text
stringlengths 56
1.16k
|
---|
[2023-09-01 22:27:15,945::train::INFO] [train] Iter 02993 | loss 2.6285 | loss(rot) 2.3944 | loss(pos) 0.2320 | loss(seq) 0.0021 | grad 4.1476 | lr 0.0010 | time_forward 3.5950 | time_backward 5.0020 |
[2023-09-01 22:27:25,996::train::INFO] [train] Iter 02994 | loss 3.3200 | loss(rot) 2.8972 | loss(pos) 0.1934 | loss(seq) 0.2293 | grad 3.5753 | lr 0.0010 | time_forward 3.9900 | time_backward 6.0590 |
[2023-09-01 22:27:28,678::train::INFO] [train] Iter 02995 | loss 1.9788 | loss(rot) 0.1429 | loss(pos) 1.6338 | loss(seq) 0.2021 | grad 5.5581 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4420 |
[2023-09-01 22:27:38,603::train::INFO] [train] Iter 02996 | loss 2.1468 | loss(rot) 1.1759 | loss(pos) 0.5733 | loss(seq) 0.3976 | grad 4.3041 | lr 0.0010 | time_forward 4.0530 | time_backward 5.8680 |
[2023-09-01 22:27:48,621::train::INFO] [train] Iter 02997 | loss 1.5298 | loss(rot) 0.4312 | loss(pos) 1.0586 | loss(seq) 0.0399 | grad 5.9811 | lr 0.0010 | time_forward 4.0280 | time_backward 5.9860 |
[2023-09-01 22:27:50,834::train::INFO] [train] Iter 02998 | loss 2.0674 | loss(rot) 1.1411 | loss(pos) 0.3841 | loss(seq) 0.5421 | grad 4.7688 | lr 0.0010 | time_forward 0.9990 | time_backward 1.2110 |
[2023-09-01 22:27:53,502::train::INFO] [train] Iter 02999 | loss 2.5788 | loss(rot) 1.9787 | loss(pos) 0.2458 | loss(seq) 0.3543 | grad 6.1065 | lr 0.0010 | time_forward 1.2220 | time_backward 1.4420 |
[2023-09-01 22:28:04,004::train::INFO] [train] Iter 03000 | loss 3.6814 | loss(rot) 2.5465 | loss(pos) 0.6615 | loss(seq) 0.4734 | grad 8.3034 | lr 0.0010 | time_forward 4.3780 | time_backward 6.1200 |
[2023-09-01 22:28:36,682::train::INFO] [val] Iter 03000 | loss 2.1333 | loss(rot) 1.1174 | loss(pos) 0.6909 | loss(seq) 0.3251 |
[2023-09-01 22:28:40,233::train::INFO] [train] Iter 03001 | loss 2.9567 | loss(rot) 2.2750 | loss(pos) 0.6724 | loss(seq) 0.0092 | grad 8.8772 | lr 0.0010 | time_forward 1.4180 | time_backward 1.8300 |
[2023-09-01 22:28:43,122::train::INFO] [train] Iter 03002 | loss 1.6697 | loss(rot) 0.9066 | loss(pos) 0.5083 | loss(seq) 0.2549 | grad 7.8642 | lr 0.0010 | time_forward 1.3130 | time_backward 1.5730 |
[2023-09-01 22:28:45,690::train::INFO] [train] Iter 03003 | loss 2.7700 | loss(rot) 2.4745 | loss(pos) 0.2784 | loss(seq) 0.0171 | grad 4.8556 | lr 0.0010 | time_forward 1.2010 | time_backward 1.3640 |
[2023-09-01 22:28:56,386::train::INFO] [train] Iter 03004 | loss 2.5191 | loss(rot) 1.7798 | loss(pos) 0.3395 | loss(seq) 0.3998 | grad 5.1375 | lr 0.0010 | time_forward 4.1260 | time_backward 6.5380 |
[2023-09-01 22:29:06,520::train::INFO] [train] Iter 03005 | loss 1.5342 | loss(rot) 0.1989 | loss(pos) 1.2744 | loss(seq) 0.0610 | grad 5.0903 | lr 0.0010 | time_forward 4.1350 | time_backward 5.9960 |
