text
stringlengths
56
1.16k
[2023-09-01 16:59:59,719::train::INFO] [train] Iter 00295 | loss 3.0915 | loss(rot) 1.8583 | loss(pos) 0.6422 | loss(seq) 0.5910 | grad 2.9998 | lr 0.0010 | time_forward 1.3320 | time_backward 1.5280
[2023-09-01 17:00:09,233::train::INFO] [train] Iter 00296 | loss 3.5385 | loss(rot) 0.0211 | loss(pos) 3.5129 | loss(seq) 0.0045 | grad 3.2651 | lr 0.0010 | time_forward 3.9810 | time_backward 5.5290
[2023-09-01 17:00:19,476::train::INFO] [train] Iter 00297 | loss 3.8331 | loss(rot) 0.8333 | loss(pos) 2.9352 | loss(seq) 0.0646 | grad 5.7130 | lr 0.0010 | time_forward 4.1020 | time_backward 6.1380
[2023-09-01 17:00:22,289::train::INFO] [train] Iter 00298 | loss 2.3991 | loss(rot) 0.2143 | loss(pos) 2.1503 | loss(seq) 0.0346 | grad 4.3730 | lr 0.0010 | time_forward 1.3540 | time_backward 1.4410
[2023-09-01 17:00:30,962::train::INFO] [train] Iter 00299 | loss 4.1721 | loss(rot) 0.0547 | loss(pos) 4.1102 | loss(seq) 0.0072 | grad 5.3501 | lr 0.0010 | time_forward 3.6750 | time_backward 4.9950
[2023-09-01 17:00:33,833::train::INFO] [train] Iter 00300 | loss 3.4941 | loss(rot) 2.9648 | loss(pos) 0.4771 | loss(seq) 0.0522 | grad 4.0546 | lr 0.0010 | time_forward 1.3890 | time_backward 1.4780
[2023-09-01 17:00:36,234::train::INFO] [train] Iter 00301 | loss 2.7855 | loss(rot) 2.2770 | loss(pos) 0.3163 | loss(seq) 0.1922 | grad 2.7696 | lr 0.0010 | time_forward 1.0720 | time_backward 1.2640
[2023-09-01 17:00:39,005::train::INFO] [train] Iter 00302 | loss 2.4735 | loss(rot) 0.4861 | loss(pos) 1.8796 | loss(seq) 0.1078 | grad 6.8482 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4510
[2023-09-01 17:00:41,887::train::INFO] [train] Iter 00303 | loss 2.8045 | loss(rot) 1.7618 | loss(pos) 0.4885 | loss(seq) 0.5541 | grad 5.2997 | lr 0.0010 | time_forward 1.3300 | time_backward 1.4980
[2023-09-01 17:00:45,409::train::INFO] [train] Iter 00304 | loss 3.1601 | loss(rot) 0.1038 | loss(pos) 3.0422 | loss(seq) 0.0142 | grad 3.3521 | lr 0.0010 | time_forward 1.5560 | time_backward 1.9180
[2023-09-01 17:00:55,307::train::INFO] [train] Iter 00305 | loss 3.2213 | loss(rot) 2.2724 | loss(pos) 0.5078 | loss(seq) 0.4411 | grad 4.4501 | lr 0.0010 | time_forward 3.8030 | time_backward 6.0920
[2023-09-01 17:01:05,526::train::INFO] [train] Iter 00306 | loss 2.6844 | loss(rot) 0.2101 | loss(pos) 2.4431 | loss(seq) 0.0312 | grad 4.4930 | lr 0.0010 | time_forward 4.2090 | time_backward 6.0070
[2023-09-01 17:01:13,210::train::INFO] [train] Iter 00307 | loss 3.4048 | loss(rot) 2.6655 | loss(pos) 0.3100 | loss(seq) 0.4293 | grad 4.6705 | lr 0.0010 | time_forward 3.2900 | time_backward 4.3900
