss(seq) 0.5547 | grad 3.7357 | lr 0.0010 | time_forward 3.3790 | time_backward 4.8100
[2023-09-02 02:20:49,210::train::INFO] [train] Iter 04916 | loss 1.4833 | loss(rot) 0.7098 | loss(pos) 0.2842 | loss(seq) 0.4893 | grad 3.4504 | lr 0.0010 | time_forward 4.0520 | time_backward 5.2820
[2023-09-02 02:20:59,276::train::INFO] [train] Iter 04917 | loss 1.2511 | loss(rot) 0.3195 | loss(pos) 0.5344 | loss(seq) 0.3972 | grad 3.4571 | lr 0.0010 | time_forward 3.9520 | time_backward 6.1100
[2023-09-02 02:21:09,292::train::INFO] [train] Iter 04918 | loss 1.3724 | loss(rot) 0.6029 | loss(pos) 0.4724 | loss(seq) 0.2970 | grad 4.5366 | lr 0.0010 | time_forward 4.2360 | time_backward 5.7770
[2023-09-02 02:21:16,496::train::INFO] [train] Iter 04919 | loss 1.2634 | loss(rot) 0.0646 | loss(pos) 1.1898 | loss(seq) 0.0089 | grad 6.8084 | lr 0.0010 | time_forward 3.0590 | time_backward 4.1410
[2023-09-02 02:21:25,078::train::INFO] [train] Iter 04920 | loss 2.3458 | loss(rot) 1.6622 | loss(pos) 0.2232 | loss(seq) 0.4604 | grad 3.4852 | lr 0.0010 | time_forward 3.7200 | time_backward 4.8590
[2023-09-02 02:21:32,114::train::INFO] [train] Iter 04921 | loss 2.4682 | loss(rot) 2.3431 | loss(pos) 0.1120 | loss(seq) 0.0131 | grad 3.0991 | lr 0.0010 | time_forward 2.8820 | time_backward 4.1510
[2023-09-02 02:21:40,230::train::INFO] [train] Iter 04922 | loss 2.3118 | loss(rot) 1.9385 | loss(pos) 0.3733 | loss(seq) 0.0000 | grad 5.4059 | lr 0.0010 | time_forward 3.3900 | time_backward 4.7230
[2023-09-02 02:21:42,899::train::INFO] [train] Iter 04923 | loss 2.1850 | loss(rot) 1.0942 | loss(pos) 0.6488 | loss(seq) 0.4420 | grad 4.9975 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4220
[2023-09-02 02:21:46,234::train::INFO] [train] Iter 04924 | loss 1.6006 | loss(rot) 0.5251 | loss(pos) 0.5476 | loss(seq) 0.5279 | grad 3.3874 | lr 0.0010 | time_forward 1.3970 | time_backward 1.9340
[2023-09-02 02:21:56,169::train::INFO] [train] Iter 04925 | loss 2.6253 | loss(rot) 2.0822 | loss(pos) 0.1555 | loss(seq) 0.3876 | grad 4.5230 | lr 0.0010 | time_forward 3.9930 | time_backward 5.9390
[2023-09-02 02:21:59,447::train::INFO] [train] Iter 04926 | loss 0.9157 | loss(rot) 0.2093 | loss(pos) 0.6734 | loss(seq) 0.0330 | grad 2.7094 | lr 0.0010 | time_forward 1.4270 | time_backward 1.8480
[2023-09-02 02:22:08,393::train::INFO] [train] Iter 04927 | loss 2.7170 | loss(rot) 2.2841 | loss(pos) 0.0907 | loss(seq) 0.3421 | grad 3.9853 | lr 0.0010 | time_forward 3.8190 | time_backward 5.1110
[2023-09-02 02:22:11,101::train::INFO] [train] Iter 04928 | loss 1.5228 | loss(rot) 0.3972 | loss(pos) 0.7137 | loss(seq) 0.4118 | grad 6.3238 | lr 0.0010 | time_forward 1.2690 | time_backward 1.4350
[2023-09-02 02:22:20,196::train::INFO] [train] Iter 04929 | loss 1.0242 | loss(rot) 0.1005 | loss(pos) 0.9055 | loss(seq) 0.0182 | grad 5.4267 | lr 0.0010 | time_forward 4.0810 | time_backward 4.9850
[2023-09-02 02:22:29,397::train::INFO] [train] Iter 04930 | loss 2.5464 | loss(rot) 1.6456 | loss(pos) 0.4377 | loss(seq) 0.4631 | grad 5.4911 | lr 0.0010 | time_forward 3.7650 | time_backward 5.4320
