text
stringlengths
56
1.16k
[2023-09-02 00:54:30,184::train::INFO] [train] Iter 04191 | loss 0.6735 | loss(rot) 0.2673 | loss(pos) 0.3219 | loss(seq) 0.0843 | grad 2.6003 | lr 0.0010 | time_forward 4.2300 | time_backward 6.1290
[2023-09-02 00:54:38,425::train::INFO] [train] Iter 04192 | loss 1.4575 | loss(rot) 0.5306 | loss(pos) 0.6107 | loss(seq) 0.3162 | grad 4.8438 | lr 0.0010 | time_forward 3.5500 | time_backward 4.6880
[2023-09-02 00:54:47,938::train::INFO] [train] Iter 04193 | loss 1.0909 | loss(rot) 0.0511 | loss(pos) 1.0293 | loss(seq) 0.0106 | grad 6.0800 | lr 0.0010 | time_forward 4.0990 | time_backward 5.4090
[2023-09-02 00:54:50,720::train::INFO] [train] Iter 04194 | loss 2.1502 | loss(rot) 1.2919 | loss(pos) 0.3821 | loss(seq) 0.4761 | grad 3.7782 | lr 0.0010 | time_forward 1.3270 | time_backward 1.4520
[2023-09-02 00:54:58,006::train::INFO] [train] Iter 04195 | loss 2.5655 | loss(rot) 2.3843 | loss(pos) 0.1809 | loss(seq) 0.0003 | grad 3.4276 | lr 0.0010 | time_forward 3.0950 | time_backward 4.1890
[2023-09-02 00:55:00,841::train::INFO] [train] Iter 04196 | loss 3.2399 | loss(rot) 2.4482 | loss(pos) 0.2048 | loss(seq) 0.5869 | grad 7.3384 | lr 0.0010 | time_forward 1.3240 | time_backward 1.5070
[2023-09-02 00:55:03,679::train::INFO] [train] Iter 04197 | loss 2.2976 | loss(rot) 1.5114 | loss(pos) 0.2702 | loss(seq) 0.5160 | grad 3.7250 | lr 0.0010 | time_forward 1.3520 | time_backward 1.4810
[2023-09-02 00:55:13,313::train::INFO] [train] Iter 04198 | loss 1.6915 | loss(rot) 1.5339 | loss(pos) 0.1284 | loss(seq) 0.0292 | grad 7.4642 | lr 0.0010 | time_forward 4.2250 | time_backward 5.4060
[2023-09-02 00:55:22,706::train::INFO] [train] Iter 04199 | loss 1.9239 | loss(rot) 1.3454 | loss(pos) 0.1196 | loss(seq) 0.4589 | grad 5.6394 | lr 0.0010 | time_forward 3.9450 | time_backward 5.4450
[2023-09-02 00:55:31,390::train::INFO] [train] Iter 04200 | loss 1.5547 | loss(rot) 1.3707 | loss(pos) 0.1582 | loss(seq) 0.0258 | grad 4.2766 | lr 0.0010 | time_forward 3.6600 | time_backward 5.0200
[2023-09-02 00:55:41,060::train::INFO] [train] Iter 04201 | loss 1.1480 | loss(rot) 0.2944 | loss(pos) 0.8178 | loss(seq) 0.0358 | grad 4.7839 | lr 0.0010 | time_forward 4.0080 | time_backward 5.6580
[2023-09-02 00:55:50,569::train::INFO] [train] Iter 04202 | loss 2.2741 | loss(rot) 1.8950 | loss(pos) 0.1918 | loss(seq) 0.1874 | grad 2.8670 | lr 0.0010 | time_forward 4.0220 | time_backward 5.4830
[2023-09-02 00:55:53,438::train::INFO] [train] Iter 04203 | loss 2.9704 | loss(rot) 2.7437 | loss(pos) 0.2267 | loss(seq) 0.0000 | grad 5.4759 | lr 0.0010 | time_forward 1.3740 | time_backward 1.4920
[2023-09-02 00:55:56,266::train::INFO] [train] Iter 04204 | loss 2.7430 | loss(rot) 2.2845 | loss(pos) 0.1436 | loss(seq) 0.3149 | grad 4.3205 | lr 0.0010 | time_forward 1.3390 | time_backward 1.4860