[2023-09-01 17:01:22,262::train::INFO] [train] Iter 00308 | loss 2.9854 | loss(rot) 0.8370 | loss(pos) 2.0698 | loss(seq) 0.0786 | grad 6.6123 | lr 0.0010 | time_forward 3.8190 | time_backward 5.2260
[2023-09-01 17:01:25,291::train::INFO] [train] Iter 00309 | loss 3.4701 | loss(rot) 3.0195 | loss(pos) 0.2900 | loss(seq) 0.1606 | grad 4.2753 | lr 0.0010 | time_forward 1.4010 | time_backward 1.6240
[2023-09-01 17:01:28,925::train::INFO] [train] Iter 00310 | loss 3.1512 | loss(rot) 0.1392 | loss(pos) 2.9989 | loss(seq) 0.0132 | grad 5.5218 | lr 0.0010 | time_forward 1.5090 | time_backward 2.1180
[2023-09-01 17:01:31,880::train::INFO] [train] Iter 00311 | loss 3.9140 | loss(rot) 2.8452 | loss(pos) 0.7424 | loss(seq) 0.3264 | grad 5.3809 | lr 0.0010 | time_forward 1.3640 | time_backward 1.5880
[2023-09-01 17:01:34,734::train::INFO] [train] Iter 00312 | loss 3.2145 | loss(rot) 2.7308 | loss(pos) 0.4836 | loss(seq) 0.0000 | grad 4.8912 | lr 0.0010 | time_forward 1.3830 | time_backward 1.4680
[2023-09-01 17:01:44,931::train::INFO] [train] Iter 00313 | loss 3.9073 | loss(rot) 2.6538 | loss(pos) 0.9575 | loss(seq) 0.2959 | grad 7.1683 | lr 0.0010 | time_forward 4.2220 | time_backward 5.9710
[2023-09-01 17:01:52,769::train::INFO] [train] Iter 00314 | loss 3.9537 | loss(rot) 2.7068 | loss(pos) 0.7473 | loss(seq) 0.4996 | grad 3.8495 | lr 0.0010 | time_forward 3.3810 | time_backward 4.4530
[2023-09-01 17:02:01,915::train::INFO] [train] Iter 00315 | loss 3.2239 | loss(rot) 2.5601 | loss(pos) 0.3522 | loss(seq) 0.3116 | grad 3.3337 | lr 0.0010 | time_forward 3.8980 | time_backward 5.2450
[2023-09-01 17:02:11,882::train::INFO] [train] Iter 00316 | loss 3.4343 | loss(rot) 3.0511 | loss(pos) 0.3800 | loss(seq) 0.0032 | grad 3.3849 | lr 0.0010 | time_forward 4.1090 | time_backward 5.8560
[2023-09-01 17:02:21,914::train::INFO] [train] Iter 00317 | loss 2.6865 | loss(rot) 1.3970 | loss(pos) 0.8077 | loss(seq) 0.4818 | grad 5.6230 | lr 0.0010 | time_forward 3.8030 | time_backward 6.2250
[2023-09-01 17:02:29,139::train::INFO] [train] Iter 00318 | loss 2.1368 | loss(rot) 0.6489 | loss(pos) 0.9584 | loss(seq) 0.5296 | grad 4.8798 | lr 0.0010 | time_forward 3.0710 | time_backward 4.1500
[2023-09-01 17:02:39,385::train::INFO] [train] Iter 00319 | loss 2.6251 | loss(rot) 0.6773 | loss(pos) 1.6775 | loss(seq) 0.2704 | grad 7.9898 | lr 0.0010 | time_forward 4.1110 | time_backward 6.1320
[2023-09-01 17:02:48,635::train::INFO] [train] Iter 00320 | loss 1.7203 | loss(rot) 0.6738 | loss(pos) 0.9274 | loss(seq) 0.1191 | grad 5.1983 | lr 0.0010 | time_forward 3.8590 | time_backward 5.3880
