text
stringlengths 56
1.16k
|
---|
[2023-09-01 22:03:15,212::train::INFO] [train] Iter 02793 | loss 2.4326 | loss(rot) 1.6323 | loss(pos) 0.2863 | loss(seq) 0.5140 | grad 2.8972 | lr 0.0010 | time_forward 4.1550 | time_backward 5.8340 |
[2023-09-01 22:03:25,437::train::INFO] [train] Iter 02794 | loss 2.8048 | loss(rot) 2.4201 | loss(pos) 0.3228 | loss(seq) 0.0618 | grad 4.6244 | lr 0.0010 | time_forward 4.0720 | time_backward 6.1490 |
[2023-09-01 22:03:28,107::train::INFO] [train] Iter 02795 | loss 2.0837 | loss(rot) 0.8810 | loss(pos) 0.6640 | loss(seq) 0.5387 | grad 6.1663 | lr 0.0010 | time_forward 1.2220 | time_backward 1.4440 |
[2023-09-01 22:03:38,477::train::INFO] [train] Iter 02796 | loss 2.1686 | loss(rot) 1.5417 | loss(pos) 0.2270 | loss(seq) 0.3999 | grad 4.2520 | lr 0.0010 | time_forward 4.1360 | time_backward 6.2300 |
[2023-09-01 22:03:47,703::train::INFO] [train] Iter 02797 | loss 2.6831 | loss(rot) 1.5926 | loss(pos) 0.5290 | loss(seq) 0.5615 | grad 5.5604 | lr 0.0010 | time_forward 3.8780 | time_backward 5.3340 |
[2023-09-01 22:03:50,467::train::INFO] [train] Iter 02798 | loss 1.2379 | loss(rot) 0.2694 | loss(pos) 0.9268 | loss(seq) 0.0418 | grad 6.2419 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4430 |
[2023-09-01 22:03:53,246::train::INFO] [train] Iter 02799 | loss 2.5896 | loss(rot) 2.3395 | loss(pos) 0.2500 | loss(seq) 0.0001 | grad 5.4413 | lr 0.0010 | time_forward 1.3560 | time_backward 1.4190 |
[2023-09-01 22:03:56,574::train::INFO] [train] Iter 02800 | loss 2.6905 | loss(rot) 2.3533 | loss(pos) 0.3370 | loss(seq) 0.0001 | grad 3.9497 | lr 0.0010 | time_forward 1.5160 | time_backward 1.8070 |
[2023-09-01 22:04:06,645::train::INFO] [train] Iter 02801 | loss 2.4011 | loss(rot) 1.8884 | loss(pos) 0.5004 | loss(seq) 0.0123 | grad 4.5399 | lr 0.0010 | time_forward 4.0710 | time_backward 5.9960 |
[2023-09-01 22:04:15,601::train::INFO] [train] Iter 02802 | loss 4.1304 | loss(rot) 0.0111 | loss(pos) 4.1193 | loss(seq) 0.0000 | grad 7.7733 | lr 0.0010 | time_forward 3.7010 | time_backward 5.2510 |
[2023-09-01 22:04:25,723::train::INFO] [train] Iter 02803 | loss 1.4218 | loss(rot) 0.6268 | loss(pos) 0.3326 | loss(seq) 0.4624 | grad 3.9075 | lr 0.0010 | time_forward 4.2260 | time_backward 5.8920 |
[2023-09-01 22:04:35,367::train::INFO] [train] Iter 02804 | loss 0.9366 | loss(rot) 0.2573 | loss(pos) 0.5041 | loss(seq) 0.1751 | grad 4.4876 | lr 0.0010 | time_forward 3.8090 | time_backward 5.8320 |
[2023-09-01 22:04:38,662::train::INFO] [train] Iter 02805 | loss 1.4552 | loss(rot) 0.3825 | loss(pos) 1.0148 | loss(seq) 0.0580 | grad 5.8568 | lr 0.0010 | time_forward 1.6330 | time_backward 1.6580 |
[2023-09-01 22:04:41,705::train::INFO] [train] Iter 02806 | loss 3.3816 | loss(rot) 2.4977 | loss(pos) 0.4896 | loss(seq) 0.3944 | grad 6.9072 | lr 0.0010 | time_forward 1.5480 | time_backward 1.4910 |