[2023-09-02 02:22:38,059::train::INFO] [train] Iter 04931 | loss 1.5063 | loss(rot) 0.9294 | loss(pos) 0.4099 | loss(seq) 0.1670 | grad 5.1211 | lr 0.0010 | time_forward 3.5230 | time_backward 5.1350
[2023-09-02 02:22:40,834::train::INFO] [train] Iter 04932 | loss 1.6266 | loss(rot) 0.8481 | loss(pos) 0.3572 | loss(seq) 0.4212 | grad 5.2402 | lr 0.0010 | time_forward 1.3730 | time_backward 1.4000
[2023-09-02 02:22:49,972::train::INFO] [train] Iter 04933 | loss 0.9026 | loss(rot) 0.2405 | loss(pos) 0.6299 | loss(seq) 0.0323 | grad 5.2949 | lr 0.0010 | time_forward 3.8370 | time_backward 5.2960
[2023-09-02 02:22:56,552::train::INFO] [train] Iter 04934 | loss 2.9211 | loss(rot) 2.6758 | loss(pos) 0.2451 | loss(seq) 0.0001 | grad 6.0807 | lr 0.0010 | time_forward 2.7140 | time_backward 3.8620
[2023-09-02 02:23:04,806::train::INFO] [train] Iter 04935 | loss 2.1345 | loss(rot) 0.0826 | loss(pos) 2.0465 | loss(seq) 0.0054 | grad 11.7686 | lr 0.0010 | time_forward 3.4070 | time_backward 4.8440
[2023-09-02 02:23:07,546::train::INFO] [train] Iter 04936 | loss 2.7270 | loss(rot) 2.1082 | loss(pos) 0.1513 | loss(seq) 0.4675 | grad 3.4719 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4240
[2023-09-02 02:23:15,108::train::INFO] [train] Iter 04937 | loss 0.4710 | loss(rot) 0.0505 | loss(pos) 0.4123 | loss(seq) 0.0082 | grad 5.4186 | lr 0.0010 | time_forward 3.1630 | time_backward 4.3940
[2023-09-02 02:23:25,631::train::INFO] [train] Iter 04938 | loss 2.6197 | loss(rot) 2.1522 | loss(pos) 0.2965 | loss(seq) 0.1710 | grad 6.4799 | lr 0.0010 | time_forward 3.6240 | time_backward 6.8960
[2023-09-02 02:23:28,404::train::INFO] [train] Iter 04939 | loss 2.1629 | loss(rot) 1.6169 | loss(pos) 0.1903 | loss(seq) 0.3557 | grad 2.8290 | lr 0.0010 | time_forward 1.3140 | time_backward 1.4550
[2023-09-02 02:23:31,187::train::INFO] [train] Iter 04940 | loss 2.3409 | loss(rot) 1.3829 | loss(pos) 0.4793 | loss(seq) 0.4787 | grad 6.8291 | lr 0.0010 | time_forward 1.3370 | time_backward 1.4430
[2023-09-02 02:23:41,606::train::INFO] [train] Iter 04941 | loss 1.5789 | loss(rot) 0.1838 | loss(pos) 1.3692 | loss(seq) 0.0259 | grad 8.1745 | lr 0.0010 | time_forward 4.9100 | time_backward 5.4620
[2023-09-02 02:23:51,741::train::INFO] [train] Iter 04942 | loss 1.7465 | loss(rot) 0.5776 | loss(pos) 0.6547 | loss(seq) 0.5143 | grad 5.2741 | lr 0.0010 | time_forward 4.2120 | time_backward 5.9210
[2023-09-02 02:24:00,121::train::INFO] [train] Iter 04943 | loss 0.9031 | loss(rot) 0.2282 | loss(pos) 0.6210 | loss(seq) 0.0539 | grad 6.3989 | lr 0.0010 | time_forward 3.5660 | time_backward 4.8100
[2023-09-02 02:24:02,896::train::INFO] [train] Iter 04944 | loss 1.2272 | loss(rot) 0.4233 | loss(pos) 0.5344 | loss(seq) 0.2696 | grad 4.6564 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4780
[2023-09-02 02:24:05,699::train::INFO] [train] Iter 04945 | loss 3.0029 | loss(rot) 2.3259 | loss(pos) 0.3305 | loss(seq) 0.3465 | grad 4.0439 | lr 0.0010 | time_forward 1.3220 | time_backward 1.4780