[2023-09-01 22:29:15,677::train::INFO] [train] Iter 03006 | loss 1.0168 | loss(rot) 0.2741 | loss(pos) 0.7119 | loss(seq) 0.0307 | grad 3.7179 | lr 0.0010 | time_forward 3.8280 | time_backward 5.3250 |
[2023-09-01 22:29:25,759::train::INFO] [train] Iter 03007 | loss 3.2660 | loss(rot) 3.0372 | loss(pos) 0.1989 | loss(seq) 0.0299 | grad 4.2635 | lr 0.0010 | time_forward 3.9980 | time_backward 6.0810 |
[2023-09-01 22:29:28,408::train::INFO] [train] Iter 03008 | loss 2.9669 | loss(rot) 2.7415 | loss(pos) 0.2254 | loss(seq) 0.0000 | grad 4.1438 | lr 0.0010 | time_forward 1.2160 | time_backward 1.4300 |
[2023-09-01 22:29:36,909::train::INFO] [train] Iter 03009 | loss 2.7949 | loss(rot) 2.2323 | loss(pos) 0.1157 | loss(seq) 0.4469 | grad 4.1434 | lr 0.0010 | time_forward 3.5030 | time_backward 4.9580 |
[2023-09-01 22:29:39,604::train::INFO] [train] Iter 03010 | loss 1.6485 | loss(rot) 0.7902 | loss(pos) 0.6360 | loss(seq) 0.2223 | grad 4.3995 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4540 |
[2023-09-01 22:29:49,457::train::INFO] [train] Iter 03011 | loss 3.0542 | loss(rot) 2.2899 | loss(pos) 0.3180 | loss(seq) 0.4462 | grad 4.1487 | lr 0.0010 | time_forward 4.0500 | time_backward 5.7630 |
[2023-09-01 22:29:52,140::train::INFO] [train] Iter 03012 | loss 2.0808 | loss(rot) 1.7332 | loss(pos) 0.1697 | loss(seq) 0.1779 | grad 4.0298 | lr 0.0010 | time_forward 1.2210 | time_backward 1.4590 |
[2023-09-01 22:30:02,241::train::INFO] [train] Iter 03013 | loss 2.1614 | loss(rot) 1.1134 | loss(pos) 0.4669 | loss(seq) 0.5811 | grad 2.8302 | lr 0.0010 | time_forward 4.2260 | time_backward 5.8710 |
[2023-09-01 22:30:05,504::train::INFO] [train] Iter 03014 | loss 1.2554 | loss(rot) 0.0974 | loss(pos) 1.1447 | loss(seq) 0.0133 | grad 4.7579 | lr 0.0010 | time_forward 1.4550 | time_backward 1.8050 |
[2023-09-01 22:30:07,724::train::INFO] [train] Iter 03015 | loss 0.8879 | loss(rot) 0.1094 | loss(pos) 0.7580 | loss(seq) 0.0205 | grad 3.2927 | lr 0.0010 | time_forward 1.0320 | time_backward 1.1840 |
[2023-09-01 22:30:17,079::train::INFO] [train] Iter 03016 | loss 3.4767 | loss(rot) 2.3728 | loss(pos) 0.6242 | loss(seq) 0.4796 | grad 4.0309 | lr 0.0010 | time_forward 3.9440 | time_backward 5.3900 |
[2023-09-01 22:30:19,856::train::INFO] [train] Iter 03017 | loss 2.9376 | loss(rot) 2.8008 | loss(pos) 0.1367 | loss(seq) 0.0000 | grad 4.0984 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4990 |
[2023-09-01 22:30:27,574::train::INFO] [train] Iter 03018 | loss 2.5728 | loss(rot) 2.3759 | loss(pos) 0.1238 | loss(seq) 0.0731 | grad 4.7085 | lr 0.0010 | time_forward 3.2980 | time_backward 4.4150 |
[2023-09-01 22:30:36,345::train::INFO] [train] Iter 03019 | loss 2.3975 | loss(rot) 1.6637 | loss(pos) 0.1788 | loss(seq) 0.5550 | grad 3.7896 | lr 0.0010 | time_forward 3.6350 | time_backward 5.1320 |
[2023-09-01 22:30:45,742::train::INFO] [train] Iter 03020 | loss 2.4923 | loss(rot) 1.9361 | loss(pos) 0.2524 | loss(seq) 0.3038 | grad 3.4248 | lr 0.0010 | time_forward 3.9430 | time_backward 5.4500 |