[2023-09-01 22:04:49,466::train::INFO] [train] Iter 02807 | loss 2.5137 | loss(rot) 1.6898 | loss(pos) 0.2873 | loss(seq) 0.5366 | grad 5.1039 | lr 0.0010 | time_forward 3.2250 | time_backward 4.5330 |
[2023-09-01 22:04:59,750::train::INFO] [train] Iter 02808 | loss 2.8862 | loss(rot) 2.6121 | loss(pos) 0.2708 | loss(seq) 0.0034 | grad 3.6288 | lr 0.0010 | time_forward 4.1840 | time_backward 6.0510 |
[2023-09-01 22:05:07,382::train::INFO] [train] Iter 02809 | loss 2.4579 | loss(rot) 2.2477 | loss(pos) 0.1888 | loss(seq) 0.0214 | grad 6.4941 | lr 0.0010 | time_forward 3.2790 | time_backward 4.3490 |
[2023-09-01 22:05:17,266::train::INFO] [train] Iter 02810 | loss 2.7974 | loss(rot) 2.4641 | loss(pos) 0.3213 | loss(seq) 0.0119 | grad 4.9692 | lr 0.0010 | time_forward 4.0650 | time_backward 5.8150 |
[2023-09-01 22:05:20,503::train::INFO] [train] Iter 02811 | loss 2.5985 | loss(rot) 2.1169 | loss(pos) 0.2332 | loss(seq) 0.2484 | grad 5.0244 | lr 0.0010 | time_forward 1.7800 | time_backward 1.4500 |
[2023-09-01 22:05:25,270::train::INFO] [train] Iter 02812 | loss 3.1491 | loss(rot) 2.4717 | loss(pos) 0.3167 | loss(seq) 0.3607 | grad 4.5974 | lr 0.0010 | time_forward 2.0990 | time_backward 2.6650 |
[2023-09-01 22:05:34,190::train::INFO] [train] Iter 02813 | loss 3.0523 | loss(rot) 2.3588 | loss(pos) 0.2005 | loss(seq) 0.4931 | grad 4.6815 | lr 0.0010 | time_forward 3.7760 | time_backward 5.1050 |
[2023-09-01 22:05:42,707::train::INFO] [train] Iter 02814 | loss 2.0931 | loss(rot) 0.8734 | loss(pos) 0.6942 | loss(seq) 0.5256 | grad 6.2557 | lr 0.0010 | time_forward 3.5620 | time_backward 4.9520 |
[2023-09-01 22:05:52,011::train::INFO] [train] Iter 02815 | loss 1.8956 | loss(rot) 1.1349 | loss(pos) 0.2484 | loss(seq) 0.5122 | grad 3.6403 | lr 0.0010 | time_forward 3.9910 | time_backward 5.3100 |
[2023-09-01 22:06:00,477::train::INFO] [train] Iter 02816 | loss 3.4039 | loss(rot) 3.1473 | loss(pos) 0.1849 | loss(seq) 0.0716 | grad 5.1516 | lr 0.0010 | time_forward 3.5920 | time_backward 4.8710 |
[2023-09-01 22:06:03,108::train::INFO] [train] Iter 02817 | loss 2.1607 | loss(rot) 1.1762 | loss(pos) 0.3948 | loss(seq) 0.5897 | grad 5.7992 | lr 0.0010 | time_forward 1.2240 | time_backward 1.4030 |
[2023-09-01 22:06:12,145::train::INFO] [train] Iter 02818 | loss 2.6701 | loss(rot) 2.3615 | loss(pos) 0.1773 | loss(seq) 0.1314 | grad 6.1272 | lr 0.0010 | time_forward 3.8300 | time_backward 5.2040 |
[2023-09-01 22:06:21,598::train::INFO] [train] Iter 02819 | loss 1.5065 | loss(rot) 0.3036 | loss(pos) 1.1492 | loss(seq) 0.0537 | grad 6.6047 | lr 0.0010 | time_forward 3.9840 | time_backward 5.4650 |
[2023-09-01 22:06:30,707::train::INFO] [train] Iter 02820 | loss 2.9279 | loss(rot) 1.6656 | loss(pos) 0.6421 | loss(seq) 0.6203 | grad 5.1089 | lr 0.0010 | time_forward 4.1080 | time_backward 4.9930 |
[2023-09-01 22:06:39,985::train::INFO] [train] Iter 02821 | loss 1.9977 | loss(rot) 1.8082 | loss(pos) 0.1454 | loss(seq) 0.0441 | grad 5.4928 | lr 0.0010 | time_forward 4.3350 | time_backward 4.9360 |