[2023-09-02 00:56:06,080::train::INFO] [train] Iter 04205 | loss 1.2204 | loss(rot) 0.4347 | loss(pos) 0.7580 | loss(seq) 0.0277 | grad 3.7126 | lr 0.0010 | time_forward 3.9740 | time_backward 5.8370
[2023-09-02 00:56:16,158::train::INFO] [train] Iter 04206 | loss 2.0994 | loss(rot) 1.2378 | loss(pos) 0.3446 | loss(seq) 0.5169 | grad 5.0061 | lr 0.0010 | time_forward 4.1000 | time_backward 5.9310
[2023-09-02 00:56:23,428::train::INFO] [train] Iter 04207 | loss 2.2871 | loss(rot) 1.3572 | loss(pos) 0.3225 | loss(seq) 0.6074 | grad 3.5047 | lr 0.0010 | time_forward 3.1680 | time_backward 4.0990
[2023-09-02 00:56:32,460::train::INFO] [train] Iter 04208 | loss 3.1929 | loss(rot) 2.9944 | loss(pos) 0.1428 | loss(seq) 0.0557 | grad 4.0929 | lr 0.0010 | time_forward 3.7760 | time_backward 5.2540
[2023-09-02 00:56:41,924::train::INFO] [train] Iter 04209 | loss 2.1129 | loss(rot) 1.2702 | loss(pos) 0.3456 | loss(seq) 0.4971 | grad 3.2244 | lr 0.0010 | time_forward 3.9960 | time_backward 5.4650
[2023-09-02 00:56:50,708::train::INFO] [train] Iter 04210 | loss 2.7753 | loss(rot) 2.5409 | loss(pos) 0.1716 | loss(seq) 0.0628 | grad 3.8569 | lr 0.0010 | time_forward 3.7190 | time_backward 5.0610
[2023-09-02 00:56:53,333::train::INFO] [train] Iter 04211 | loss 3.3954 | loss(rot) 2.9695 | loss(pos) 0.4256 | loss(seq) 0.0003 | grad 5.2955 | lr 0.0010 | time_forward 1.2200 | time_backward 1.4010
[2023-09-02 00:56:56,210::train::INFO] [train] Iter 04212 | loss 1.1593 | loss(rot) 0.4406 | loss(pos) 0.6091 | loss(seq) 0.1096 | grad 3.4438 | lr 0.0010 | time_forward 1.3080 | time_backward 1.5650
[2023-09-02 00:56:58,660::train::INFO] [train] Iter 04213 | loss 2.0205 | loss(rot) 1.2168 | loss(pos) 0.2234 | loss(seq) 0.5803 | grad 3.2815 | lr 0.0010 | time_forward 1.1360 | time_backward 1.3110
[2023-09-02 00:57:01,116::train::INFO] [train] Iter 04214 | loss 0.7285 | loss(rot) 0.1515 | loss(pos) 0.5373 | loss(seq) 0.0397 | grad 4.2015 | lr 0.0010 | time_forward 1.1610 | time_backward 1.2920
[2023-09-02 00:57:09,619::train::INFO] [train] Iter 04215 | loss 2.8857 | loss(rot) 2.4832 | loss(pos) 0.2370 | loss(seq) 0.1655 | grad 3.7321 | lr 0.0010 | time_forward 3.5350 | time_backward 4.9660
[2023-09-02 00:57:12,546::train::INFO] [train] Iter 04216 | loss 1.9905 | loss(rot) 1.1705 | loss(pos) 0.2444 | loss(seq) 0.5756 | grad 3.9524 | lr 0.0010 | time_forward 1.3830 | time_backward 1.5400
[2023-09-02 00:57:20,467::train::INFO] [train] Iter 04217 | loss 2.3974 | loss(rot) 1.5990 | loss(pos) 0.3279 | loss(seq) 0.4706 | grad 4.4239 | lr 0.0010 | time_forward 3.3950 | time_backward 4.5230
[2023-09-02 00:57:23,325::train::INFO] [train] Iter 04218 | loss 2.2897 | loss(rot) 2.1223 | loss(pos) 0.1674 | loss(seq) 0.0000 | grad 3.3635 | lr 0.0010 | time_forward 1.3050 | time_backward 1.5500