[2023-09-01 22:30:55,683::train::INFO] [train] Iter 03021 | loss 1.5507 | loss(rot) 0.6575 | loss(pos) 0.3347 | loss(seq) 0.5586 | grad 3.3500 | lr 0.0010 | time_forward 4.1020 | time_backward 5.8350 |
[2023-09-01 22:31:05,689::train::INFO] [train] Iter 03022 | loss 2.0164 | loss(rot) 1.1594 | loss(pos) 0.3910 | loss(seq) 0.4660 | grad 3.0757 | lr 0.0010 | time_forward 3.9960 | time_backward 6.0060 |
[2023-09-01 22:31:14,046::train::INFO] [train] Iter 03023 | loss 1.8709 | loss(rot) 0.5115 | loss(pos) 1.1672 | loss(seq) 0.1923 | grad 8.2563 | lr 0.0010 | time_forward 3.4680 | time_backward 4.8860 |
[2023-09-01 22:31:16,755::train::INFO] [train] Iter 03024 | loss 2.4281 | loss(rot) 1.8103 | loss(pos) 0.2770 | loss(seq) 0.3407 | grad 4.5204 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4390 |
[2023-09-01 22:31:26,889::train::INFO] [train] Iter 03025 | loss 2.1778 | loss(rot) 1.5073 | loss(pos) 0.1689 | loss(seq) 0.5016 | grad 4.8005 | lr 0.0010 | time_forward 4.1060 | time_backward 6.0250 |
[2023-09-01 22:31:30,130::train::INFO] [train] Iter 03026 | loss 2.3291 | loss(rot) 1.9304 | loss(pos) 0.2014 | loss(seq) 0.1973 | grad 3.0356 | lr 0.0010 | time_forward 1.4000 | time_backward 1.8380 |
[2023-09-01 22:31:37,873::train::INFO] [train] Iter 03027 | loss 2.3305 | loss(rot) 1.4896 | loss(pos) 0.3816 | loss(seq) 0.4593 | grad 4.4253 | lr 0.0010 | time_forward 3.2530 | time_backward 4.4860 |
[2023-09-01 22:31:44,456::train::INFO] [train] Iter 03028 | loss 2.3077 | loss(rot) 1.5728 | loss(pos) 0.2302 | loss(seq) 0.5047 | grad 3.8304 | lr 0.0010 | time_forward 2.7270 | time_backward 3.8530 |
[2023-09-01 22:31:52,714::train::INFO] [train] Iter 03029 | loss 1.1366 | loss(rot) 0.3347 | loss(pos) 0.5136 | loss(seq) 0.2883 | grad 4.9211 | lr 0.0010 | time_forward 3.4140 | time_backward 4.8400 |
[2023-09-01 22:31:55,436::train::INFO] [train] Iter 03030 | loss 0.9444 | loss(rot) 0.2406 | loss(pos) 0.6744 | loss(seq) 0.0294 | grad 4.1542 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4710 |
[2023-09-01 22:31:57,924::train::INFO] [train] Iter 03031 | loss 1.8228 | loss(rot) 1.1476 | loss(pos) 0.1929 | loss(seq) 0.4822 | grad 4.1004 | lr 0.0010 | time_forward 1.3000 | time_backward 1.1850 |
[2023-09-01 22:32:00,205::train::INFO] [train] Iter 03032 | loss 2.8033 | loss(rot) 2.5805 | loss(pos) 0.2216 | loss(seq) 0.0012 | grad 4.7421 | lr 0.0010 | time_forward 1.0750 | time_backward 1.2020 |
[2023-09-01 22:32:08,414::train::INFO] [train] Iter 03033 | loss 1.0598 | loss(rot) 0.0977 | loss(pos) 0.6638 | loss(seq) 0.2983 | grad 4.9460 | lr 0.0010 | time_forward 3.4210 | time_backward 4.7840 |
[2023-09-01 22:32:17,693::train::INFO] [train] Iter 03034 | loss 1.9321 | loss(rot) 1.6890 | loss(pos) 0.2117 | loss(seq) 0.0315 | grad 5.1087 | lr 0.0010 | time_forward 3.9650 | time_backward 5.3110 |
