text
stringlengths 56
1.16k
|
---|
[2023-09-01 23:38:47,770::train::INFO] [train] Iter 03592 | loss 3.1260 | loss(rot) 2.9025 | loss(pos) 0.2232 | loss(seq) 0.0003 | grad 6.8055 | lr 0.0010 | time_forward 4.0720 | time_backward 6.0150 |
[2023-09-01 23:38:57,954::train::INFO] [train] Iter 03593 | loss 2.6977 | loss(rot) 2.2358 | loss(pos) 0.4618 | loss(seq) 0.0000 | grad 4.5528 | lr 0.0010 | time_forward 4.1090 | time_backward 6.0730 |
[2023-09-01 23:39:07,965::train::INFO] [train] Iter 03594 | loss 2.5977 | loss(rot) 2.1259 | loss(pos) 0.2149 | loss(seq) 0.2569 | grad 3.9479 | lr 0.0010 | time_forward 4.0330 | time_backward 5.9740 |
[2023-09-01 23:39:16,700::train::INFO] [train] Iter 03595 | loss 1.5266 | loss(rot) 0.4140 | loss(pos) 0.9523 | loss(seq) 0.1603 | grad 4.0202 | lr 0.0010 | time_forward 3.6230 | time_backward 5.0970 |
[2023-09-01 23:39:24,160::train::INFO] [train] Iter 03596 | loss 2.0021 | loss(rot) 1.1210 | loss(pos) 0.3266 | loss(seq) 0.5545 | grad 3.8998 | lr 0.0010 | time_forward 3.1940 | time_backward 4.2630 |
[2023-09-01 23:39:26,823::train::INFO] [train] Iter 03597 | loss 2.5973 | loss(rot) 2.4622 | loss(pos) 0.1322 | loss(seq) 0.0029 | grad 3.9203 | lr 0.0010 | time_forward 1.2350 | time_backward 1.4250 |
[2023-09-01 23:39:36,936::train::INFO] [train] Iter 03598 | loss 2.7454 | loss(rot) 2.5507 | loss(pos) 0.1946 | loss(seq) 0.0001 | grad 3.6408 | lr 0.0010 | time_forward 4.3980 | time_backward 5.7120 |
[2023-09-01 23:39:45,882::train::INFO] [train] Iter 03599 | loss 1.9796 | loss(rot) 1.5743 | loss(pos) 0.3404 | loss(seq) 0.0649 | grad 5.1223 | lr 0.0010 | time_forward 3.7900 | time_backward 5.1520 |
[2023-09-01 23:39:55,958::train::INFO] [train] Iter 03600 | loss 2.6410 | loss(rot) 2.5092 | loss(pos) 0.1305 | loss(seq) 0.0012 | grad 4.8332 | lr 0.0010 | time_forward 4.1310 | time_backward 5.9430 |
[2023-09-01 23:39:58,141::train::INFO] [train] Iter 03601 | loss 1.3429 | loss(rot) 0.8453 | loss(pos) 0.2998 | loss(seq) 0.1978 | grad 5.0198 | lr 0.0010 | time_forward 1.0040 | time_backward 1.1760 |
[2023-09-01 23:40:06,937::train::INFO] [train] Iter 03602 | loss 1.3009 | loss(rot) 0.6072 | loss(pos) 0.4223 | loss(seq) 0.2713 | grad 2.7053 | lr 0.0010 | time_forward 3.6180 | time_backward 5.1750 |
[2023-09-01 23:40:15,757::train::INFO] [train] Iter 03603 | loss 1.2507 | loss(rot) 0.6532 | loss(pos) 0.3723 | loss(seq) 0.2252 | grad 3.5666 | lr 0.0010 | time_forward 3.7890 | time_backward 5.0280 |
[2023-09-01 23:40:22,492::train::INFO] [train] Iter 03604 | loss 0.8046 | loss(rot) 0.1724 | loss(pos) 0.5614 | loss(seq) 0.0709 | grad 5.1562 | lr 0.0010 | time_forward 2.8350 | time_backward 3.8960 |
[2023-09-01 23:40:31,789::train::INFO] [train] Iter 03605 | loss 3.0687 | loss(rot) 2.7411 | loss(pos) 0.3275 | loss(seq) 0.0001 | grad 4.1769 | lr 0.0010 | time_forward 3.9700 | time_backward 5.3250 |