[2023-09-02 00:57:26,152::train::INFO] [train] Iter 04219 | loss 2.9741 | loss(rot) 2.5872 | loss(pos) 0.2740 | loss(seq) 0.1129 | grad 4.8121 | lr 0.0010 | time_forward 1.2930 | time_backward 1.5100
[2023-09-02 00:57:36,352::train::INFO] [train] Iter 04220 | loss 1.0878 | loss(rot) 0.3917 | loss(pos) 0.4633 | loss(seq) 0.2329 | grad 3.0793 | lr 0.0010 | time_forward 4.1610 | time_backward 6.0360
[2023-09-02 00:57:47,000::train::INFO] [train] Iter 04221 | loss 3.0233 | loss(rot) 2.7686 | loss(pos) 0.2547 | loss(seq) 0.0000 | grad 4.8221 | lr 0.0010 | time_forward 4.2140 | time_backward 6.4310
[2023-09-02 00:57:55,950::train::INFO] [train] Iter 04222 | loss 2.4428 | loss(rot) 2.3407 | loss(pos) 0.1018 | loss(seq) 0.0003 | grad 3.7612 | lr 0.0010 | time_forward 3.6980 | time_backward 5.2480
[2023-09-02 00:58:06,592::train::INFO] [train] Iter 04223 | loss 1.7435 | loss(rot) 1.6396 | loss(pos) 0.0812 | loss(seq) 0.0226 | grad 4.5861 | lr 0.0010 | time_forward 4.3040 | time_backward 6.3340
[2023-09-02 00:58:13,271::train::INFO] [train] Iter 04224 | loss 2.4247 | loss(rot) 1.6743 | loss(pos) 0.2114 | loss(seq) 0.5390 | grad 3.2523 | lr 0.0010 | time_forward 2.6960 | time_backward 3.9660
[2023-09-02 00:58:23,880::train::INFO] [train] Iter 04225 | loss 2.7528 | loss(rot) 2.5797 | loss(pos) 0.0949 | loss(seq) 0.0782 | grad 3.6293 | lr 0.0010 | time_forward 4.2020 | time_backward 6.4040
[2023-09-02 00:58:41,192::train::INFO] [train] Iter 04226 | loss 2.1236 | loss(rot) 1.1777 | loss(pos) 0.4673 | loss(seq) 0.4786 | grad 3.3733 | lr 0.0010 | time_forward 4.6890 | time_backward 12.6200
[2023-09-02 00:58:56,930::train::INFO] [train] Iter 04227 | loss 1.7484 | loss(rot) 0.1792 | loss(pos) 1.4201 | loss(seq) 0.1491 | grad 4.7080 | lr 0.0010 | time_forward 3.9740 | time_backward 11.7610
[2023-09-02 00:59:13,925::train::INFO] [train] Iter 04228 | loss 2.9019 | loss(rot) 2.6555 | loss(pos) 0.1858 | loss(seq) 0.0606 | grad 3.7978 | lr 0.0010 | time_forward 5.1700 | time_backward 11.8200
[2023-09-02 00:59:27,396::train::INFO] [train] Iter 04229 | loss 2.4194 | loss(rot) 2.3462 | loss(pos) 0.0720 | loss(seq) 0.0012 | grad 6.5077 | lr 0.0010 | time_forward 7.0100 | time_backward 6.4580
[2023-09-02 00:59:28,975::train::INFO] [train] Iter 04230 | loss 2.8462 | loss(rot) 2.5484 | loss(pos) 0.2979 | loss(seq) 0.0000 | grad 4.0539 | lr 0.0010 | time_forward 0.7470 | time_backward 0.8290
[2023-09-02 00:59:45,559::train::INFO] [train] Iter 04231 | loss 1.9162 | loss(rot) 1.7136 | loss(pos) 0.0913 | loss(seq) 0.1113 | grad 5.6142 | lr 0.0010 | time_forward 11.3910 | time_backward 5.1890
[2023-09-02 00:59:48,402::train::INFO] [train] Iter 04232 | loss 2.3016 | loss(rot) 1.2137 | loss(pos) 0.5466 | loss(seq) 0.5413 | grad 7.0415 | lr 0.0010 | time_forward 1.3460 | time_backward 1.4940
[2023-09-02 01:00:05,935::train::INFO] [train] Iter 04233 | loss 2.7556 | loss(rot) 1.8835 | loss(pos) 0.3853 | loss(seq) 0.4868 | grad 5.1625 | lr 0.0010 | time_forward 12.0950 | time_backward 5.4340
