text
stringlengths
56
1.16k
[2023-09-01 22:50:30,100::train::INFO] [train] Iter 03192 | loss 1.8341 | loss(rot) 0.7357 | loss(pos) 0.4684 | loss(seq) 0.6301 | grad 5.9203 | lr 0.0010 | time_forward 3.2170 | time_backward 4.4560
[2023-09-01 22:50:32,044::train::INFO] [train] Iter 03193 | loss 2.1265 | loss(rot) 1.0204 | loss(pos) 0.6770 | loss(seq) 0.4292 | grad 7.2893 | lr 0.0010 | time_forward 0.8890 | time_backward 1.0520
[2023-09-01 22:50:42,482::train::INFO] [train] Iter 03194 | loss 1.8285 | loss(rot) 1.0506 | loss(pos) 0.3763 | loss(seq) 0.4016 | grad 5.2000 | lr 0.0010 | time_forward 4.1990 | time_backward 6.2350
[2023-09-01 22:50:45,238::train::INFO] [train] Iter 03195 | loss 0.9243 | loss(rot) 0.2286 | loss(pos) 0.6337 | loss(seq) 0.0620 | grad 5.1774 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4790
[2023-09-01 22:50:55,396::train::INFO] [train] Iter 03196 | loss 1.9264 | loss(rot) 1.0928 | loss(pos) 0.4313 | loss(seq) 0.4023 | grad 3.5172 | lr 0.0010 | time_forward 4.0070 | time_backward 6.1180
[2023-09-01 22:50:57,694::train::INFO] [train] Iter 03197 | loss 2.9617 | loss(rot) 2.1234 | loss(pos) 0.6831 | loss(seq) 0.1552 | grad 7.6925 | lr 0.0010 | time_forward 1.0730 | time_backward 1.2210
[2023-09-01 22:51:00,371::train::INFO] [train] Iter 03198 | loss 1.6635 | loss(rot) 0.7437 | loss(pos) 0.2789 | loss(seq) 0.6408 | grad 4.4385 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4420
[2023-09-01 22:51:10,282::train::INFO] [train] Iter 03199 | loss 1.9042 | loss(rot) 0.1249 | loss(pos) 1.7760 | loss(seq) 0.0033 | grad 5.3392 | lr 0.0010 | time_forward 4.0890 | time_backward 5.8180
[2023-09-01 22:51:18,912::train::INFO] [train] Iter 03200 | loss 2.2693 | loss(rot) 1.8683 | loss(pos) 0.3790 | loss(seq) 0.0220 | grad 6.1502 | lr 0.0010 | time_forward 3.7000 | time_backward 4.9260
[2023-09-01 22:51:28,710::train::INFO] [train] Iter 03201 | loss 2.3614 | loss(rot) 1.5548 | loss(pos) 0.2270 | loss(seq) 0.5797 | grad 4.0755 | lr 0.0010 | time_forward 4.0680 | time_backward 5.7260
[2023-09-01 22:51:37,842::train::INFO] [train] Iter 03202 | loss 3.8103 | loss(rot) 0.3617 | loss(pos) 3.4486 | loss(seq) 0.0000 | grad 8.3816 | lr 0.0010 | time_forward 3.9380 | time_backward 5.1720
[2023-09-01 22:51:44,334::train::INFO] [train] Iter 03203 | loss 3.8040 | loss(rot) 2.5138 | loss(pos) 0.6716 | loss(seq) 0.6186 | grad 5.5742 | lr 0.0010 | time_forward 2.7450 | time_backward 3.7440
[2023-09-01 22:51:54,381::train::INFO] [train] Iter 03204 | loss 1.9676 | loss(rot) 1.0364 | loss(pos) 0.3504 | loss(seq) 0.5808 | grad 4.3999 | lr 0.0010 | time_forward 4.0190 | time_backward 6.0240
[2023-09-01 22:52:03,113::train::INFO] [train] Iter 03205 | loss 2.3777 | loss(rot) 2.0582 | loss(pos) 0.3175 | loss(seq) 0.0020 | grad 5.8277 | lr 0.0010 | time_forward 3.6680 | time_backward 5.0600