[2023-09-01 17:02:56,339::train::INFO] [train] Iter 00321 | loss 3.7538 | loss(rot) 3.1065 | loss(pos) 0.6473 | loss(seq) 0.0000 | grad 8.1778 | lr 0.0010 | time_forward 3.2140 | time_backward 4.4870
[2023-09-01 17:03:05,687::train::INFO] [train] Iter 00322 | loss 3.0147 | loss(rot) 2.4224 | loss(pos) 0.4956 | loss(seq) 0.0967 | grad 6.8005 | lr 0.0010 | time_forward 3.8600 | time_backward 5.4850
[2023-09-01 17:03:16,003::train::INFO] [train] Iter 00323 | loss 3.5912 | loss(rot) 0.2308 | loss(pos) 3.1989 | loss(seq) 0.1615 | grad 8.0078 | lr 0.0010 | time_forward 4.1960 | time_backward 6.1170
[2023-09-01 17:03:26,095::train::INFO] [train] Iter 00324 | loss 2.0508 | loss(rot) 0.8290 | loss(pos) 0.7820 | loss(seq) 0.4397 | grad 4.5718 | lr 0.0010 | time_forward 3.8660 | time_backward 6.2230
[2023-09-01 17:03:33,802::train::INFO] [train] Iter 00325 | loss 1.9447 | loss(rot) 0.3647 | loss(pos) 1.5399 | loss(seq) 0.0401 | grad 8.1081 | lr 0.0010 | time_forward 3.2310 | time_backward 4.4720
[2023-09-01 17:03:43,136::train::INFO] [train] Iter 00326 | loss 1.7259 | loss(rot) 0.8683 | loss(pos) 0.7196 | loss(seq) 0.1380 | grad 5.0495 | lr 0.0010 | time_forward 3.8980 | time_backward 5.4330
[2023-09-01 17:03:53,079::train::INFO] [train] Iter 00327 | loss 2.5008 | loss(rot) 1.5164 | loss(pos) 0.4955 | loss(seq) 0.4888 | grad 3.5014 | lr 0.0010 | time_forward 4.0130 | time_backward 5.9260
[2023-09-01 17:03:55,498::train::INFO] [train] Iter 00328 | loss 2.8960 | loss(rot) 0.8803 | loss(pos) 1.7205 | loss(seq) 0.2952 | grad 4.8185 | lr 0.0010 | time_forward 1.1400 | time_backward 1.2680
[2023-09-01 17:04:03,769::train::INFO] [train] Iter 00329 | loss 2.7728 | loss(rot) 1.6475 | loss(pos) 0.8111 | loss(seq) 0.3142 | grad 3.7825 | lr 0.0010 | time_forward 3.2870 | time_backward 4.9810
[2023-09-01 17:04:11,998::train::INFO] [train] Iter 00330 | loss 2.7587 | loss(rot) 1.7163 | loss(pos) 0.5915 | loss(seq) 0.4508 | grad 4.6805 | lr 0.0010 | time_forward 3.4340 | time_backward 4.7910
[2023-09-01 17:04:15,057::train::INFO] [train] Iter 00331 | loss 3.0966 | loss(rot) 1.9129 | loss(pos) 0.7029 | loss(seq) 0.4808 | grad 4.7149 | lr 0.0010 | time_forward 1.4760 | time_backward 1.5800
[2023-09-01 17:04:17,460::train::INFO] [train] Iter 00332 | loss 4.0836 | loss(rot) 2.9346 | loss(pos) 0.7147 | loss(seq) 0.4342 | grad 6.4876 | lr 0.0010 | time_forward 1.1300 | time_backward 1.2680
[2023-09-01 17:04:20,369::train::INFO] [train] Iter 00333 | loss 2.6514 | loss(rot) 1.0079 | loss(pos) 1.5220 | loss(seq) 0.1215 | grad 4.9000 | lr 0.0010 | time_forward 1.4270 | time_backward 1.4760