[2023-09-02 02:24:14,739::train::INFO] [train] Iter 04946 | loss 1.5714 | loss(rot) 0.6141 | loss(pos) 0.5112 | loss(seq) 0.4461 | grad 5.5793 | lr 0.0010 | time_forward 3.8010 | time_backward 5.2350
[2023-09-02 02:24:23,968::train::INFO] [train] Iter 04947 | loss 1.2161 | loss(rot) 0.1144 | loss(pos) 0.8434 | loss(seq) 0.2583 | grad 5.8583 | lr 0.0010 | time_forward 3.8950 | time_backward 5.3020
[2023-09-02 02:24:26,661::train::INFO] [train] Iter 04948 | loss 5.1101 | loss(rot) 0.0208 | loss(pos) 5.0872 | loss(seq) 0.0021 | grad 13.2252 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4240
[2023-09-02 02:24:29,096::train::INFO] [train] Iter 04949 | loss 2.1673 | loss(rot) 1.3145 | loss(pos) 0.4011 | loss(seq) 0.4516 | grad 4.4232 | lr 0.0010 | time_forward 1.1780 | time_backward 1.2540
[2023-09-02 02:24:39,785::train::INFO] [train] Iter 04950 | loss 1.1901 | loss(rot) 0.1974 | loss(pos) 0.7314 | loss(seq) 0.2613 | grad 6.1750 | lr 0.0010 | time_forward 4.3180 | time_backward 6.3680
[2023-09-02 02:24:50,365::train::INFO] [train] Iter 04951 | loss 2.3021 | loss(rot) 1.4483 | loss(pos) 0.3732 | loss(seq) 0.4807 | grad 4.8210 | lr 0.0010 | time_forward 4.5120 | time_backward 6.0630
[2023-09-02 02:24:59,441::train::INFO] [train] Iter 04952 | loss 1.8945 | loss(rot) 0.7779 | loss(pos) 0.8600 | loss(seq) 0.2566 | grad 7.0709 | lr 0.0010 | time_forward 3.9620 | time_backward 5.1110
[2023-09-02 02:25:02,095::train::INFO] [train] Iter 04953 | loss 3.1447 | loss(rot) 2.7584 | loss(pos) 0.3231 | loss(seq) 0.0632 | grad 4.9835 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4100
[2023-09-02 02:25:04,841::train::INFO] [train] Iter 04954 | loss 1.4525 | loss(rot) 0.3412 | loss(pos) 1.0310 | loss(seq) 0.0803 | grad 8.6198 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4570
[2023-09-02 02:25:15,327::train::INFO] [train] Iter 04955 | loss 2.4375 | loss(rot) 1.3821 | loss(pos) 0.4783 | loss(seq) 0.5771 | grad 3.2946 | lr 0.0010 | time_forward 4.4290 | time_backward 6.0510
[2023-09-02 02:25:24,173::train::INFO] [train] Iter 04956 | loss 1.2821 | loss(rot) 0.6285 | loss(pos) 0.4293 | loss(seq) 0.2243 | grad 4.4470 | lr 0.0010 | time_forward 3.7100 | time_backward 5.1320
[2023-09-02 02:25:26,876::train::INFO] [train] Iter 04957 | loss 2.6347 | loss(rot) 2.4787 | loss(pos) 0.1559 | loss(seq) 0.0000 | grad 3.4326 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4270
[2023-09-02 02:25:30,279::train::INFO] [train] Iter 04958 | loss 2.1480 | loss(rot) 1.1700 | loss(pos) 0.5079 | loss(seq) 0.4701 | grad 4.4890 | lr 0.0010 | time_forward 1.4570 | time_backward 1.9420
[2023-09-02 02:25:38,776::train::INFO] [train] Iter 04959 | loss 2.3954 | loss(rot) 2.1963 | loss(pos) 0.1990 | loss(seq) 0.0000 | grad 3.3691 | lr 0.0010 | time_forward 3.6270 | time_backward 4.8660
[2023-09-02 02:25:48,813::train::INFO] [train] Iter 04960 | loss 3.4029 | loss(rot) 0.1256 | loss(pos) 3.2769 | loss(seq) 0.0005 | grad 12.7599 | lr 0.0010 | time_forward 4.1700 | time_backward 5.8640