[2023-09-01 22:52:06,267::train::INFO] [train] Iter 03206 | loss 2.6592 | loss(rot) 2.4700 | loss(pos) 0.1879 | loss(seq) 0.0012 | grad 3.3279 | lr 0.0010 | time_forward 1.4640 | time_backward 1.6860
[2023-09-01 22:52:15,624::train::INFO] [train] Iter 03207 | loss 3.6496 | loss(rot) 0.0139 | loss(pos) 3.6350 | loss(seq) 0.0007 | grad 7.6583 | lr 0.0010 | time_forward 3.9390 | time_backward 5.4160
[2023-09-01 22:52:18,310::train::INFO] [train] Iter 03208 | loss 2.7212 | loss(rot) 2.5965 | loss(pos) 0.1112 | loss(seq) 0.0135 | grad 4.9037 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4110
[2023-09-01 22:52:28,254::train::INFO] [train] Iter 03209 | loss 2.6296 | loss(rot) 2.1400 | loss(pos) 0.2418 | loss(seq) 0.2477 | grad 3.9609 | lr 0.0010 | time_forward 4.0530 | time_backward 5.8870
[2023-09-01 22:52:36,729::train::INFO] [train] Iter 03210 | loss 1.6297 | loss(rot) 0.6861 | loss(pos) 0.5276 | loss(seq) 0.4160 | grad 7.0606 | lr 0.0010 | time_forward 3.5710 | time_backward 4.8880
[2023-09-01 22:52:46,967::train::INFO] [train] Iter 03211 | loss 2.7420 | loss(rot) 2.5174 | loss(pos) 0.1898 | loss(seq) 0.0348 | grad 3.6535 | lr 0.0010 | time_forward 4.2210 | time_backward 6.0140
[2023-09-01 22:52:55,853::train::INFO] [train] Iter 03212 | loss 2.9598 | loss(rot) 2.0038 | loss(pos) 0.5223 | loss(seq) 0.4337 | grad 5.3291 | lr 0.0010 | time_forward 3.8160 | time_backward 5.0670
[2023-09-01 22:53:06,054::train::INFO] [train] Iter 03213 | loss 2.0029 | loss(rot) 1.1509 | loss(pos) 0.2994 | loss(seq) 0.5526 | grad 3.1339 | lr 0.0010 | time_forward 4.1950 | time_backward 6.0020
[2023-09-01 22:53:15,270::train::INFO] [train] Iter 03214 | loss 1.4826 | loss(rot) 0.4431 | loss(pos) 0.9672 | loss(seq) 0.0724 | grad 3.6681 | lr 0.0010 | time_forward 3.9400 | time_backward 5.2720
[2023-09-01 22:53:21,312::train::INFO] [train] Iter 03215 | loss 1.9456 | loss(rot) 1.3351 | loss(pos) 0.1153 | loss(seq) 0.4951 | grad 3.3128 | lr 0.0010 | time_forward 2.6330 | time_backward 3.4050
[2023-09-01 22:53:31,418::train::INFO] [train] Iter 03216 | loss 3.2517 | loss(rot) 2.5732 | loss(pos) 0.3279 | loss(seq) 0.3506 | grad 3.9301 | lr 0.0010 | time_forward 4.1420 | time_backward 5.9610
[2023-09-01 22:53:34,102::train::INFO] [train] Iter 03217 | loss 2.3001 | loss(rot) 1.1240 | loss(pos) 0.6950 | loss(seq) 0.4811 | grad 5.1630 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4290
[2023-09-01 22:53:42,173::train::INFO] [train] Iter 03218 | loss 1.5176 | loss(rot) 0.1999 | loss(pos) 1.2936 | loss(seq) 0.0240 | grad 4.4712 | lr 0.0010 | time_forward 3.4390 | time_backward 4.6290
[2023-09-01 22:53:50,270::train::INFO] [train] Iter 03219 | loss 1.4600 | loss(rot) 0.3301 | loss(pos) 0.4990 | loss(seq) 0.6309 | grad 2.6723 | lr 0.0010 | time_forward 3.3430 | time_backward 4.7500