[2023-09-01 23:40:40,575::train::INFO] [train] Iter 03606 | loss 2.1283 | loss(rot) 1.3257 | loss(pos) 0.4008 | loss(seq) 0.4018 | grad 6.0176 | lr 0.0010 | time_forward 3.6200 | time_backward 5.1620 |
[2023-09-01 23:40:43,296::train::INFO] [train] Iter 03607 | loss 2.5002 | loss(rot) 1.8186 | loss(pos) 0.2540 | loss(seq) 0.4276 | grad 4.8881 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4480 |
[2023-09-01 23:40:53,260::train::INFO] [train] Iter 03608 | loss 2.9591 | loss(rot) 2.4893 | loss(pos) 0.2533 | loss(seq) 0.2165 | grad 4.7464 | lr 0.0010 | time_forward 4.0360 | time_backward 5.9250 |
[2023-09-01 23:41:01,449::train::INFO] [train] Iter 03609 | loss 2.4908 | loss(rot) 2.1781 | loss(pos) 0.1792 | loss(seq) 0.1334 | grad 6.8616 | lr 0.0010 | time_forward 3.3760 | time_backward 4.8090 |
[2023-09-01 23:41:11,787::train::INFO] [train] Iter 03610 | loss 2.5451 | loss(rot) 1.5045 | loss(pos) 0.6297 | loss(seq) 0.4110 | grad 5.8007 | lr 0.0010 | time_forward 4.1350 | time_backward 6.2000 |
[2023-09-01 23:41:21,796::train::INFO] [train] Iter 03611 | loss 1.9637 | loss(rot) 1.2913 | loss(pos) 0.1989 | loss(seq) 0.4735 | grad 4.2704 | lr 0.0010 | time_forward 3.9920 | time_backward 6.0140 |
[2023-09-01 23:41:31,625::train::INFO] [train] Iter 03612 | loss 0.7592 | loss(rot) 0.1550 | loss(pos) 0.5602 | loss(seq) 0.0441 | grad 3.9461 | lr 0.0010 | time_forward 3.9810 | time_backward 5.8440 |
[2023-09-01 23:41:41,846::train::INFO] [train] Iter 03613 | loss 2.1179 | loss(rot) 1.3023 | loss(pos) 0.3129 | loss(seq) 0.5027 | grad 4.6035 | lr 0.0010 | time_forward 4.0730 | time_backward 6.1440 |
[2023-09-01 23:41:49,840::train::INFO] [train] Iter 03614 | loss 2.9832 | loss(rot) 2.7404 | loss(pos) 0.2424 | loss(seq) 0.0003 | grad 5.1069 | lr 0.0010 | time_forward 3.3800 | time_backward 4.5990 |
[2023-09-01 23:41:58,614::train::INFO] [train] Iter 03615 | loss 1.4896 | loss(rot) 0.6852 | loss(pos) 0.2760 | loss(seq) 0.5284 | grad 3.2646 | lr 0.0010 | time_forward 3.6740 | time_backward 5.0970 |
[2023-09-01 23:42:05,067::train::INFO] [train] Iter 03616 | loss 2.1633 | loss(rot) 0.6548 | loss(pos) 0.9775 | loss(seq) 0.5309 | grad 9.2728 | lr 0.0010 | time_forward 2.6600 | time_backward 3.7900 |
[2023-09-01 23:42:08,377::train::INFO] [train] Iter 03617 | loss 2.8245 | loss(rot) 2.1937 | loss(pos) 0.2019 | loss(seq) 0.4288 | grad 4.2086 | lr 0.0010 | time_forward 1.5180 | time_backward 1.7880 |
[2023-09-01 23:42:17,048::train::INFO] [train] Iter 03618 | loss 1.7330 | loss(rot) 0.8286 | loss(pos) 0.4542 | loss(seq) 0.4502 | grad 4.6442 | lr 0.0010 | time_forward 3.7440 | time_backward 4.9230 |
[2023-09-01 23:42:25,177::train::INFO] [train] Iter 03619 | loss 2.7340 | loss(rot) 2.4930 | loss(pos) 0.0890 | loss(seq) 0.1520 | grad 5.0308 | lr 0.0010 | time_forward 3.4460 | time_backward 4.6790 |
[2023-09-01 23:42:35,202::train::INFO] [train] Iter 03620 | loss 2.5187 | loss(rot) 1.0168 | loss(pos) 0.9479 | loss(seq) 0.5540 | grad 6.8850 | lr 0.0010 | time_forward 4.0420 | time_backward 5.9790 |