[2023-09-01 22:06:50,262::train::INFO] [train] Iter 02822 | loss 1.6052 | loss(rot) 0.4764 | loss(pos) 0.6322 | loss(seq) 0.4966 | grad 3.6362 | lr 0.0010 | time_forward 4.2360 | time_backward 6.0380 |
[2023-09-01 22:07:00,253::train::INFO] [train] Iter 02823 | loss 1.7360 | loss(rot) 0.4959 | loss(pos) 0.9748 | loss(seq) 0.2654 | grad 4.9946 | lr 0.0010 | time_forward 4.0720 | time_backward 5.9160 |
[2023-09-01 22:07:02,113::train::INFO] [train] Iter 02824 | loss 1.7388 | loss(rot) 0.8542 | loss(pos) 0.3535 | loss(seq) 0.5311 | grad 5.2895 | lr 0.0010 | time_forward 0.8110 | time_backward 1.0440 |
[2023-09-01 22:07:12,093::train::INFO] [train] Iter 02825 | loss 2.1192 | loss(rot) 1.4509 | loss(pos) 0.1886 | loss(seq) 0.4797 | grad 4.3236 | lr 0.0010 | time_forward 4.0100 | time_backward 5.9670 |
[2023-09-01 22:07:14,770::train::INFO] [train] Iter 02826 | loss 3.7899 | loss(rot) 3.4893 | loss(pos) 0.2933 | loss(seq) 0.0073 | grad 4.7250 | lr 0.0010 | time_forward 1.2760 | time_backward 1.3970 |
[2023-09-01 22:07:25,063::train::INFO] [train] Iter 02827 | loss 1.6232 | loss(rot) 0.7794 | loss(pos) 0.4354 | loss(seq) 0.4084 | grad 3.7299 | lr 0.0010 | time_forward 4.1730 | time_backward 6.1170 |
[2023-09-01 22:07:27,287::train::INFO] [train] Iter 02828 | loss 1.2711 | loss(rot) 0.7002 | loss(pos) 0.2171 | loss(seq) 0.3538 | grad 3.0461 | lr 0.0010 | time_forward 1.0400 | time_backward 1.1800 |
[2023-09-01 22:07:33,516::train::INFO] [train] Iter 02829 | loss 2.1043 | loss(rot) 1.8150 | loss(pos) 0.1394 | loss(seq) 0.1499 | grad 4.3762 | lr 0.0010 | time_forward 2.7240 | time_backward 3.5030 |
[2023-09-01 22:07:43,868::train::INFO] [train] Iter 02830 | loss 3.4269 | loss(rot) 2.7978 | loss(pos) 0.3435 | loss(seq) 0.2856 | grad 4.6868 | lr 0.0010 | time_forward 4.4270 | time_backward 5.9220 |
[2023-09-01 22:07:53,886::train::INFO] [train] Iter 02831 | loss 2.5559 | loss(rot) 2.1308 | loss(pos) 0.1705 | loss(seq) 0.2546 | grad 3.6301 | lr 0.0010 | time_forward 4.0600 | time_backward 5.9540 |
[2023-09-01 22:08:00,870::train::INFO] [train] Iter 02832 | loss 3.0807 | loss(rot) 1.7673 | loss(pos) 0.8427 | loss(seq) 0.4707 | grad 7.4010 | lr 0.0010 | time_forward 2.9730 | time_backward 4.0080 |
[2023-09-01 22:08:09,226::train::INFO] [train] Iter 02833 | loss 3.0677 | loss(rot) 2.2344 | loss(pos) 0.4178 | loss(seq) 0.4155 | grad 4.7762 | lr 0.0010 | time_forward 3.5000 | time_backward 4.8530 |
[2023-09-01 22:08:11,865::train::INFO] [train] Iter 02834 | loss 1.4032 | loss(rot) 0.5084 | loss(pos) 0.6049 | loss(seq) 0.2900 | grad 4.4815 | lr 0.0010 | time_forward 1.2370 | time_backward 1.3980 |
[2023-09-01 22:08:20,368::train::INFO] [train] Iter 02835 | loss 3.0717 | loss(rot) 2.8287 | loss(pos) 0.2339 | loss(seq) 0.0091 | grad 3.5968 | lr 0.0010 | time_forward 3.5490 | time_backward 4.9510 |