[2023-09-01 22:54:00,368::train::INFO] [train] Iter 03220 | loss 1.9096 | loss(rot) 1.1124 | loss(pos) 0.3281 | loss(seq) 0.4691 | grad 4.2996 | lr 0.0010 | time_forward 4.0230 | time_backward 6.0710
[2023-09-01 22:54:09,832::train::INFO] [train] Iter 03221 | loss 1.8622 | loss(rot) 0.2639 | loss(pos) 1.1917 | loss(seq) 0.4066 | grad 4.5246 | lr 0.0010 | time_forward 4.0250 | time_backward 5.4350
[2023-09-01 22:54:19,149::train::INFO] [train] Iter 03222 | loss 2.5591 | loss(rot) 1.6944 | loss(pos) 0.5310 | loss(seq) 0.3337 | grad 6.1817 | lr 0.0010 | time_forward 4.0850 | time_backward 5.2280
[2023-09-01 22:54:27,776::train::INFO] [train] Iter 03223 | loss 2.2373 | loss(rot) 1.3939 | loss(pos) 0.3012 | loss(seq) 0.5422 | grad 5.9026 | lr 0.0010 | time_forward 3.6230 | time_backward 5.0010
[2023-09-01 22:54:38,233::train::INFO] [train] Iter 03224 | loss 1.5124 | loss(rot) 0.4937 | loss(pos) 0.5368 | loss(seq) 0.4819 | grad 2.9166 | lr 0.0010 | time_forward 4.1430 | time_backward 6.3110
[2023-09-01 22:54:40,930::train::INFO] [train] Iter 03225 | loss 1.9118 | loss(rot) 0.8357 | loss(pos) 0.5500 | loss(seq) 0.5260 | grad 5.5119 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4360
[2023-09-01 22:54:51,029::train::INFO] [train] Iter 03226 | loss 2.8759 | loss(rot) 2.4998 | loss(pos) 0.2984 | loss(seq) 0.0777 | grad 6.0143 | lr 0.0010 | time_forward 4.0580 | time_backward 6.0360
[2023-09-01 22:55:01,078::train::INFO] [train] Iter 03227 | loss 1.3967 | loss(rot) 0.7411 | loss(pos) 0.4359 | loss(seq) 0.2197 | grad 3.4091 | lr 0.0010 | time_forward 3.9930 | time_backward 6.0520
[2023-09-01 22:55:09,618::train::INFO] [train] Iter 03228 | loss 1.7943 | loss(rot) 0.8889 | loss(pos) 0.3111 | loss(seq) 0.5943 | grad 3.8345 | lr 0.0010 | time_forward 3.6390 | time_backward 4.8870
[2023-09-01 22:55:18,178::train::INFO] [train] Iter 03229 | loss 3.1122 | loss(rot) 1.9042 | loss(pos) 0.7298 | loss(seq) 0.4782 | grad 4.4632 | lr 0.0010 | time_forward 3.6160 | time_backward 4.9400
[2023-09-01 22:55:28,408::train::INFO] [train] Iter 03230 | loss 1.8091 | loss(rot) 0.0887 | loss(pos) 1.7084 | loss(seq) 0.0121 | grad 5.6175 | lr 0.0010 | time_forward 4.1830 | time_backward 6.0450
[2023-09-01 22:55:38,743::train::INFO] [train] Iter 03231 | loss 2.7418 | loss(rot) 2.0733 | loss(pos) 0.2578 | loss(seq) 0.4107 | grad 3.0836 | lr 0.0010 | time_forward 4.2470 | time_backward 6.0840
[2023-09-01 22:55:41,505::train::INFO] [train] Iter 03232 | loss 1.7915 | loss(rot) 0.9582 | loss(pos) 0.4135 | loss(seq) 0.4197 | grad 4.4564 | lr 0.0010 | time_forward 1.2420 | time_backward 1.5160
[2023-09-01 22:55:44,253::train::INFO] [train] Iter 03233 | loss 1.1812 | loss(rot) 0.3002 | loss(pos) 0.8610 | loss(seq) 0.0200 | grad 3.7651 | lr 0.0010 | time_forward 1.3200 | time_backward 1.4250
[2023-09-01 22:55:52,817::train::INFO] [train] Iter 03234 | loss 1.9443 | loss(rot) 0.9929 | loss(pos) 0.4231 | loss(seq) 0.5282 | grad 3.6347 | lr 0.0010 | time_forward 3.5940 | time_backward 4.9660