[2023-09-01 23:42:37,866::train::INFO] [train] Iter 03621 | loss 2.6159 | loss(rot) 2.3462 | loss(pos) 0.2237 | loss(seq) 0.0460 | grad 4.3921 | lr 0.0010 | time_forward 1.2350 | time_backward 1.4270 |
[2023-09-01 23:42:40,312::train::INFO] [train] Iter 03622 | loss 2.5591 | loss(rot) 1.6623 | loss(pos) 0.3452 | loss(seq) 0.5516 | grad 3.9688 | lr 0.0010 | time_forward 1.2080 | time_backward 1.2340 |
[2023-09-01 23:42:48,328::train::INFO] [train] Iter 03623 | loss 2.9060 | loss(rot) 2.0367 | loss(pos) 0.3748 | loss(seq) 0.4945 | grad 6.5269 | lr 0.0010 | time_forward 3.3700 | time_backward 4.6430 |
[2023-09-01 23:42:56,643::train::INFO] [train] Iter 03624 | loss 1.1626 | loss(rot) 0.2680 | loss(pos) 0.6118 | loss(seq) 0.2828 | grad 4.2402 | lr 0.0010 | time_forward 3.4960 | time_backward 4.8150 |
[2023-09-01 23:43:05,750::train::INFO] [train] Iter 03625 | loss 2.9834 | loss(rot) 2.7069 | loss(pos) 0.2765 | loss(seq) 0.0000 | grad 3.8391 | lr 0.0010 | time_forward 3.8350 | time_backward 5.2690 |
[2023-09-01 23:43:14,456::train::INFO] [train] Iter 03626 | loss 1.4287 | loss(rot) 0.4846 | loss(pos) 0.6325 | loss(seq) 0.3116 | grad 3.7268 | lr 0.0010 | time_forward 3.6910 | time_backward 5.0110 |
[2023-09-01 23:43:17,208::train::INFO] [train] Iter 03627 | loss 2.2103 | loss(rot) 2.0209 | loss(pos) 0.1619 | loss(seq) 0.0275 | grad 4.3831 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4930 |
[2023-09-01 23:43:27,487::train::INFO] [train] Iter 03628 | loss 2.0885 | loss(rot) 1.0779 | loss(pos) 0.6045 | loss(seq) 0.4061 | grad 4.4456 | lr 0.0010 | time_forward 4.2450 | time_backward 6.0280 |
[2023-09-01 23:43:37,700::train::INFO] [train] Iter 03629 | loss 3.4158 | loss(rot) 3.0193 | loss(pos) 0.3964 | loss(seq) 0.0001 | grad 4.3144 | lr 0.0010 | time_forward 4.1120 | time_backward 6.0970 |
[2023-09-01 23:43:40,384::train::INFO] [train] Iter 03630 | loss 1.9945 | loss(rot) 1.1146 | loss(pos) 0.3903 | loss(seq) 0.4896 | grad 5.6777 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4300 |
[2023-09-01 23:43:50,458::train::INFO] [train] Iter 03631 | loss 3.1729 | loss(rot) 2.1142 | loss(pos) 0.5922 | loss(seq) 0.4665 | grad 4.0143 | lr 0.0010 | time_forward 4.0510 | time_backward 5.9870 |
[2023-09-01 23:43:57,095::train::INFO] [train] Iter 03632 | loss 3.4393 | loss(rot) 3.0712 | loss(pos) 0.2717 | loss(seq) 0.0964 | grad 4.4415 | lr 0.0010 | time_forward 2.8800 | time_backward 3.7530 |
[2023-09-01 23:44:06,097::train::INFO] [train] Iter 03633 | loss 2.8667 | loss(rot) 2.6127 | loss(pos) 0.2208 | loss(seq) 0.0332 | grad 6.0300 | lr 0.0010 | time_forward 3.9170 | time_backward 5.0810 |
[2023-09-01 23:44:15,861::train::INFO] [train] Iter 03634 | loss 2.7694 | loss(rot) 2.2221 | loss(pos) 0.2833 | loss(seq) 0.2641 | grad 4.2330 | lr 0.0010 | time_forward 4.0910 | time_backward 5.6690 |