[2023-09-01 22:32:20,414::train::INFO] [train] Iter 03035 | loss 2.4754 | loss(rot) 2.0049 | loss(pos) 0.1698 | loss(seq) 0.3008 | grad 5.1145 | lr 0.0010 | time_forward 1.4230 | time_backward 1.2950 |
[2023-09-01 22:32:29,792::train::INFO] [train] Iter 03036 | loss 2.2820 | loss(rot) 0.9223 | loss(pos) 0.7126 | loss(seq) 0.6471 | grad 5.9479 | lr 0.0010 | time_forward 3.9120 | time_backward 5.4190 |
[2023-09-01 22:32:32,058::train::INFO] [train] Iter 03037 | loss 2.3953 | loss(rot) 2.1045 | loss(pos) 0.2401 | loss(seq) 0.0507 | grad 5.7949 | lr 0.0010 | time_forward 1.0290 | time_backward 1.2340 |
[2023-09-01 22:32:42,754::train::INFO] [train] Iter 03038 | loss 2.5967 | loss(rot) 2.2260 | loss(pos) 0.2403 | loss(seq) 0.1303 | grad 3.5047 | lr 0.0010 | time_forward 4.3530 | time_backward 6.3270 |
[2023-09-01 22:32:51,152::train::INFO] [train] Iter 03039 | loss 2.8363 | loss(rot) 2.3545 | loss(pos) 0.2692 | loss(seq) 0.2126 | grad 5.1249 | lr 0.0010 | time_forward 3.5980 | time_backward 4.7960 |
[2023-09-01 22:33:00,607::train::INFO] [train] Iter 03040 | loss 2.2910 | loss(rot) 1.3251 | loss(pos) 0.6436 | loss(seq) 0.3223 | grad 4.4364 | lr 0.0010 | time_forward 3.9110 | time_backward 5.5400 |
[2023-09-01 22:33:03,368::train::INFO] [train] Iter 03041 | loss 3.5457 | loss(rot) 3.3452 | loss(pos) 0.2004 | loss(seq) 0.0000 | grad 3.9792 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4740 |
[2023-09-01 22:33:12,320::train::INFO] [train] Iter 03042 | loss 2.6552 | loss(rot) 2.0268 | loss(pos) 0.1987 | loss(seq) 0.4296 | grad 4.0086 | lr 0.0010 | time_forward 3.7270 | time_backward 5.2210 |
[2023-09-01 22:33:15,150::train::INFO] [train] Iter 03043 | loss 2.3453 | loss(rot) 1.6317 | loss(pos) 0.3351 | loss(seq) 0.3786 | grad 4.1661 | lr 0.0010 | time_forward 1.3250 | time_backward 1.5020 |
[2023-09-01 22:33:18,052::train::INFO] [train] Iter 03044 | loss 2.4096 | loss(rot) 2.1762 | loss(pos) 0.1708 | loss(seq) 0.0625 | grad 3.7333 | lr 0.0010 | time_forward 1.4470 | time_backward 1.4520 |
[2023-09-01 22:33:20,862::train::INFO] [train] Iter 03045 | loss 1.1208 | loss(rot) 0.2568 | loss(pos) 0.8344 | loss(seq) 0.0296 | grad 6.4949 | lr 0.0010 | time_forward 1.3280 | time_backward 1.4780 |
[2023-09-01 22:33:23,702::train::INFO] [train] Iter 03046 | loss 2.1859 | loss(rot) 1.3920 | loss(pos) 0.2801 | loss(seq) 0.5138 | grad 4.1390 | lr 0.0010 | time_forward 1.3250 | time_backward 1.5110 |
[2023-09-01 22:33:34,160::train::INFO] [train] Iter 03047 | loss 2.5090 | loss(rot) 1.6908 | loss(pos) 0.2087 | loss(seq) 0.6095 | grad 4.5309 | lr 0.0010 | time_forward 4.3540 | time_backward 6.0990 |
[2023-09-01 22:33:36,651::train::INFO] [train] Iter 03048 | loss 1.1689 | loss(rot) 0.1174 | loss(pos) 1.0402 | loss(seq) 0.0113 | grad 4.3907 | lr 0.0010 | time_forward 1.1730 | time_backward 1.3140 |