[2023-09-01 22:56:01,344::train::INFO] [train] Iter 03235 | loss 2.4052 | loss(rot) 1.9947 | loss(pos) 0.1130 | loss(seq) 0.2975 | grad 5.4391 | lr 0.0010 | time_forward 3.7780 | time_backward 4.7460
[2023-09-01 22:56:09,869::train::INFO] [train] Iter 03236 | loss 1.7523 | loss(rot) 0.1037 | loss(pos) 1.6396 | loss(seq) 0.0089 | grad 5.5961 | lr 0.0010 | time_forward 3.5670 | time_backward 4.9540
[2023-09-01 22:56:12,273::train::INFO] [train] Iter 03237 | loss 2.0608 | loss(rot) 1.8645 | loss(pos) 0.1933 | loss(seq) 0.0030 | grad 5.7937 | lr 0.0010 | time_forward 1.1600 | time_backward 1.2410
[2023-09-01 22:56:19,811::train::INFO] [train] Iter 03238 | loss 1.2733 | loss(rot) 0.3703 | loss(pos) 0.6248 | loss(seq) 0.2782 | grad 4.7015 | lr 0.0010 | time_forward 3.0960 | time_backward 4.4040
[2023-09-01 22:56:30,015::train::INFO] [train] Iter 03239 | loss 1.8379 | loss(rot) 1.2623 | loss(pos) 0.2125 | loss(seq) 0.3631 | grad 3.4271 | lr 0.0010 | time_forward 4.1630 | time_backward 6.0370
[2023-09-01 22:56:39,931::train::INFO] [train] Iter 03240 | loss 1.4886 | loss(rot) 0.5197 | loss(pos) 0.7871 | loss(seq) 0.1818 | grad 3.2385 | lr 0.0010 | time_forward 3.9290 | time_backward 5.9830
[2023-09-01 22:56:48,180::train::INFO] [train] Iter 03241 | loss 1.9886 | loss(rot) 0.8499 | loss(pos) 1.1043 | loss(seq) 0.0344 | grad 4.4151 | lr 0.0010 | time_forward 3.4910 | time_backward 4.7550
[2023-09-01 22:56:58,470::train::INFO] [train] Iter 03242 | loss 1.9255 | loss(rot) 0.6008 | loss(pos) 1.1696 | loss(seq) 0.1552 | grad 5.7578 | lr 0.0010 | time_forward 4.2270 | time_backward 6.0600
[2023-09-01 22:57:06,053::train::INFO] [train] Iter 03243 | loss 1.8990 | loss(rot) 1.7259 | loss(pos) 0.1720 | loss(seq) 0.0012 | grad 4.1548 | lr 0.0010 | time_forward 3.1490 | time_backward 4.4300
[2023-09-01 22:57:08,790::train::INFO] [train] Iter 03244 | loss 1.9693 | loss(rot) 1.5470 | loss(pos) 0.2762 | loss(seq) 0.1461 | grad 5.4035 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4780
[2023-09-01 22:57:17,416::train::INFO] [train] Iter 03245 | loss 2.9886 | loss(rot) 2.2203 | loss(pos) 0.3108 | loss(seq) 0.4576 | grad 3.0366 | lr 0.0010 | time_forward 3.6020 | time_backward 4.9920
[2023-09-01 22:57:20,113::train::INFO] [train] Iter 03246 | loss 0.8762 | loss(rot) 0.0808 | loss(pos) 0.7840 | loss(seq) 0.0115 | grad 3.6544 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4380
[2023-09-01 22:57:30,177::train::INFO] [train] Iter 03247 | loss 3.1076 | loss(rot) 2.8659 | loss(pos) 0.1549 | loss(seq) 0.0867 | grad 5.3694 | lr 0.0010 | time_forward 4.2200 | time_backward 5.8410
[2023-09-01 22:57:39,132::train::INFO] [train] Iter 03248 | loss 1.7767 | loss(rot) 0.3661 | loss(pos) 1.3608 | loss(seq) 0.0499 | grad 5.8841 | lr 0.0010 | time_forward 3.8380 | time_backward 5.1140