[2023-09-01 23:44:18,552::train::INFO] [train] Iter 03635 | loss 1.3295 | loss(rot) 0.6588 | loss(pos) 0.3732 | loss(seq) 0.2976 | grad 2.7435 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4590 |
[2023-09-01 23:44:26,746::train::INFO] [train] Iter 03636 | loss 1.7770 | loss(rot) 1.0126 | loss(pos) 0.3662 | loss(seq) 0.3982 | grad 4.8008 | lr 0.0010 | time_forward 3.4950 | time_backward 4.6950 |
[2023-09-01 23:44:36,022::train::INFO] [train] Iter 03637 | loss 2.1955 | loss(rot) 1.2200 | loss(pos) 0.5137 | loss(seq) 0.4617 | grad 4.6815 | lr 0.0010 | time_forward 3.9360 | time_backward 5.3370 |
[2023-09-01 23:44:45,968::train::INFO] [train] Iter 03638 | loss 2.3179 | loss(rot) 2.1022 | loss(pos) 0.0888 | loss(seq) 0.1269 | grad 4.1027 | lr 0.0010 | time_forward 4.1170 | time_backward 5.8250 |
[2023-09-01 23:44:55,941::train::INFO] [train] Iter 03639 | loss 1.8610 | loss(rot) 1.1334 | loss(pos) 0.3426 | loss(seq) 0.3850 | grad 2.6368 | lr 0.0010 | time_forward 4.1880 | time_backward 5.7830 |
[2023-09-01 23:45:05,726::train::INFO] [train] Iter 03640 | loss 1.0880 | loss(rot) 0.2699 | loss(pos) 0.5126 | loss(seq) 0.3055 | grad 3.3813 | lr 0.0010 | time_forward 4.0340 | time_backward 5.7470 |
[2023-09-01 23:45:14,272::train::INFO] [train] Iter 03641 | loss 2.4654 | loss(rot) 2.3146 | loss(pos) 0.1497 | loss(seq) 0.0011 | grad 4.9162 | lr 0.0010 | time_forward 3.5950 | time_backward 4.9360 |
[2023-09-01 23:45:24,117::train::INFO] [train] Iter 03642 | loss 2.7939 | loss(rot) 2.5184 | loss(pos) 0.1161 | loss(seq) 0.1594 | grad 2.7346 | lr 0.0010 | time_forward 4.0020 | time_backward 5.8400 |
[2023-09-01 23:45:26,748::train::INFO] [train] Iter 03643 | loss 2.8321 | loss(rot) 0.1421 | loss(pos) 2.6885 | loss(seq) 0.0016 | grad 6.9299 | lr 0.0010 | time_forward 1.2310 | time_backward 1.3970 |
[2023-09-01 23:45:28,957::train::INFO] [train] Iter 03644 | loss 2.5117 | loss(rot) 2.3747 | loss(pos) 0.1358 | loss(seq) 0.0012 | grad 3.5842 | lr 0.0010 | time_forward 1.0460 | time_backward 1.1590 |
[2023-09-01 23:45:38,142::train::INFO] [train] Iter 03645 | loss 0.5945 | loss(rot) 0.2471 | loss(pos) 0.1932 | loss(seq) 0.1543 | grad 2.0377 | lr 0.0010 | time_forward 3.8970 | time_backward 5.2860 |
[2023-09-01 23:45:45,249::train::INFO] [train] Iter 03646 | loss 2.2201 | loss(rot) 1.5118 | loss(pos) 0.1732 | loss(seq) 0.5351 | grad 4.3414 | lr 0.0010 | time_forward 3.0470 | time_backward 4.0570 |
[2023-09-01 23:45:47,958::train::INFO] [train] Iter 03647 | loss 2.5274 | loss(rot) 2.3096 | loss(pos) 0.2177 | loss(seq) 0.0001 | grad 4.6176 | lr 0.0010 | time_forward 1.2380 | time_backward 1.4680 |
[2023-09-01 23:45:52,681::train::INFO] [train] Iter 03648 | loss 2.3570 | loss(rot) 0.0150 | loss(pos) 2.3415 | loss(seq) 0.0005 | grad 4.7413 | lr 0.0010 | time_forward 1.9500 | time_backward 2.7690 |