[2023-09-01 22:08:30,544::train::INFO] [train] Iter 02836 | loss 2.4695 | loss(rot) 0.0237 | loss(pos) 2.4416 | loss(seq) 0.0042 | grad 5.4755 | lr 0.0010 | time_forward 4.1940 | time_backward 5.9790 |
[2023-09-01 22:08:33,280::train::INFO] [train] Iter 02837 | loss 2.2113 | loss(rot) 1.4393 | loss(pos) 0.2363 | loss(seq) 0.5358 | grad 4.0714 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4360 |
[2023-09-01 22:08:43,575::train::INFO] [train] Iter 02838 | loss 1.3179 | loss(rot) 0.1827 | loss(pos) 1.1183 | loss(seq) 0.0169 | grad 5.1288 | lr 0.0010 | time_forward 4.0710 | time_backward 6.2210 |
[2023-09-01 22:08:54,088::train::INFO] [train] Iter 02839 | loss 2.2489 | loss(rot) 1.4534 | loss(pos) 0.2735 | loss(seq) 0.5220 | grad 2.7451 | lr 0.0010 | time_forward 4.3190 | time_backward 6.1610 |
[2023-09-01 22:09:02,775::train::INFO] [train] Iter 02840 | loss 0.8704 | loss(rot) 0.3667 | loss(pos) 0.4160 | loss(seq) 0.0877 | grad 4.9750 | lr 0.0010 | time_forward 3.6630 | time_backward 5.0210 |
[2023-09-01 22:09:05,448::train::INFO] [train] Iter 02841 | loss 2.2798 | loss(rot) 1.3934 | loss(pos) 0.2742 | loss(seq) 0.6122 | grad 5.0715 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4370 |
[2023-09-01 22:09:14,495::train::INFO] [train] Iter 02842 | loss 1.5096 | loss(rot) 0.8632 | loss(pos) 0.3977 | loss(seq) 0.2486 | grad 6.3635 | lr 0.0010 | time_forward 4.0450 | time_backward 4.9980 |
[2023-09-01 22:09:23,394::train::INFO] [train] Iter 02843 | loss 2.4497 | loss(rot) 2.1203 | loss(pos) 0.3202 | loss(seq) 0.0092 | grad 6.9965 | lr 0.0010 | time_forward 3.6860 | time_backward 5.2100 |
[2023-09-01 22:09:32,668::train::INFO] [train] Iter 02844 | loss 2.7235 | loss(rot) 2.5682 | loss(pos) 0.1552 | loss(seq) 0.0000 | grad 6.7039 | lr 0.0010 | time_forward 3.9140 | time_backward 5.3560 |
[2023-09-01 22:09:35,444::train::INFO] [train] Iter 02845 | loss 2.2878 | loss(rot) 1.2744 | loss(pos) 0.4258 | loss(seq) 0.5876 | grad 4.3666 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4320 |
[2023-09-01 22:09:38,172::train::INFO] [train] Iter 02846 | loss 2.4902 | loss(rot) 2.1579 | loss(pos) 0.2396 | loss(seq) 0.0926 | grad 4.3546 | lr 0.0010 | time_forward 1.2930 | time_backward 1.4320 |
[2023-09-01 22:09:48,090::train::INFO] [train] Iter 02847 | loss 1.8826 | loss(rot) 1.6497 | loss(pos) 0.1709 | loss(seq) 0.0620 | grad 5.3299 | lr 0.0010 | time_forward 4.1810 | time_backward 5.7300 |
[2023-09-01 22:09:50,886::train::INFO] [train] Iter 02848 | loss 2.8680 | loss(rot) 2.6428 | loss(pos) 0.2061 | loss(seq) 0.0190 | grad 5.6338 | lr 0.0010 | time_forward 1.3380 | time_backward 1.4550 |
[2023-09-01 22:10:00,487::train::INFO] [train] Iter 02849 | loss 3.2160 | loss(rot) 2.9790 | loss(pos) 0.2351 | loss(seq) 0.0019 | grad 5.3374 | lr 0.0010 | time_forward 4.2410 | time_backward 5.3560 |