[2023-09-01 22:57:41,858::train::INFO] [train] Iter 03249 | loss 1.4689 | loss(rot) 0.1813 | loss(pos) 1.2733 | loss(seq) 0.0142 | grad 8.8943 | lr 0.0010 | time_forward 1.2920 | time_backward 1.4290
[2023-09-01 22:57:52,146::train::INFO] [train] Iter 03250 | loss 2.0146 | loss(rot) 0.9760 | loss(pos) 0.4339 | loss(seq) 0.6046 | grad 5.2342 | lr 0.0010 | time_forward 4.3530 | time_backward 5.9320
[2023-09-01 22:57:54,846::train::INFO] [train] Iter 03251 | loss 2.0624 | loss(rot) 1.2902 | loss(pos) 0.2340 | loss(seq) 0.5382 | grad 3.9864 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4320
[2023-09-01 22:58:05,156::train::INFO] [train] Iter 03252 | loss 2.2126 | loss(rot) 0.2690 | loss(pos) 1.9180 | loss(seq) 0.0256 | grad 5.1460 | lr 0.0010 | time_forward 4.3020 | time_backward 6.0040
[2023-09-01 22:58:14,450::train::INFO] [train] Iter 03253 | loss 1.1574 | loss(rot) 0.1215 | loss(pos) 1.0106 | loss(seq) 0.0253 | grad 5.1713 | lr 0.0010 | time_forward 3.9180 | time_backward 5.3610
[2023-09-01 22:58:23,187::train::INFO] [train] Iter 03254 | loss 1.4286 | loss(rot) 0.6231 | loss(pos) 0.4634 | loss(seq) 0.3422 | grad 5.8806 | lr 0.0010 | time_forward 3.5670 | time_backward 5.1660
[2023-09-01 22:58:32,214::train::INFO] [train] Iter 03255 | loss 2.6505 | loss(rot) 1.8877 | loss(pos) 0.3235 | loss(seq) 0.4393 | grad 5.3753 | lr 0.0010 | time_forward 3.7240 | time_backward 5.2990
[2023-09-01 22:58:41,696::train::INFO] [train] Iter 03256 | loss 1.8317 | loss(rot) 0.9289 | loss(pos) 0.4785 | loss(seq) 0.4243 | grad 5.2156 | lr 0.0010 | time_forward 3.9400 | time_backward 5.5380
[2023-09-01 22:58:49,284::train::INFO] [train] Iter 03257 | loss 3.0140 | loss(rot) 1.0318 | loss(pos) 1.0985 | loss(seq) 0.8838 | grad 21.7836 | lr 0.0010 | time_forward 3.1270 | time_backward 4.4570
[2023-09-01 22:58:55,617::train::INFO] [train] Iter 03258 | loss 2.9274 | loss(rot) 2.4104 | loss(pos) 0.2182 | loss(seq) 0.2988 | grad 4.2902 | lr 0.0010 | time_forward 2.6630 | time_backward 3.6660
[2023-09-01 22:59:04,083::train::INFO] [train] Iter 03259 | loss 2.8019 | loss(rot) 1.8438 | loss(pos) 0.5062 | loss(seq) 0.4519 | grad 7.4619 | lr 0.0010 | time_forward 3.5810 | time_backward 4.8820
[2023-09-01 22:59:13,956::train::INFO] [train] Iter 03260 | loss 3.1351 | loss(rot) 2.9749 | loss(pos) 0.1533 | loss(seq) 0.0068 | grad 3.5097 | lr 0.0010 | time_forward 4.2720 | time_backward 5.5980
[2023-09-01 22:59:18,210::train::INFO] [train] Iter 03261 | loss 3.1157 | loss(rot) 1.7145 | loss(pos) 0.8687 | loss(seq) 0.5324 | grad 4.2031 | lr 0.0010 | time_forward 1.7870 | time_backward 2.4620
[2023-09-01 22:59:29,059::train::INFO] [train] Iter 03262 | loss 2.2572 | loss(rot) 1.9106 | loss(pos) 0.3178 | loss(seq) 0.0288 | grad 4.9632 | lr 0.0010 | time_forward 4.4660 | time_backward 6.3800