[2023-09-01 23:46:02,932::train::INFO] [train] Iter 03649 | loss 2.5332 | loss(rot) 2.3418 | loss(pos) 0.1823 | loss(seq) 0.0091 | grad 5.2601 | lr 0.0010 | time_forward 4.2650 | time_backward 5.9430 |
[2023-09-01 23:46:12,069::train::INFO] [train] Iter 03650 | loss 1.4053 | loss(rot) 0.4333 | loss(pos) 0.7010 | loss(seq) 0.2710 | grad 3.9584 | lr 0.0010 | time_forward 3.8190 | time_backward 5.3140 |
[2023-09-01 23:46:14,727::train::INFO] [train] Iter 03651 | loss 2.3585 | loss(rot) 1.4634 | loss(pos) 0.2172 | loss(seq) 0.6779 | grad 5.2253 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4180 |
[2023-09-01 23:46:24,682::train::INFO] [train] Iter 03652 | loss 1.8464 | loss(rot) 0.1418 | loss(pos) 1.6911 | loss(seq) 0.0134 | grad 5.7827 | lr 0.0010 | time_forward 4.0480 | time_backward 5.9030 |
[2023-09-01 23:46:27,365::train::INFO] [train] Iter 03653 | loss 1.1901 | loss(rot) 0.5304 | loss(pos) 0.2673 | loss(seq) 0.3924 | grad 6.2589 | lr 0.0010 | time_forward 1.3480 | time_backward 1.3310 |
[2023-09-01 23:46:37,309::train::INFO] [train] Iter 03654 | loss 1.1294 | loss(rot) 0.1028 | loss(pos) 0.8380 | loss(seq) 0.1885 | grad 4.6548 | lr 0.0010 | time_forward 4.2360 | time_backward 5.6810 |
[2023-09-01 23:46:47,214::train::INFO] [train] Iter 03655 | loss 2.4803 | loss(rot) 1.8133 | loss(pos) 0.1382 | loss(seq) 0.5288 | grad 5.2210 | lr 0.0010 | time_forward 4.0930 | time_backward 5.7940 |
[2023-09-01 23:46:55,166::train::INFO] [train] Iter 03656 | loss 1.9979 | loss(rot) 1.4859 | loss(pos) 0.1831 | loss(seq) 0.3289 | grad 6.8263 | lr 0.0010 | time_forward 3.3510 | time_backward 4.5980 |
[2023-09-01 23:46:57,840::train::INFO] [train] Iter 03657 | loss 1.1298 | loss(rot) 0.2786 | loss(pos) 0.8206 | loss(seq) 0.0307 | grad 3.9881 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4160 |
[2023-09-01 23:47:07,017::train::INFO] [train] Iter 03658 | loss 1.3471 | loss(rot) 0.3981 | loss(pos) 0.8954 | loss(seq) 0.0537 | grad 4.9928 | lr 0.0010 | time_forward 3.8050 | time_backward 5.3320 |
[2023-09-01 23:47:16,995::train::INFO] [train] Iter 03659 | loss 3.1850 | loss(rot) 0.0552 | loss(pos) 3.1297 | loss(seq) 0.0000 | grad 8.7028 | lr 0.0010 | time_forward 4.0400 | time_backward 5.9340 |
[2023-09-01 23:47:26,819::train::INFO] [train] Iter 03660 | loss 2.2802 | loss(rot) 0.3282 | loss(pos) 1.9035 | loss(seq) 0.0485 | grad 6.9581 | lr 0.0010 | time_forward 4.6200 | time_backward 5.2020 |
[2023-09-01 23:47:34,870::train::INFO] [train] Iter 03661 | loss 1.8338 | loss(rot) 0.9985 | loss(pos) 0.3643 | loss(seq) 0.4711 | grad 5.8910 | lr 0.0010 | time_forward 3.4250 | time_backward 4.6220 |
[2023-09-01 23:47:42,626::train::INFO] [train] Iter 03662 | loss 1.5857 | loss(rot) 0.7007 | loss(pos) 0.5620 | loss(seq) 0.3231 | grad 5.2613 | lr 0.0010 | time_forward 3.4170 | time_backward 4.3350 |
[2023-09-01 23:47:50,459::train::INFO] [train] Iter 03663 | loss 1.3917 | loss(rot) 0.3826 | loss(pos) 0.9897 | loss(seq) 0.0194 | grad 4.2553 | lr 0.0010 | time_forward 3.3010 | time_backward 4.5290 |