[2023-09-01 22:10:09,834::train::INFO] [train] Iter 02850 | loss 1.1342 | loss(rot) 0.4197 | loss(pos) 0.5093 | loss(seq) 0.2052 | grad 3.4329 | lr 0.0010 | time_forward 3.9400 | time_backward 5.4020 |
[2023-09-01 22:10:19,805::train::INFO] [train] Iter 02851 | loss 2.8038 | loss(rot) 0.9323 | loss(pos) 1.8304 | loss(seq) 0.0412 | grad 6.2226 | lr 0.0010 | time_forward 4.1150 | time_backward 5.8520 |
[2023-09-01 22:10:22,509::train::INFO] [train] Iter 02852 | loss 2.8512 | loss(rot) 1.7250 | loss(pos) 0.5442 | loss(seq) 0.5820 | grad 6.0726 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4510 |
[2023-09-01 22:10:25,282::train::INFO] [train] Iter 02853 | loss 2.6130 | loss(rot) 1.9405 | loss(pos) 0.1960 | loss(seq) 0.4765 | grad 3.5145 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4520 |
[2023-09-01 22:10:28,136::train::INFO] [train] Iter 02854 | loss 2.7229 | loss(rot) 2.0126 | loss(pos) 0.5243 | loss(seq) 0.1859 | grad 4.6973 | lr 0.0010 | time_forward 1.3800 | time_backward 1.4330 |
[2023-09-01 22:10:35,394::train::INFO] [train] Iter 02855 | loss 1.1673 | loss(rot) 0.6476 | loss(pos) 0.2219 | loss(seq) 0.2978 | grad 3.8826 | lr 0.0010 | time_forward 3.0880 | time_backward 4.1670 |
[2023-09-01 22:10:45,702::train::INFO] [train] Iter 02856 | loss 2.4387 | loss(rot) 0.0180 | loss(pos) 2.4201 | loss(seq) 0.0005 | grad 5.5958 | lr 0.0010 | time_forward 4.1470 | time_backward 6.1580 |
[2023-09-01 22:10:48,226::train::INFO] [train] Iter 02857 | loss 2.9056 | loss(rot) 1.8186 | loss(pos) 0.5943 | loss(seq) 0.4927 | grad 3.4054 | lr 0.0010 | time_forward 1.2460 | time_backward 1.2750 |
[2023-09-01 22:10:50,648::train::INFO] [train] Iter 02858 | loss 3.0167 | loss(rot) 2.6403 | loss(pos) 0.3765 | loss(seq) 0.0000 | grad 7.0561 | lr 0.0010 | time_forward 1.1300 | time_backward 1.2680 |
[2023-09-01 22:11:00,173::train::INFO] [train] Iter 02859 | loss 1.4217 | loss(rot) 0.0208 | loss(pos) 1.3998 | loss(seq) 0.0010 | grad 3.3542 | lr 0.0010 | time_forward 4.2770 | time_backward 5.2310 |
[2023-09-01 22:11:02,870::train::INFO] [train] Iter 02860 | loss 2.1016 | loss(rot) 0.9073 | loss(pos) 0.8101 | loss(seq) 0.3842 | grad 7.9923 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4090 |
[2023-09-01 22:11:13,153::train::INFO] [train] Iter 02861 | loss 2.8325 | loss(rot) 2.5205 | loss(pos) 0.1861 | loss(seq) 0.1259 | grad 3.4172 | lr 0.0010 | time_forward 4.2860 | time_backward 5.9940 |
[2023-09-01 22:11:22,088::train::INFO] [train] Iter 02862 | loss 1.2484 | loss(rot) 0.2406 | loss(pos) 0.6890 | loss(seq) 0.3188 | grad 5.2634 | lr 0.0010 | time_forward 3.7930 | time_backward 5.1380 |
[2023-09-01 22:11:24,825::train::INFO] [train] Iter 02863 | loss 1.7303 | loss(rot) 0.3884 | loss(pos) 1.3340 | loss(seq) 0.0079 | grad 4.7798 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4570 |
[2023-09-01 22:11:31,773::train::INFO] [train] Iter 02864 | loss 1.3249 | loss(rot) 0.0619 | loss(pos) 1.2533 | loss(seq) 0.0097 | grad 4.3234 | lr 0.0010 | time_forward 2.9120 | time_backward 4.0320 |