[2023-09-01 22:59:31,925::train::INFO] [train] Iter 03263 | loss 0.6937 | loss(rot) 0.1491 | loss(pos) 0.5290 | loss(seq) 0.0156 | grad 5.0872 | lr 0.0010 | time_forward 1.3330 | time_backward 1.5290
[2023-09-01 22:59:40,741::train::INFO] [train] Iter 03264 | loss 1.8348 | loss(rot) 0.1100 | loss(pos) 1.7182 | loss(seq) 0.0066 | grad 4.5240 | lr 0.0010 | time_forward 3.7060 | time_backward 5.0920
[2023-09-01 22:59:43,517::train::INFO] [train] Iter 03265 | loss 2.3910 | loss(rot) 0.2275 | loss(pos) 2.1497 | loss(seq) 0.0138 | grad 8.3622 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4650
[2023-09-01 22:59:52,905::train::INFO] [train] Iter 03266 | loss 2.0132 | loss(rot) 1.2444 | loss(pos) 0.2353 | loss(seq) 0.5335 | grad 3.7746 | lr 0.0010 | time_forward 4.0690 | time_backward 5.3160
[2023-09-01 23:00:01,469::train::INFO] [train] Iter 03267 | loss 2.0613 | loss(rot) 0.8691 | loss(pos) 0.7804 | loss(seq) 0.4119 | grad 5.7393 | lr 0.0010 | time_forward 3.6870 | time_backward 4.8720
[2023-09-01 23:00:04,118::train::INFO] [train] Iter 03268 | loss 2.7662 | loss(rot) 2.5114 | loss(pos) 0.2518 | loss(seq) 0.0030 | grad 4.0031 | lr 0.0010 | time_forward 1.2230 | time_backward 1.4220
[2023-09-01 23:00:13,935::train::INFO] [train] Iter 03269 | loss 3.1809 | loss(rot) 2.6175 | loss(pos) 0.5604 | loss(seq) 0.0031 | grad 4.4903 | lr 0.0010 | time_forward 4.0600 | time_backward 5.7540
[2023-09-01 23:00:16,671::train::INFO] [train] Iter 03270 | loss 1.8224 | loss(rot) 0.6856 | loss(pos) 0.6547 | loss(seq) 0.4821 | grad 5.3930 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4300
[2023-09-01 23:00:25,814::train::INFO] [train] Iter 03271 | loss 2.4306 | loss(rot) 1.8419 | loss(pos) 0.1939 | loss(seq) 0.3948 | grad 4.7528 | lr 0.0010 | time_forward 3.8230 | time_backward 5.3170
[2023-09-01 23:00:35,921::train::INFO] [train] Iter 03272 | loss 2.2409 | loss(rot) 0.2079 | loss(pos) 2.0188 | loss(seq) 0.0142 | grad 8.1348 | lr 0.0010 | time_forward 4.0770 | time_backward 6.0270
[2023-09-01 23:00:44,778::train::INFO] [train] Iter 03273 | loss 2.3388 | loss(rot) 2.0177 | loss(pos) 0.3164 | loss(seq) 0.0047 | grad 4.6508 | lr 0.0010 | time_forward 3.6520 | time_backward 5.2020
[2023-09-01 23:00:54,280::train::INFO] [train] Iter 03274 | loss 1.8022 | loss(rot) 0.1583 | loss(pos) 1.4660 | loss(seq) 0.1778 | grad 4.8485 | lr 0.0010 | time_forward 3.9930 | time_backward 5.5050
[2023-09-01 23:01:04,431::train::INFO] [train] Iter 03275 | loss 1.5271 | loss(rot) 0.1336 | loss(pos) 1.3817 | loss(seq) 0.0119 | grad 6.1727 | lr 0.0010 | time_forward 3.9980 | time_backward 6.1490
[2023-09-01 23:01:14,676::train::INFO] [train] Iter 03276 | loss 1.8730 | loss(rot) 1.0568 | loss(pos) 0.3359 | loss(seq) 0.4802 | grad 3.7698 | lr 0.0010 | time_forward 4.1230 | time_backward 6.1180
[2023-09-01 23:01:24,570::train::INFO] [train] Iter 03277 | loss 1.9621 | loss(rot) 0.5911 | loss(pos) 0.6584 | loss(seq) 0.7127 | grad 4.7721 | lr 0.0010 | time_forward 4.0170 | time_backward 5.8730