[2023-09-01 23:48:00,370::train::INFO] [train] Iter 03664 | loss 2.9618 | loss(rot) 2.1046 | loss(pos) 0.4294 | loss(seq) 0.4278 | grad 5.9382 | lr 0.0010 | time_forward 4.0790 | time_backward 5.8280 |
[2023-09-01 23:48:09,652::train::INFO] [train] Iter 03665 | loss 2.7332 | loss(rot) 0.0194 | loss(pos) 2.7138 | loss(seq) 0.0000 | grad 9.5602 | lr 0.0010 | time_forward 3.9730 | time_backward 5.2960 |
[2023-09-01 23:48:19,958::train::INFO] [train] Iter 03666 | loss 1.9056 | loss(rot) 1.4939 | loss(pos) 0.3879 | loss(seq) 0.0239 | grad 6.5862 | lr 0.0010 | time_forward 4.1470 | time_backward 6.1560 |
[2023-09-01 23:48:30,183::train::INFO] [train] Iter 03667 | loss 1.4967 | loss(rot) 0.1952 | loss(pos) 0.7851 | loss(seq) 0.5164 | grad 5.3528 | lr 0.0010 | time_forward 4.0610 | time_backward 6.1610 |
[2023-09-01 23:48:40,395::train::INFO] [train] Iter 03668 | loss 1.4535 | loss(rot) 0.5882 | loss(pos) 0.6045 | loss(seq) 0.2608 | grad 4.8538 | lr 0.0010 | time_forward 4.1520 | time_backward 6.0560 |
[2023-09-01 23:48:49,494::train::INFO] [train] Iter 03669 | loss 1.9614 | loss(rot) 1.3099 | loss(pos) 0.2677 | loss(seq) 0.3838 | grad 5.5282 | lr 0.0010 | time_forward 3.7610 | time_backward 5.3350 |
[2023-09-01 23:48:59,492::train::INFO] [train] Iter 03670 | loss 2.1438 | loss(rot) 1.3768 | loss(pos) 0.3276 | loss(seq) 0.4394 | grad 5.2850 | lr 0.0010 | time_forward 4.0900 | time_backward 5.9040 |
[2023-09-01 23:49:02,253::train::INFO] [train] Iter 03671 | loss 2.2870 | loss(rot) 1.9888 | loss(pos) 0.2239 | loss(seq) 0.0743 | grad 4.6213 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4880 |
[2023-09-01 23:49:10,814::train::INFO] [train] Iter 03672 | loss 0.8792 | loss(rot) 0.1588 | loss(pos) 0.7027 | loss(seq) 0.0176 | grad 3.3434 | lr 0.0010 | time_forward 3.5720 | time_backward 4.9860 |
[2023-09-01 23:49:19,089::train::INFO] [train] Iter 03673 | loss 1.7905 | loss(rot) 0.5230 | loss(pos) 0.9100 | loss(seq) 0.3574 | grad 7.4459 | lr 0.0010 | time_forward 3.4870 | time_backward 4.7840 |
[2023-09-01 23:49:21,772::train::INFO] [train] Iter 03674 | loss 1.4637 | loss(rot) 0.0737 | loss(pos) 1.3696 | loss(seq) 0.0203 | grad 4.7784 | lr 0.0010 | time_forward 1.2380 | time_backward 1.4420 |
[2023-09-01 23:49:30,641::train::INFO] [train] Iter 03675 | loss 2.1578 | loss(rot) 1.7360 | loss(pos) 0.1139 | loss(seq) 0.3079 | grad 4.7239 | lr 0.0010 | time_forward 3.8690 | time_backward 4.9960 |
[2023-09-01 23:49:40,752::train::INFO] [train] Iter 03676 | loss 1.3904 | loss(rot) 0.4185 | loss(pos) 0.4949 | loss(seq) 0.4770 | grad 2.9910 | lr 0.0010 | time_forward 4.0960 | time_backward 6.0110 |
[2023-09-01 23:49:50,875::train::INFO] [train] Iter 03677 | loss 2.7484 | loss(rot) 2.1158 | loss(pos) 0.2053 | loss(seq) 0.4273 | grad 3.9223 | lr 0.0010 | time_forward 4.0610 | time_backward 6.0590 |