[2023-09-02 02:25:59,655::train::INFO] [train] Iter 04961 | loss 1.1390 | loss(rot) 0.1472 | loss(pos) 0.9775 | loss(seq) 0.0143 | grad 4.8324 | lr 0.0010 | time_forward 4.9920 | time_backward 5.8470
[2023-09-02 02:26:08,283::train::INFO] [train] Iter 04962 | loss 2.3267 | loss(rot) 0.6213 | loss(pos) 1.2388 | loss(seq) 0.4667 | grad 7.3277 | lr 0.0010 | time_forward 3.8350 | time_backward 4.7890
[2023-09-02 02:26:11,076::train::INFO] [train] Iter 04963 | loss 2.2557 | loss(rot) 1.9652 | loss(pos) 0.2899 | loss(seq) 0.0007 | grad 7.3274 | lr 0.0010 | time_forward 1.2920 | time_backward 1.4980
[2023-09-02 02:26:20,948::train::INFO] [train] Iter 04964 | loss 2.1522 | loss(rot) 1.0261 | loss(pos) 0.5617 | loss(seq) 0.5645 | grad 7.6646 | lr 0.0010 | time_forward 4.1430 | time_backward 5.7250
[2023-09-02 02:26:29,932::train::INFO] [train] Iter 04965 | loss 2.7334 | loss(rot) 2.2176 | loss(pos) 0.5152 | loss(seq) 0.0006 | grad 11.9248 | lr 0.0010 | time_forward 3.8240 | time_backward 5.1570
[2023-09-02 02:26:39,974::train::INFO] [train] Iter 04966 | loss 1.8341 | loss(rot) 0.0321 | loss(pos) 1.7957 | loss(seq) 0.0064 | grad 9.4879 | lr 0.0010 | time_forward 4.1180 | time_backward 5.9100
[2023-09-02 02:26:49,841::train::INFO] [train] Iter 04967 | loss 2.8807 | loss(rot) 1.9874 | loss(pos) 0.4773 | loss(seq) 0.4160 | grad 6.4972 | lr 0.0010 | time_forward 4.0490 | time_backward 5.8150
[2023-09-02 02:26:53,366::train::INFO] [train] Iter 04968 | loss 2.9912 | loss(rot) 2.1398 | loss(pos) 0.4101 | loss(seq) 0.4413 | grad 3.2572 | lr 0.0010 | time_forward 1.5140 | time_backward 2.0070
[2023-09-02 02:26:56,070::train::INFO] [train] Iter 04969 | loss 2.7134 | loss(rot) 2.4827 | loss(pos) 0.2304 | loss(seq) 0.0003 | grad 4.1998 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4400
[2023-09-02 02:26:58,790::train::INFO] [train] Iter 04970 | loss 1.6272 | loss(rot) 0.9002 | loss(pos) 0.2335 | loss(seq) 0.4935 | grad 4.3465 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4170
[2023-09-02 02:27:08,737::train::INFO] [train] Iter 04971 | loss 1.6221 | loss(rot) 0.5462 | loss(pos) 0.6945 | loss(seq) 0.3814 | grad 5.2408 | lr 0.0010 | time_forward 4.1690 | time_backward 5.7750
[2023-09-02 02:27:18,986::train::INFO] [train] Iter 04972 | loss 3.1490 | loss(rot) 2.3640 | loss(pos) 0.3395 | loss(seq) 0.4455 | grad 3.6984 | lr 0.0010 | time_forward 4.3490 | time_backward 5.8960
[2023-09-02 02:27:29,128::train::INFO] [train] Iter 04973 | loss 1.6805 | loss(rot) 0.0356 | loss(pos) 1.3626 | loss(seq) 0.2822 | grad 5.8761 | lr 0.0010 | time_forward 4.0500 | time_backward 6.0890
[2023-09-02 02:27:38,569::train::INFO] [train] Iter 04974 | loss 2.3029 | loss(rot) 1.8871 | loss(pos) 0.4147 | loss(seq) 0.0012 | grad 6.3604 | lr 0.0010 | time_forward 4.0280 | time_backward 5.4100
[2023-09-02 02:27:41,363::train::INFO] [train] Iter 04975 | loss 2.5747 | loss(rot) 2.2749 | loss(pos) 0.2928 | loss(seq) 0.0070 | grad 7.3373 | lr 0.0010 | time_forward 1.3610 | time_backward 1.4290