[2023-09-01 22:33:44,818::train::INFO] [train] Iter 03049 | loss 1.7565 | loss(rot) 1.0697 | loss(pos) 0.2415 | loss(seq) 0.4453 | grad 4.0269 | lr 0.0010 | time_forward 3.3560 | time_backward 4.7820 |
[2023-09-01 22:33:52,788::train::INFO] [train] Iter 03050 | loss 1.2510 | loss(rot) 1.1541 | loss(pos) 0.0818 | loss(seq) 0.0152 | grad 4.2258 | lr 0.0010 | time_forward 3.2920 | time_backward 4.6750 |
[2023-09-01 22:34:03,879::train::INFO] [train] Iter 03051 | loss 1.3724 | loss(rot) 0.5556 | loss(pos) 0.7605 | loss(seq) 0.0563 | grad 3.1407 | lr 0.0010 | time_forward 4.5310 | time_backward 6.5560 |
[2023-09-01 22:34:06,605::train::INFO] [train] Iter 03052 | loss 2.5207 | loss(rot) 2.0827 | loss(pos) 0.1575 | loss(seq) 0.2804 | grad 4.5409 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4630 |
[2023-09-01 22:34:15,388::train::INFO] [train] Iter 03053 | loss 2.4984 | loss(rot) 2.2658 | loss(pos) 0.2326 | loss(seq) 0.0000 | grad 4.7689 | lr 0.0010 | time_forward 3.6970 | time_backward 5.0830 |
[2023-09-01 22:34:21,901::train::INFO] [train] Iter 03054 | loss 2.0121 | loss(rot) 1.6526 | loss(pos) 0.3507 | loss(seq) 0.0088 | grad 5.2287 | lr 0.0010 | time_forward 2.6890 | time_backward 3.8210 |
[2023-09-01 22:34:32,098::train::INFO] [train] Iter 03055 | loss 2.3161 | loss(rot) 2.1645 | loss(pos) 0.1353 | loss(seq) 0.0162 | grad 4.0670 | lr 0.0010 | time_forward 4.0840 | time_backward 6.1100 |
[2023-09-01 22:34:35,093::train::INFO] [train] Iter 03056 | loss 2.3449 | loss(rot) 2.0915 | loss(pos) 0.1667 | loss(seq) 0.0867 | grad 3.4005 | lr 0.0010 | time_forward 1.5030 | time_backward 1.4890 |
[2023-09-01 22:34:43,071::train::INFO] [train] Iter 03057 | loss 1.9373 | loss(rot) 0.9423 | loss(pos) 0.5751 | loss(seq) 0.4199 | grad 5.2190 | lr 0.0010 | time_forward 3.3340 | time_backward 4.6410 |
[2023-09-01 22:34:45,821::train::INFO] [train] Iter 03058 | loss 2.3759 | loss(rot) 2.1308 | loss(pos) 0.2199 | loss(seq) 0.0251 | grad 4.7992 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4800 |
[2023-09-01 22:34:55,163::train::INFO] [train] Iter 03059 | loss 1.3716 | loss(rot) 0.4332 | loss(pos) 0.6503 | loss(seq) 0.2881 | grad 4.6427 | lr 0.0010 | time_forward 3.9470 | time_backward 5.3910 |
[2023-09-01 22:34:57,575::train::INFO] [train] Iter 03060 | loss 1.1142 | loss(rot) 0.1060 | loss(pos) 0.8085 | loss(seq) 0.1997 | grad 4.5500 | lr 0.0010 | time_forward 1.0780 | time_backward 1.3310 |
[2023-09-01 22:35:04,935::train::INFO] [train] Iter 03061 | loss 2.6248 | loss(rot) 2.0525 | loss(pos) 0.3051 | loss(seq) 0.2672 | grad 5.4693 | lr 0.0010 | time_forward 3.0890 | time_backward 4.2670 |
[2023-09-01 22:35:14,680::train::INFO] [train] Iter 03062 | loss 1.3588 | loss(rot) 0.8637 | loss(pos) 0.3778 | loss(seq) 0.1172 | grad 4.4421 | lr 0.0010 | time_forward 4.4520 | time_backward 5.2900 |
[2023-09-01 22:35:23,496::train::INFO] [train] Iter 03063 | loss 2.4368 | loss(rot) 0.0106 | loss(pos) 2.4263 | loss(seq) 0.0000 | grad 5.9317 | lr 0.0010 | time_forward 3.6680 | time_backward 5.1450 |