[2023-09-01 17:04:30,267::train::INFO] [train] Iter 00334 | loss 3.4671 | loss(rot) 3.1531 | loss(pos) 0.3129 | loss(seq) 0.0011 | grad 5.0077 | lr 0.0010 | time_forward 4.6650 | time_backward 5.2290
[2023-09-01 17:04:37,912::train::INFO] [train] Iter 00335 | loss 3.1361 | loss(rot) 2.7749 | loss(pos) 0.1591 | loss(seq) 0.2021 | grad 3.2952 | lr 0.0010 | time_forward 3.3370 | time_backward 4.3020
[2023-09-01 17:04:44,946::train::INFO] [train] Iter 00336 | loss 3.0635 | loss(rot) 1.8037 | loss(pos) 0.6415 | loss(seq) 0.6183 | grad 4.6987 | lr 0.0010 | time_forward 2.9980 | time_backward 4.0320
[2023-09-01 17:04:48,420::train::INFO] [train] Iter 00337 | loss 3.2326 | loss(rot) 2.5141 | loss(pos) 0.6383 | loss(seq) 0.0803 | grad 7.5814 | lr 0.0010 | time_forward 1.6500 | time_backward 1.8210
[2023-09-01 17:04:51,294::train::INFO] [train] Iter 00338 | loss 2.9841 | loss(rot) 2.0988 | loss(pos) 0.3484 | loss(seq) 0.5368 | grad 4.2837 | lr 0.0010 | time_forward 1.3520 | time_backward 1.5040
[2023-09-01 17:04:54,158::train::INFO] [train] Iter 00339 | loss 2.8422 | loss(rot) 1.5670 | loss(pos) 0.7222 | loss(seq) 0.5530 | grad 4.9601 | lr 0.0010 | time_forward 1.3710 | time_backward 1.4900
[2023-09-01 17:05:02,954::train::INFO] [train] Iter 00340 | loss 2.3035 | loss(rot) 0.3355 | loss(pos) 1.9440 | loss(seq) 0.0239 | grad 7.4775 | lr 0.0010 | time_forward 3.7390 | time_backward 5.0530
[2023-09-01 17:05:12,870::train::INFO] [train] Iter 00341 | loss 3.7826 | loss(rot) 2.4057 | loss(pos) 0.8562 | loss(seq) 0.5207 | grad 4.2273 | lr 0.0010 | time_forward 4.2150 | time_backward 5.6970
[2023-09-01 17:05:21,306::train::INFO] [train] Iter 00342 | loss 3.7437 | loss(rot) 3.0092 | loss(pos) 0.3555 | loss(seq) 0.3790 | grad 3.7949 | lr 0.0010 | time_forward 3.4710 | time_backward 4.9560
[2023-09-01 17:05:25,626::train::INFO] [train] Iter 00343 | loss 3.6468 | loss(rot) 3.1261 | loss(pos) 0.4830 | loss(seq) 0.0378 | grad 4.5912 | lr 0.0010 | time_forward 1.9200 | time_backward 2.3960
[2023-09-01 17:05:35,564::train::INFO] [train] Iter 00344 | loss 2.8361 | loss(rot) 0.6013 | loss(pos) 1.7465 | loss(seq) 0.4883 | grad 4.3927 | lr 0.0010 | time_forward 3.8450 | time_backward 6.0890
[2023-09-01 17:05:43,857::train::INFO] [train] Iter 00345 | loss 3.6542 | loss(rot) 2.3861 | loss(pos) 0.7136 | loss(seq) 0.5545 | grad 6.1181 | lr 0.0010 | time_forward 3.4610 | time_backward 4.8010
[2023-09-01 17:05:52,160::train::INFO] [train] Iter 00346 | loss 2.2270 | loss(rot) 0.7578 | loss(pos) 1.2328 | loss(seq) 0.2364 | grad 5.2355 | lr 0.0010 | time_forward 3.5750 | time_backward 4.7240