[2023-09-01 23:50:01,870::train::INFO] [train] Iter 03678 | loss 1.1544 | loss(rot) 0.4973 | loss(pos) 0.5598 | loss(seq) 0.0973 | grad 4.8482 | lr 0.0010 | time_forward 4.7650 | time_backward 6.2270 |
[2023-09-01 23:50:10,579::train::INFO] [train] Iter 03679 | loss 1.9796 | loss(rot) 1.4974 | loss(pos) 0.1586 | loss(seq) 0.3237 | grad 5.6955 | lr 0.0010 | time_forward 3.6490 | time_backward 5.0560 |
[2023-09-01 23:50:13,701::train::INFO] [train] Iter 03680 | loss 2.6503 | loss(rot) 2.0761 | loss(pos) 0.2350 | loss(seq) 0.3392 | grad 4.5686 | lr 0.0010 | time_forward 1.3950 | time_backward 1.7230 |
[2023-09-01 23:50:23,646::train::INFO] [train] Iter 03681 | loss 2.1908 | loss(rot) 1.6537 | loss(pos) 0.2079 | loss(seq) 0.3291 | grad 5.0508 | lr 0.0010 | time_forward 4.0590 | time_backward 5.8830 |
[2023-09-01 23:50:26,313::train::INFO] [train] Iter 03682 | loss 1.6587 | loss(rot) 1.0821 | loss(pos) 0.3233 | loss(seq) 0.2533 | grad 4.9537 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4170 |
[2023-09-01 23:50:35,801::train::INFO] [train] Iter 03683 | loss 1.3105 | loss(rot) 0.2844 | loss(pos) 0.6449 | loss(seq) 0.3812 | grad 4.1933 | lr 0.0010 | time_forward 4.1500 | time_backward 5.3340 |
[2023-09-01 23:50:44,833::train::INFO] [train] Iter 03684 | loss 0.8322 | loss(rot) 0.4266 | loss(pos) 0.2439 | loss(seq) 0.1618 | grad 2.7403 | lr 0.0010 | time_forward 3.3500 | time_backward 5.6790 |
[2023-09-01 23:51:04,377::train::INFO] [train] Iter 03685 | loss 1.8812 | loss(rot) 1.6924 | loss(pos) 0.1887 | loss(seq) 0.0001 | grad 4.1575 | lr 0.0010 | time_forward 10.7080 | time_backward 8.8340 |
[2023-09-01 23:51:18,924::train::INFO] [train] Iter 03686 | loss 3.1485 | loss(rot) 2.6778 | loss(pos) 0.2075 | loss(seq) 0.2633 | grad 5.0500 | lr 0.0010 | time_forward 9.0730 | time_backward 5.4690 |
[2023-09-01 23:51:28,045::train::INFO] [train] Iter 03687 | loss 2.2203 | loss(rot) 1.6831 | loss(pos) 0.1699 | loss(seq) 0.3673 | grad 4.8898 | lr 0.0010 | time_forward 3.8440 | time_backward 5.2730 |
[2023-09-01 23:51:38,031::train::INFO] [train] Iter 03688 | loss 2.8014 | loss(rot) 2.5643 | loss(pos) 0.2372 | loss(seq) 0.0000 | grad 3.2895 | lr 0.0010 | time_forward 4.1720 | time_backward 5.8100 |
[2023-09-01 23:51:47,971::train::INFO] [train] Iter 03689 | loss 1.6683 | loss(rot) 0.1740 | loss(pos) 1.4838 | loss(seq) 0.0105 | grad 5.4392 | lr 0.0010 | time_forward 4.1340 | time_backward 5.8030 |
[2023-09-01 23:51:56,325::train::INFO] [train] Iter 03690 | loss 4.0401 | loss(rot) 0.0109 | loss(pos) 4.0292 | loss(seq) 0.0000 | grad 5.5282 | lr 0.0010 | time_forward 3.4700 | time_backward 4.8810 |
[2023-09-01 23:52:04,295::train::INFO] [train] Iter 03691 | loss 3.1994 | loss(rot) 2.6712 | loss(pos) 0.3069 | loss(seq) 0.2213 | grad 4.9562 | lr 0.0010 | time_forward 3.2980 | time_backward 4.6680 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.