[2023-09-01 22:35:26,691::train::INFO] [train] Iter 03064 | loss 1.2161 | loss(rot) 0.0259 | loss(pos) 1.1863 | loss(seq) 0.0040 | grad 3.2451 | lr 0.0010 | time_forward 1.4390 | time_backward 1.7530 |
[2023-09-01 22:35:36,877::train::INFO] [train] Iter 03065 | loss 2.7701 | loss(rot) 2.3636 | loss(pos) 0.3949 | loss(seq) 0.0116 | grad 7.4577 | lr 0.0010 | time_forward 4.0230 | time_backward 6.1600 |
[2023-09-01 22:35:39,719::train::INFO] [train] Iter 03066 | loss 2.6616 | loss(rot) 0.0397 | loss(pos) 2.6218 | loss(seq) 0.0000 | grad 6.0938 | lr 0.0010 | time_forward 1.2890 | time_backward 1.5490 |
[2023-09-01 22:35:50,231::train::INFO] [train] Iter 03067 | loss 2.0534 | loss(rot) 1.2326 | loss(pos) 0.3673 | loss(seq) 0.4534 | grad 4.8266 | lr 0.0010 | time_forward 4.1050 | time_backward 6.3750 |
[2023-09-01 22:35:57,837::train::INFO] [train] Iter 03068 | loss 1.8914 | loss(rot) 1.0094 | loss(pos) 0.3782 | loss(seq) 0.5038 | grad 7.6307 | lr 0.0010 | time_forward 3.1950 | time_backward 4.4060 |
[2023-09-01 22:36:04,297::train::INFO] [train] Iter 03069 | loss 2.2926 | loss(rot) 1.4107 | loss(pos) 0.2141 | loss(seq) 0.6678 | grad 4.1284 | lr 0.0010 | time_forward 2.6270 | time_backward 3.8300 |
[2023-09-01 22:36:07,041::train::INFO] [train] Iter 03070 | loss 1.2554 | loss(rot) 0.0453 | loss(pos) 1.2053 | loss(seq) 0.0047 | grad 3.7713 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4820 |
[2023-09-01 22:36:09,924::train::INFO] [train] Iter 03071 | loss 1.8178 | loss(rot) 1.0506 | loss(pos) 0.2258 | loss(seq) 0.5414 | grad 3.4953 | lr 0.0010 | time_forward 1.3330 | time_backward 1.5020 |
[2023-09-01 22:36:12,701::train::INFO] [train] Iter 03072 | loss 2.2953 | loss(rot) 2.0363 | loss(pos) 0.2584 | loss(seq) 0.0006 | grad 4.2373 | lr 0.0010 | time_forward 1.2660 | time_backward 1.5070 |
[2023-09-01 22:36:22,913::train::INFO] [train] Iter 03073 | loss 1.9988 | loss(rot) 0.4236 | loss(pos) 1.5093 | loss(seq) 0.0659 | grad 6.5023 | lr 0.0010 | time_forward 4.2110 | time_backward 5.9980 |
[2023-09-01 22:36:31,319::train::INFO] [train] Iter 03074 | loss 2.0156 | loss(rot) 0.0400 | loss(pos) 1.9738 | loss(seq) 0.0018 | grad 6.1472 | lr 0.0010 | time_forward 3.6280 | time_backward 4.7740 |
[2023-09-01 22:36:34,457::train::INFO] [train] Iter 03075 | loss 2.8967 | loss(rot) 2.1784 | loss(pos) 0.3054 | loss(seq) 0.4129 | grad 3.8517 | lr 0.0010 | time_forward 1.4000 | time_backward 1.7330 |
[2023-09-01 22:36:42,657::train::INFO] [train] Iter 03076 | loss 2.0093 | loss(rot) 1.1046 | loss(pos) 0.2975 | loss(seq) 0.6072 | grad 4.8645 | lr 0.0010 | time_forward 3.3990 | time_backward 4.7980 |
[2023-09-01 22:36:53,026::train::INFO] [train] Iter 03077 | loss 2.9178 | loss(rot) 2.4164 | loss(pos) 0.2382 | loss(seq) 0.2633 | grad 4.1494 | lr 0.0010 | time_forward 4.2850 | time_backward 6.0810 |