[2023-09-01 17:06:00,788::train::INFO] [train] Iter 00347 | loss 1.9218 | loss(rot) 0.5825 | loss(pos) 1.0887 | loss(seq) 0.2507 | grad 4.6537 | lr 0.0010 | time_forward 3.7000 | time_backward 4.9240
[2023-09-01 17:06:03,689::train::INFO] [train] Iter 00348 | loss 3.5710 | loss(rot) 3.2736 | loss(pos) 0.2878 | loss(seq) 0.0095 | grad 4.1557 | lr 0.0010 | time_forward 1.3870 | time_backward 1.5100
[2023-09-01 17:06:13,080::train::INFO] [train] Iter 00349 | loss 2.7200 | loss(rot) 1.2104 | loss(pos) 1.3618 | loss(seq) 0.1478 | grad 7.0807 | lr 0.0010 | time_forward 4.0320 | time_backward 5.3570
[2023-09-01 17:06:19,605::train::INFO] [train] Iter 00350 | loss 2.9924 | loss(rot) 1.8728 | loss(pos) 0.6655 | loss(seq) 0.4541 | grad 4.2348 | lr 0.0010 | time_forward 2.8110 | time_backward 3.7110
[2023-09-01 17:06:29,435::train::INFO] [train] Iter 00351 | loss 4.3941 | loss(rot) 3.6646 | loss(pos) 0.7248 | loss(seq) 0.0046 | grad 7.7614 | lr 0.0010 | time_forward 4.0540 | time_backward 5.7590
[2023-09-01 17:06:38,747::train::INFO] [train] Iter 00352 | loss 3.7503 | loss(rot) 2.8080 | loss(pos) 0.4429 | loss(seq) 0.4994 | grad 5.2430 | lr 0.0010 | time_forward 4.1310 | time_backward 5.1780
[2023-09-01 17:06:41,355::train::INFO] [train] Iter 00353 | loss 2.2917 | loss(rot) 0.0396 | loss(pos) 2.2459 | loss(seq) 0.0062 | grad 3.8791 | lr 0.0010 | time_forward 1.2350 | time_backward 1.3670
[2023-09-01 17:06:50,633::train::INFO] [train] Iter 00354 | loss 3.0214 | loss(rot) 0.6654 | loss(pos) 2.1286 | loss(seq) 0.2274 | grad 5.7559 | lr 0.0010 | time_forward 3.8760 | time_backward 5.3980
[2023-09-01 17:06:53,412::train::INFO] [train] Iter 00355 | loss 4.0637 | loss(rot) 2.1915 | loss(pos) 1.1799 | loss(seq) 0.6923 | grad 5.8039 | lr 0.0010 | time_forward 1.3310 | time_backward 1.4440
[2023-09-01 17:06:55,820::train::INFO] [train] Iter 00356 | loss 3.2814 | loss(rot) 2.9311 | loss(pos) 0.3133 | loss(seq) 0.0371 | grad 3.7537 | lr 0.0010 | time_forward 1.1440 | time_backward 1.2620
[2023-09-01 17:06:58,624::train::INFO] [train] Iter 00357 | loss 3.0303 | loss(rot) 2.4371 | loss(pos) 0.4090 | loss(seq) 0.1842 | grad 3.8076 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4820
[2023-09-01 17:07:02,975::train::INFO] [train] Iter 00358 | loss 3.2285 | loss(rot) 2.9845 | loss(pos) 0.2441 | loss(seq) 0.0000 | grad 2.9278 | lr 0.0010 | time_forward 2.3060 | time_backward 1.9890
[2023-09-01 17:07:12,444::train::INFO] [train] Iter 00359 | loss 2.3484 | loss(rot) 1.7290 | loss(pos) 0.4307 | loss(seq) 0.1887 | grad 4.0677 | lr 0.0010 | time_forward 4.0380 | time_backward 5.4280