[2023-09-02 01:00:08,775::train::INFO] [train] Iter 04234 | loss 3.1713 | loss(rot) 2.8249 | loss(pos) 0.0908 | loss(seq) 0.2556 | grad 4.8464 | lr 0.0010 | time_forward 1.3130 | time_backward 1.5230
[2023-09-02 01:00:20,326::train::INFO] [train] Iter 04235 | loss 2.0031 | loss(rot) 1.3463 | loss(pos) 0.1966 | loss(seq) 0.4603 | grad 3.0948 | lr 0.0010 | time_forward 3.9270 | time_backward 7.6200
[2023-09-02 01:00:29,979::train::INFO] [train] Iter 04236 | loss 1.7927 | loss(rot) 0.0451 | loss(pos) 1.7420 | loss(seq) 0.0056 | grad 5.9842 | lr 0.0010 | time_forward 3.8960 | time_backward 5.7530
[2023-09-02 01:00:38,397::train::INFO] [train] Iter 04237 | loss 2.4577 | loss(rot) 1.8090 | loss(pos) 0.1856 | loss(seq) 0.4631 | grad 3.4976 | lr 0.0010 | time_forward 3.2970 | time_backward 5.1170
[2023-09-02 01:00:54,428::train::INFO] [train] Iter 04238 | loss 2.3902 | loss(rot) 2.0254 | loss(pos) 0.1319 | loss(seq) 0.2329 | grad 3.8838 | lr 0.0010 | time_forward 9.7340 | time_backward 6.2930
[2023-09-02 01:01:02,711::train::INFO] [train] Iter 04239 | loss 1.0188 | loss(rot) 0.3348 | loss(pos) 0.1074 | loss(seq) 0.5766 | grad 3.1403 | lr 0.0010 | time_forward 3.4770 | time_backward 4.8030
[2023-09-02 01:01:13,257::train::INFO] [train] Iter 04240 | loss 1.9432 | loss(rot) 1.1450 | loss(pos) 0.2484 | loss(seq) 0.5498 | grad 4.1248 | lr 0.0010 | time_forward 4.2070 | time_backward 6.3350
[2023-09-02 01:01:21,286::train::INFO] [train] Iter 04241 | loss 2.7554 | loss(rot) 1.8260 | loss(pos) 0.4468 | loss(seq) 0.4826 | grad 3.9240 | lr 0.0010 | time_forward 3.4740 | time_backward 4.5520
[2023-09-02 01:01:31,619::train::INFO] [train] Iter 04242 | loss 1.7853 | loss(rot) 0.9362 | loss(pos) 0.2956 | loss(seq) 0.5535 | grad 3.8933 | lr 0.0010 | time_forward 4.2090 | time_backward 6.1200
[2023-09-02 01:01:40,229::train::INFO] [train] Iter 04243 | loss 2.0851 | loss(rot) 0.0363 | loss(pos) 2.0440 | loss(seq) 0.0048 | grad 8.0904 | lr 0.0010 | time_forward 3.5140 | time_backward 5.0940
[2023-09-02 01:01:43,662::train::INFO] [train] Iter 04244 | loss 2.4996 | loss(rot) 2.2872 | loss(pos) 0.1026 | loss(seq) 0.1098 | grad 3.3000 | lr 0.0010 | time_forward 1.4970 | time_backward 1.9320
[2023-09-02 01:01:51,032::train::INFO] [train] Iter 04245 | loss 1.2001 | loss(rot) 0.3955 | loss(pos) 0.6224 | loss(seq) 0.1822 | grad 5.0026 | lr 0.0010 | time_forward 3.0840 | time_backward 4.2840
[2023-09-02 01:01:58,041::train::INFO] [train] Iter 04246 | loss 2.3311 | loss(rot) 1.4927 | loss(pos) 0.1798 | loss(seq) 0.6587 | grad 3.9217 | lr 0.0010 | time_forward 2.9820 | time_backward 4.0230
[2023-09-02 01:02:07,002::train::INFO] [train] Iter 04247 | loss 1.9696 | loss(rot) 1.4336 | loss(pos) 0.2339 | loss(seq) 0.3021 | grad 4.7836 | lr 0.0010 | time_forward 3.8320 | time_backward 5.1260