[2023-09-01 22:37:01,272::train::INFO] [train] Iter 03078 | loss 1.1051 | loss(rot) 0.6010 | loss(pos) 0.3697 | loss(seq) 0.1345 | grad 4.6405 | lr 0.0010 | time_forward 3.4340 | time_backward 4.8090 |
[2023-09-01 22:37:10,118::train::INFO] [train] Iter 03079 | loss 1.6603 | loss(rot) 1.0097 | loss(pos) 0.2666 | loss(seq) 0.3840 | grad 4.8104 | lr 0.0010 | time_forward 3.6820 | time_backward 5.1600 |
[2023-09-01 22:37:20,443::train::INFO] [train] Iter 03080 | loss 2.8744 | loss(rot) 2.3450 | loss(pos) 0.2788 | loss(seq) 0.2506 | grad 5.6045 | lr 0.0010 | time_forward 4.0430 | time_backward 6.2800 |
[2023-09-01 22:37:30,835::train::INFO] [train] Iter 03081 | loss 1.0086 | loss(rot) 0.3977 | loss(pos) 0.5397 | loss(seq) 0.0712 | grad 4.4141 | lr 0.0010 | time_forward 4.1230 | time_backward 6.2660 |
[2023-09-01 22:37:39,320::train::INFO] [train] Iter 03082 | loss 1.0957 | loss(rot) 0.1996 | loss(pos) 0.8486 | loss(seq) 0.0476 | grad 4.4443 | lr 0.0010 | time_forward 3.3420 | time_backward 5.1390 |
[2023-09-01 22:37:47,851::train::INFO] [train] Iter 03083 | loss 2.6629 | loss(rot) 2.0980 | loss(pos) 0.5484 | loss(seq) 0.0165 | grad 6.5595 | lr 0.0010 | time_forward 3.5750 | time_backward 4.9520 |
[2023-09-01 22:37:50,539::train::INFO] [train] Iter 03084 | loss 1.1692 | loss(rot) 0.5572 | loss(pos) 0.4311 | loss(seq) 0.1810 | grad 5.1566 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4560 |
[2023-09-01 22:37:55,298::train::INFO] [train] Iter 03085 | loss 0.7126 | loss(rot) 0.2655 | loss(pos) 0.3735 | loss(seq) 0.0736 | grad 3.4286 | lr 0.0010 | time_forward 2.0410 | time_backward 2.7140 |
[2023-09-01 22:37:57,866::train::INFO] [train] Iter 03086 | loss 2.2716 | loss(rot) 1.7548 | loss(pos) 0.1426 | loss(seq) 0.3743 | grad 4.8493 | lr 0.0010 | time_forward 1.1470 | time_backward 1.4180 |
[2023-09-01 22:38:05,021::train::INFO] [train] Iter 03087 | loss 1.6666 | loss(rot) 0.4754 | loss(pos) 0.7832 | loss(seq) 0.4080 | grad 4.1572 | lr 0.0010 | time_forward 3.0480 | time_backward 4.0640 |
[2023-09-01 22:38:12,581::train::INFO] [train] Iter 03088 | loss 1.0799 | loss(rot) 0.3839 | loss(pos) 0.2603 | loss(seq) 0.4357 | grad 3.5514 | lr 0.0010 | time_forward 3.1800 | time_backward 4.3770 |
[2023-09-01 22:38:14,841::train::INFO] [train] Iter 03089 | loss 2.3021 | loss(rot) 1.4315 | loss(pos) 0.3530 | loss(seq) 0.5176 | grad 5.1659 | lr 0.0010 | time_forward 1.0180 | time_backward 1.2380 |
[2023-09-01 22:38:23,271::train::INFO] [train] Iter 03090 | loss 2.4918 | loss(rot) 1.8641 | loss(pos) 0.3379 | loss(seq) 0.2897 | grad 5.6406 | lr 0.0010 | time_forward 3.5490 | time_backward 4.8780 |
[2023-09-01 22:38:25,568::train::INFO] [train] Iter 03091 | loss 2.2722 | loss(rot) 1.2158 | loss(pos) 0.5578 | loss(seq) 0.4986 | grad 6.2628 | lr 0.0010 | time_forward 1.0450 | time_backward 1.2500 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.