[2023-09-01 22:11:39,730::train::INFO] [train] Iter 02865 | loss 2.3463 | loss(rot) 1.5979 | loss(pos) 0.3077 | loss(seq) 0.4407 | grad 5.5425 | lr 0.0010 | time_forward 3.3340 | time_backward 4.6190 |
[2023-09-01 22:11:42,934::train::INFO] [train] Iter 02866 | loss 0.9583 | loss(rot) 0.1627 | loss(pos) 0.7372 | loss(seq) 0.0585 | grad 4.5609 | lr 0.0010 | time_forward 1.4480 | time_backward 1.7520 |
[2023-09-01 22:11:45,710::train::INFO] [train] Iter 02867 | loss 1.9135 | loss(rot) 1.1108 | loss(pos) 0.2363 | loss(seq) 0.5664 | grad 4.2340 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4880 |
[2023-09-01 22:11:48,688::train::INFO] [train] Iter 02868 | loss 2.1650 | loss(rot) 0.8358 | loss(pos) 0.6962 | loss(seq) 0.6331 | grad 5.3668 | lr 0.0010 | time_forward 1.4530 | time_backward 1.5220 |
[2023-09-01 22:11:51,243::train::INFO] [train] Iter 02869 | loss 2.5610 | loss(rot) 1.5627 | loss(pos) 0.2542 | loss(seq) 0.7440 | grad 4.5519 | lr 0.0010 | time_forward 1.3390 | time_backward 1.2110 |
[2023-09-01 22:11:54,039::train::INFO] [train] Iter 02870 | loss 1.4700 | loss(rot) 0.4332 | loss(pos) 0.5940 | loss(seq) 0.4428 | grad 4.4604 | lr 0.0010 | time_forward 1.2880 | time_backward 1.5050 |
[2023-09-01 22:12:02,726::train::INFO] [train] Iter 02871 | loss 2.2793 | loss(rot) 1.5043 | loss(pos) 0.3355 | loss(seq) 0.4396 | grad 5.5585 | lr 0.0010 | time_forward 3.7320 | time_backward 4.9520 |
[2023-09-01 22:12:12,908::train::INFO] [train] Iter 02872 | loss 2.5484 | loss(rot) 1.4753 | loss(pos) 0.5432 | loss(seq) 0.5299 | grad 4.6840 | lr 0.0010 | time_forward 4.1200 | time_backward 6.0580 |
[2023-09-01 22:12:21,543::train::INFO] [train] Iter 02873 | loss 1.4637 | loss(rot) 0.7208 | loss(pos) 0.2907 | loss(seq) 0.4522 | grad 3.2182 | lr 0.0010 | time_forward 3.6460 | time_backward 4.9850 |
[2023-09-01 22:12:31,551::train::INFO] [train] Iter 02874 | loss 2.4479 | loss(rot) 1.3771 | loss(pos) 0.4851 | loss(seq) 0.5857 | grad 4.5620 | lr 0.0010 | time_forward 4.2130 | time_backward 5.7910 |
[2023-09-01 22:12:40,136::train::INFO] [train] Iter 02875 | loss 2.4826 | loss(rot) 2.3720 | loss(pos) 0.1010 | loss(seq) 0.0095 | grad 4.3872 | lr 0.0010 | time_forward 3.5590 | time_backward 5.0140 |
[2023-09-01 22:12:48,749::train::INFO] [train] Iter 02876 | loss 2.9116 | loss(rot) 2.6264 | loss(pos) 0.2832 | loss(seq) 0.0020 | grad 4.8169 | lr 0.0010 | time_forward 3.6080 | time_backward 5.0020 |
[2023-09-01 22:12:58,925::train::INFO] [train] Iter 02877 | loss 2.6993 | loss(rot) 1.7026 | loss(pos) 0.4291 | loss(seq) 0.5677 | grad 4.7897 | lr 0.0010 | time_forward 4.0510 | time_backward 6.1210 |
[2023-09-01 22:13:07,037::train::INFO] [train] Iter 02878 | loss 1.2962 | loss(rot) 0.4801 | loss(pos) 0.6133 | loss(seq) 0.2028 | grad 3.9535 | lr 0.0010 | time_forward 3.3780 | time_backward 4.7310 |