[2023-09-02 01:02:09,695::train::INFO] [train] Iter 04248 | loss 1.7221 | loss(rot) 1.5670 | loss(pos) 0.1544 | loss(seq) 0.0007 | grad 4.1982 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4620
[2023-09-02 01:02:17,386::train::INFO] [train] Iter 04249 | loss 2.8700 | loss(rot) 2.7035 | loss(pos) 0.1636 | loss(seq) 0.0029 | grad 5.0398 | lr 0.0010 | time_forward 3.2890 | time_backward 4.3840
[2023-09-02 01:02:20,164::train::INFO] [train] Iter 04250 | loss 2.1516 | loss(rot) 1.4090 | loss(pos) 0.2705 | loss(seq) 0.4721 | grad 5.2344 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4630
[2023-09-02 01:02:29,557::train::INFO] [train] Iter 04251 | loss 1.6919 | loss(rot) 0.2495 | loss(pos) 1.1020 | loss(seq) 0.3403 | grad 5.9524 | lr 0.0010 | time_forward 3.5410 | time_backward 5.8480
[2023-09-02 01:02:41,011::train::INFO] [train] Iter 04252 | loss 1.6995 | loss(rot) 0.9010 | loss(pos) 0.5678 | loss(seq) 0.2307 | grad 5.5301 | lr 0.0010 | time_forward 4.0380 | time_backward 7.4120
[2023-09-02 01:02:51,066::train::INFO] [train] Iter 04253 | loss 2.4137 | loss(rot) 2.1645 | loss(pos) 0.2492 | loss(seq) 0.0000 | grad 4.0153 | lr 0.0010 | time_forward 4.0370 | time_backward 5.9270
[2023-09-02 01:03:01,263::train::INFO] [train] Iter 04254 | loss 2.4609 | loss(rot) 0.9199 | loss(pos) 0.7644 | loss(seq) 0.7766 | grad 5.0488 | lr 0.0010 | time_forward 4.0000 | time_backward 6.1950
[2023-09-02 01:03:04,024::train::INFO] [train] Iter 04255 | loss 2.6906 | loss(rot) 2.3992 | loss(pos) 0.2843 | loss(seq) 0.0071 | grad 6.1186 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4800
[2023-09-02 01:03:11,832::train::INFO] [train] Iter 04256 | loss 3.0544 | loss(rot) 2.8143 | loss(pos) 0.2401 | loss(seq) 0.0000 | grad 4.3619 | lr 0.0010 | time_forward 3.2590 | time_backward 4.5450
[2023-09-02 01:03:22,056::train::INFO] [train] Iter 04257 | loss 2.4275 | loss(rot) 1.6036 | loss(pos) 0.3415 | loss(seq) 0.4824 | grad 4.6032 | lr 0.0010 | time_forward 4.1350 | time_backward 6.0870
[2023-09-02 01:03:30,620::train::INFO] [train] Iter 04258 | loss 2.3413 | loss(rot) 1.4447 | loss(pos) 0.4197 | loss(seq) 0.4770 | grad 4.2456 | lr 0.0010 | time_forward 3.6130 | time_backward 4.9480
[2023-09-02 01:03:40,059::train::INFO] [train] Iter 04259 | loss 1.1843 | loss(rot) 0.4762 | loss(pos) 0.3716 | loss(seq) 0.3365 | grad 5.1287 | lr 0.0010 | time_forward 4.0450 | time_backward 5.3900
[2023-09-02 01:03:50,301::train::INFO] [train] Iter 04260 | loss 2.1757 | loss(rot) 1.7913 | loss(pos) 0.3529 | loss(seq) 0.0315 | grad 6.1820 | lr 0.0010 | time_forward 4.1770 | time_backward 6.0610
[2023-09-02 01:04:00,327::train::INFO] [train] Iter 04261 | loss 1.7203 | loss(rot) 0.5180 | loss(pos) 0.9367 | loss(seq) 0.2656 | grad 7.5994 | lr 0.0010 | time_forward 4.1400 | time_backward 5.8840