[2023-09-02 02:27:44,213::train::INFO] [train] Iter 04976 | loss 1.1398 | loss(rot) 0.3689 | loss(pos) 0.6793 | loss(seq) 0.0916 | grad 4.5889 | lr 0.0010 | time_forward 1.3210 | time_backward 1.5250
[2023-09-02 02:27:54,453::train::INFO] [train] Iter 04977 | loss 2.7675 | loss(rot) 2.1758 | loss(pos) 0.3098 | loss(seq) 0.2820 | grad 4.8948 | lr 0.0010 | time_forward 4.2030 | time_backward 6.0330
[2023-09-02 02:28:02,332::train::INFO] [train] Iter 04978 | loss 2.2742 | loss(rot) 1.6908 | loss(pos) 0.1602 | loss(seq) 0.4232 | grad 3.0092 | lr 0.0010 | time_forward 3.5380 | time_backward 4.3390
[2023-09-02 02:28:05,030::train::INFO] [train] Iter 04979 | loss 2.0341 | loss(rot) 1.2937 | loss(pos) 0.2615 | loss(seq) 0.4789 | grad 4.5940 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4290
[2023-09-02 02:28:12,194::train::INFO] [train] Iter 04980 | loss 1.3958 | loss(rot) 1.2158 | loss(pos) 0.1202 | loss(seq) 0.0599 | grad 4.0916 | lr 0.0010 | time_forward 3.0600 | time_backward 4.1000
[2023-09-02 02:28:20,299::train::INFO] [train] Iter 04981 | loss 1.8346 | loss(rot) 1.1806 | loss(pos) 0.3807 | loss(seq) 0.2733 | grad 4.4864 | lr 0.0010 | time_forward 3.4450 | time_backward 4.6560
[2023-09-02 02:28:28,957::train::INFO] [train] Iter 04982 | loss 3.6749 | loss(rot) 0.0475 | loss(pos) 3.6274 | loss(seq) 0.0000 | grad 7.5417 | lr 0.0010 | time_forward 3.7320 | time_backward 4.9220
[2023-09-02 02:28:37,405::train::INFO] [train] Iter 04983 | loss 2.1164 | loss(rot) 0.8098 | loss(pos) 0.7111 | loss(seq) 0.5955 | grad 5.5200 | lr 0.0010 | time_forward 3.6040 | time_backward 4.8410
[2023-09-02 02:28:45,908::train::INFO] [train] Iter 04984 | loss 2.0050 | loss(rot) 1.5598 | loss(pos) 0.2074 | loss(seq) 0.2378 | grad 5.0443 | lr 0.0010 | time_forward 3.6670 | time_backward 4.8340
[2023-09-02 02:28:48,782::train::INFO] [train] Iter 04985 | loss 1.7166 | loss(rot) 1.3228 | loss(pos) 0.3241 | loss(seq) 0.0698 | grad 5.5547 | lr 0.0010 | time_forward 1.3910 | time_backward 1.4790
[2023-09-02 02:28:51,520::train::INFO] [train] Iter 04986 | loss 2.3454 | loss(rot) 1.5709 | loss(pos) 0.5206 | loss(seq) 0.2539 | grad 9.2750 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4710
[2023-09-02 02:28:59,914::train::INFO] [train] Iter 04987 | loss 1.6042 | loss(rot) 0.3095 | loss(pos) 1.0969 | loss(seq) 0.1979 | grad 3.5480 | lr 0.0010 | time_forward 3.4530 | time_backward 4.9370
[2023-09-02 02:29:08,470::train::INFO] [train] Iter 04988 | loss 2.0190 | loss(rot) 1.7838 | loss(pos) 0.2352 | loss(seq) 0.0000 | grad 3.7342 | lr 0.0010 | time_forward 3.6070 | time_backward 4.9450
[2023-09-02 02:29:17,786::train::INFO] [train] Iter 04989 | loss 3.0160 | loss(rot) 2.8711 | loss(pos) 0.1442 | loss(seq) 0.0007 | grad 3.7147 | lr 0.0010 | time_forward 3.9180 | time_backward 5.3940
[2023-09-02 02:29:20,497::train::INFO] [train] Iter 04990 | loss 2.7564 | loss(rot) 2.4994 | loss(pos) 0.2538 | loss(seq) 0.0032 | grad 4.7079 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4280