[2023-09-01 22:13:10,233::train::INFO] [train] Iter 02879 | loss 2.5920 | loss(rot) 2.3448 | loss(pos) 0.2384 | loss(seq) 0.0088 | grad 3.4475 | lr 0.0010 | time_forward 1.4330 | time_backward 1.7590 |
[2023-09-01 22:13:19,075::train::INFO] [train] Iter 02880 | loss 3.1406 | loss(rot) 2.9458 | loss(pos) 0.1936 | loss(seq) 0.0012 | grad 2.5883 | lr 0.0010 | time_forward 3.8210 | time_backward 5.0170 |
[2023-09-01 22:13:29,053::train::INFO] [train] Iter 02881 | loss 3.0733 | loss(rot) 2.7178 | loss(pos) 0.1795 | loss(seq) 0.1760 | grad 3.5578 | lr 0.0010 | time_forward 4.1010 | time_backward 5.8730 |
[2023-09-01 22:13:31,825::train::INFO] [train] Iter 02882 | loss 1.8995 | loss(rot) 0.7978 | loss(pos) 0.5527 | loss(seq) 0.5490 | grad 4.4152 | lr 0.0010 | time_forward 1.2280 | time_backward 1.5410 |
[2023-09-01 22:13:41,065::train::INFO] [train] Iter 02883 | loss 2.5719 | loss(rot) 2.4379 | loss(pos) 0.1145 | loss(seq) 0.0195 | grad 4.5678 | lr 0.0010 | time_forward 3.8880 | time_backward 5.3470 |
[2023-09-01 22:13:48,541::train::INFO] [train] Iter 02884 | loss 2.2021 | loss(rot) 1.4803 | loss(pos) 0.2986 | loss(seq) 0.4232 | grad 4.6881 | lr 0.0010 | time_forward 3.1480 | time_backward 4.3220 |
[2023-09-01 22:13:57,241::train::INFO] [train] Iter 02885 | loss 1.7094 | loss(rot) 0.9712 | loss(pos) 0.3081 | loss(seq) 0.4300 | grad 4.4663 | lr 0.0010 | time_forward 3.7000 | time_backward 4.9970 |
[2023-09-01 22:13:59,884::train::INFO] [train] Iter 02886 | loss 1.7073 | loss(rot) 0.1741 | loss(pos) 1.2969 | loss(seq) 0.2364 | grad 5.8250 | lr 0.0010 | time_forward 1.2100 | time_backward 1.4290 |
[2023-09-01 22:14:08,425::train::INFO] [train] Iter 02887 | loss 2.6223 | loss(rot) 2.5070 | loss(pos) 0.1150 | loss(seq) 0.0003 | grad 5.0729 | lr 0.0010 | time_forward 3.4840 | time_backward 5.0280 |
[2023-09-01 22:14:18,364::train::INFO] [train] Iter 02888 | loss 3.0155 | loss(rot) 2.6174 | loss(pos) 0.2985 | loss(seq) 0.0996 | grad 4.2739 | lr 0.0010 | time_forward 4.1340 | time_backward 5.8020 |
[2023-09-01 22:14:21,004::train::INFO] [train] Iter 02889 | loss 2.1473 | loss(rot) 1.7833 | loss(pos) 0.2758 | loss(seq) 0.0882 | grad 6.9510 | lr 0.0010 | time_forward 1.2180 | time_backward 1.4180 |
[2023-09-01 22:14:30,802::train::INFO] [train] Iter 02890 | loss 4.6118 | loss(rot) 0.0146 | loss(pos) 4.5972 | loss(seq) 0.0000 | grad 6.7483 | lr 0.0010 | time_forward 4.0020 | time_backward 5.7930 |
[2023-09-01 22:14:38,739::train::INFO] [train] Iter 02891 | loss 3.3361 | loss(rot) 3.2275 | loss(pos) 0.0973 | loss(seq) 0.0113 | grad 3.8570 | lr 0.0010 | time_forward 3.3570 | time_backward 4.5540 |
[2023-09-01 22:14:47,767::train::INFO] [train] Iter 02892 | loss 2.9853 | loss(rot) 2.2925 | loss(pos) 0.3177 | loss(seq) 0.3751 | grad 4.8860 | lr 0.0010 | time_forward 3.8230 | time_backward 5.2030 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.