[2023-09-02 01:04:09,722::train::INFO] [train] Iter 04262 | loss 1.4520 | loss(rot) 0.8801 | loss(pos) 0.1525 | loss(seq) 0.4195 | grad 3.3152 | lr 0.0010 | time_forward 4.0070 | time_backward 5.3840
[2023-09-02 01:04:20,089::train::INFO] [train] Iter 04263 | loss 3.4398 | loss(rot) 0.0192 | loss(pos) 3.4190 | loss(seq) 0.0016 | grad 10.2943 | lr 0.0010 | time_forward 4.2090 | time_backward 6.1550
[2023-09-02 01:04:28,933::train::INFO] [train] Iter 04264 | loss 1.0832 | loss(rot) 0.5390 | loss(pos) 0.4592 | loss(seq) 0.0850 | grad 4.3853 | lr 0.0010 | time_forward 3.7080 | time_backward 5.1310
[2023-09-02 01:04:31,858::train::INFO] [train] Iter 04265 | loss 2.5049 | loss(rot) 1.7309 | loss(pos) 0.2448 | loss(seq) 0.5292 | grad 5.3946 | lr 0.0010 | time_forward 1.3420 | time_backward 1.5790
[2023-09-02 01:04:40,451::train::INFO] [train] Iter 04266 | loss 3.0354 | loss(rot) 2.6053 | loss(pos) 0.3935 | loss(seq) 0.0366 | grad 6.7523 | lr 0.0010 | time_forward 3.6340 | time_backward 4.9550
[2023-09-02 01:04:50,970::train::INFO] [train] Iter 04267 | loss 1.0862 | loss(rot) 0.3052 | loss(pos) 0.6491 | loss(seq) 0.1320 | grad 4.5867 | lr 0.0010 | time_forward 4.1780 | time_backward 6.3380
[2023-09-02 01:04:54,022::train::INFO] [train] Iter 04268 | loss 2.4658 | loss(rot) 1.8530 | loss(pos) 0.1638 | loss(seq) 0.4490 | grad 4.4491 | lr 0.0010 | time_forward 1.4360 | time_backward 1.6120
[2023-09-02 01:05:04,536::train::INFO] [train] Iter 04269 | loss 2.5095 | loss(rot) 1.9513 | loss(pos) 0.2360 | loss(seq) 0.3223 | grad 4.5975 | lr 0.0010 | time_forward 4.2100 | time_backward 6.3000
[2023-09-02 01:05:07,440::train::INFO] [train] Iter 04270 | loss 1.8608 | loss(rot) 1.6454 | loss(pos) 0.1226 | loss(seq) 0.0929 | grad 3.4817 | lr 0.0010 | time_forward 1.3630 | time_backward 1.5370
[2023-09-02 01:05:17,432::train::INFO] [train] Iter 04271 | loss 0.9806 | loss(rot) 0.6086 | loss(pos) 0.1738 | loss(seq) 0.1982 | grad 3.5393 | lr 0.0010 | time_forward 4.2220 | time_backward 5.7670
[2023-09-02 01:05:26,570::train::INFO] [train] Iter 04272 | loss 1.9152 | loss(rot) 1.1364 | loss(pos) 0.3004 | loss(seq) 0.4784 | grad 3.8853 | lr 0.0010 | time_forward 3.7510 | time_backward 5.3830
[2023-09-02 01:05:35,703::train::INFO] [train] Iter 04273 | loss 0.9689 | loss(rot) 0.2448 | loss(pos) 0.7064 | loss(seq) 0.0177 | grad 3.5466 | lr 0.0010 | time_forward 3.7640 | time_backward 5.3640
[2023-09-02 01:05:45,918::train::INFO] [train] Iter 04274 | loss 1.2485 | loss(rot) 0.4866 | loss(pos) 0.5803 | loss(seq) 0.1816 | grad 3.5597 | lr 0.0010 | time_forward 4.2710 | time_backward 5.9410
[2023-09-02 01:05:56,200::train::INFO] [train] Iter 04275 | loss 2.5460 | loss(rot) 2.2753 | loss(pos) 0.2707 | loss(seq) 0.0000 | grad 3.8482 | lr 0.0010 | time_forward 4.2950 | time_backward 5.9830
[2023-09-02 01:06:05,122::train::INFO] [train] Iter 04276 | loss 2.0666 | loss(rot) 0.4193 | loss(pos) 1.2983 | loss(seq) 0.3489 | grad 4.3043 | lr 0.0010 | time_forward 3.7990 | time_backward 5.1190