[2023-09-01 23:01:27,250::train::INFO] [train] Iter 03278 | loss 1.6251 | loss(rot) 0.3523 | loss(pos) 0.9809 | loss(seq) 0.2919 | grad 5.4541 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4420
[2023-09-01 23:01:30,034::train::INFO] [train] Iter 03279 | loss 3.4552 | loss(rot) 2.9317 | loss(pos) 0.5164 | loss(seq) 0.0071 | grad 7.7089 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4680
[2023-09-01 23:01:40,333::train::INFO] [train] Iter 03280 | loss 2.3047 | loss(rot) 1.1818 | loss(pos) 0.6262 | loss(seq) 0.4967 | grad 4.2047 | lr 0.0010 | time_forward 4.2320 | time_backward 6.0640
[2023-09-01 23:01:50,847::train::INFO] [train] Iter 03281 | loss 2.3939 | loss(rot) 1.2837 | loss(pos) 0.6031 | loss(seq) 0.5071 | grad 8.5815 | lr 0.0010 | time_forward 4.2300 | time_backward 6.2800
[2023-09-01 23:01:53,635::train::INFO] [train] Iter 03282 | loss 2.2892 | loss(rot) 2.0194 | loss(pos) 0.2648 | loss(seq) 0.0050 | grad 5.5877 | lr 0.0010 | time_forward 1.3360 | time_backward 1.4480
[2023-09-01 23:01:56,367::train::INFO] [train] Iter 03283 | loss 2.0031 | loss(rot) 0.9990 | loss(pos) 0.5139 | loss(seq) 0.4902 | grad 7.0086 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4190
[2023-09-01 23:01:58,666::train::INFO] [train] Iter 03284 | loss 2.8074 | loss(rot) 2.4978 | loss(pos) 0.2890 | loss(seq) 0.0206 | grad 4.2483 | lr 0.0010 | time_forward 1.1110 | time_backward 1.1850
[2023-09-01 23:02:07,198::train::INFO] [train] Iter 03285 | loss 3.0616 | loss(rot) 2.7534 | loss(pos) 0.3081 | loss(seq) 0.0000 | grad 3.3760 | lr 0.0010 | time_forward 3.5550 | time_backward 4.9730
[2023-09-01 23:02:09,496::train::INFO] [train] Iter 03286 | loss 2.5954 | loss(rot) 2.4168 | loss(pos) 0.1774 | loss(seq) 0.0012 | grad 3.0246 | lr 0.0010 | time_forward 1.0870 | time_backward 1.2050
[2023-09-01 23:02:19,722::train::INFO] [train] Iter 03287 | loss 2.0600 | loss(rot) 1.3388 | loss(pos) 0.3097 | loss(seq) 0.4115 | grad 3.9237 | lr 0.0010 | time_forward 4.0950 | time_backward 6.1270
[2023-09-01 23:02:29,683::train::INFO] [train] Iter 03288 | loss 3.6353 | loss(rot) 0.0185 | loss(pos) 3.6161 | loss(seq) 0.0006 | grad 7.6067 | lr 0.0010 | time_forward 4.0840 | time_backward 5.8730
[2023-09-01 23:02:39,041::train::INFO] [train] Iter 03289 | loss 2.0760 | loss(rot) 1.5749 | loss(pos) 0.1714 | loss(seq) 0.3297 | grad 4.6193 | lr 0.0010 | time_forward 4.0260 | time_backward 5.3290
[2023-09-01 23:02:49,540::train::INFO] [train] Iter 03290 | loss 2.9404 | loss(rot) 2.1997 | loss(pos) 0.3098 | loss(seq) 0.4310 | grad 4.0390 | lr 0.0010 | time_forward 4.3490 | time_backward 6.1460
[2023-09-01 23:02:57,955::train::INFO] [train] Iter 03291 | loss 3.6427 | loss(rot) 0.0670 | loss(pos) 3.5758 | loss(seq) 0.0000 | grad 8.7395 | lr 0.0010 | time_forward 3.6260 | time_backward 4.7740