[2023-09-02 01:06:12,723::train::INFO] [train] Iter 04277 | loss 2.5203 | loss(rot) 2.2824 | loss(pos) 0.1966 | loss(seq) 0.0414 | grad 6.1816 | lr 0.0010 | time_forward 3.2010 | time_backward 4.3960
[2023-09-02 01:06:23,009::train::INFO] [train] Iter 04278 | loss 1.1767 | loss(rot) 0.1514 | loss(pos) 0.7940 | loss(seq) 0.2312 | grad 4.5763 | lr 0.0010 | time_forward 4.1840 | time_backward 6.0980
[2023-09-02 01:06:32,251::train::INFO] [train] Iter 04279 | loss 1.0379 | loss(rot) 0.0776 | loss(pos) 0.7219 | loss(seq) 0.2385 | grad 4.6140 | lr 0.0010 | time_forward 3.8670 | time_backward 5.3720
[2023-09-02 01:06:41,334::train::INFO] [train] Iter 04280 | loss 2.6230 | loss(rot) 2.2330 | loss(pos) 0.3357 | loss(seq) 0.0542 | grad 6.3635 | lr 0.0010 | time_forward 3.7780 | time_backward 5.3020
[2023-09-02 01:06:49,798::train::INFO] [train] Iter 04281 | loss 3.3243 | loss(rot) 2.6867 | loss(pos) 0.2477 | loss(seq) 0.3899 | grad 4.9113 | lr 0.0010 | time_forward 3.4530 | time_backward 5.0060
[2023-09-02 01:06:59,105::train::INFO] [train] Iter 04282 | loss 2.0872 | loss(rot) 1.4038 | loss(pos) 0.2982 | loss(seq) 0.3852 | grad 5.1422 | lr 0.0010 | time_forward 3.9150 | time_backward 5.3880
[2023-09-02 01:07:08,743::train::INFO] [train] Iter 04283 | loss 1.3375 | loss(rot) 0.5756 | loss(pos) 0.7058 | loss(seq) 0.0560 | grad 4.5845 | lr 0.0010 | time_forward 4.0270 | time_backward 5.6070
[2023-09-02 01:07:18,519::train::INFO] [train] Iter 04284 | loss 1.5449 | loss(rot) 0.6821 | loss(pos) 0.4821 | loss(seq) 0.3807 | grad 5.2949 | lr 0.0010 | time_forward 4.0390 | time_backward 5.7350
[2023-09-02 01:07:28,624::train::INFO] [train] Iter 04285 | loss 2.6766 | loss(rot) 2.4256 | loss(pos) 0.2497 | loss(seq) 0.0012 | grad 4.1696 | lr 0.0010 | time_forward 4.1730 | time_backward 5.9270
[2023-09-02 01:07:39,326::train::INFO] [train] Iter 04286 | loss 2.3806 | loss(rot) 2.1632 | loss(pos) 0.2174 | loss(seq) 0.0000 | grad 4.7387 | lr 0.0010 | time_forward 4.2310 | time_backward 6.4670
[2023-09-02 01:07:42,172::train::INFO] [train] Iter 04287 | loss 3.1452 | loss(rot) 2.8841 | loss(pos) 0.2547 | loss(seq) 0.0064 | grad 4.9509 | lr 0.0010 | time_forward 1.3410 | time_backward 1.5020
[2023-09-02 01:07:50,719::train::INFO] [train] Iter 04288 | loss 2.6316 | loss(rot) 2.3011 | loss(pos) 0.3078 | loss(seq) 0.0227 | grad 7.0512 | lr 0.0010 | time_forward 3.6500 | time_backward 4.8920
[2023-09-02 01:07:53,560::train::INFO] [train] Iter 04289 | loss 0.6067 | loss(rot) 0.2701 | loss(pos) 0.2966 | loss(seq) 0.0401 | grad 3.6255 | lr 0.0010 | time_forward 1.3430 | time_backward 1.4930
[2023-09-02 01:08:02,244::train::INFO] [train] Iter 04290 | loss 1.9051 | loss(rot) 1.3332 | loss(pos) 0.1375 | loss(seq) 0.4343 | grad 3.5630 | lr 0.0010 | time_forward 3.6350 | time_backward 5.0470