[2023-09-01 17:07:22,333::train::INFO] [train] Iter 00360 | loss 3.5402 | loss(rot) 2.2981 | loss(pos) 0.8529 | loss(seq) 0.3892 | grad 4.5449 | lr 0.0010 | time_forward 4.1660 | time_backward 5.7200
[2023-09-01 17:07:27,366::train::INFO] [train] Iter 00361 | loss 3.6893 | loss(rot) 1.7996 | loss(pos) 1.2852 | loss(seq) 0.6044 | grad 5.6823 | lr 0.0010 | time_forward 2.1730 | time_backward 2.8430
[2023-09-01 17:07:37,191::train::INFO] [train] Iter 00362 | loss 2.7870 | loss(rot) 1.5865 | loss(pos) 0.7178 | loss(seq) 0.4828 | grad 4.3001 | lr 0.0010 | time_forward 3.6440 | time_backward 6.1320
[2023-09-01 17:07:46,017::train::INFO] [train] Iter 00363 | loss 1.7399 | loss(rot) 0.5528 | loss(pos) 1.0763 | loss(seq) 0.1108 | grad 5.0697 | lr 0.0010 | time_forward 3.5960 | time_backward 5.2160
[2023-09-01 17:07:55,856::train::INFO] [train] Iter 00364 | loss 3.1439 | loss(rot) 2.2522 | loss(pos) 0.4212 | loss(seq) 0.4704 | grad 4.5217 | lr 0.0010 | time_forward 3.9220 | time_backward 5.9140
[2023-09-01 17:08:04,934::train::INFO] [train] Iter 00365 | loss 3.5441 | loss(rot) 2.6540 | loss(pos) 0.4418 | loss(seq) 0.4483 | grad 4.4365 | lr 0.0010 | time_forward 3.6950 | time_backward 5.3790
[2023-09-01 17:08:13,957::train::INFO] [train] Iter 00366 | loss 2.7014 | loss(rot) 0.3904 | loss(pos) 2.2748 | loss(seq) 0.0361 | grad 6.7376 | lr 0.0010 | time_forward 3.6450 | time_backward 5.3640
[2023-09-01 17:08:22,897::train::INFO] [train] Iter 00367 | loss 3.2553 | loss(rot) 3.0052 | loss(pos) 0.1976 | loss(seq) 0.0526 | grad 3.1524 | lr 0.0010 | time_forward 3.5810 | time_backward 5.3560
[2023-09-01 17:08:30,998::train::INFO] [train] Iter 00368 | loss 2.6184 | loss(rot) 1.1211 | loss(pos) 1.0265 | loss(seq) 0.4708 | grad 6.2621 | lr 0.0010 | time_forward 3.4420 | time_backward 4.6560
[2023-09-01 17:08:40,452::train::INFO] [train] Iter 00369 | loss 1.9717 | loss(rot) 0.2069 | loss(pos) 1.7292 | loss(seq) 0.0356 | grad 3.2862 | lr 0.0010 | time_forward 4.0230 | time_backward 5.4270
[2023-09-01 17:08:43,294::train::INFO] [train] Iter 00370 | loss 1.2667 | loss(rot) 0.1322 | loss(pos) 0.7895 | loss(seq) 0.3449 | grad 2.9668 | lr 0.0010 | time_forward 1.3290 | time_backward 1.5000
[2023-09-01 17:08:52,458::train::INFO] [train] Iter 00371 | loss 3.9251 | loss(rot) 2.6497 | loss(pos) 0.9437 | loss(seq) 0.3318 | grad 5.7589 | lr 0.0010 | time_forward 3.6290 | time_backward 5.5190
[2023-09-01 17:09:02,797::train::INFO] [train] Iter 00372 | loss 2.7374 | loss(rot) 1.3680 | loss(pos) 0.8864 | loss(seq) 0.4830 | grad 5.7670 | lr 0.0010 | time_forward 3.9170 | time_backward 6.3890
[2023-09-01 17:09:05,463::train::INFO] [train] Iter 00373 | loss 2.4610 | loss(rot) 1.5789 | loss(pos) 0.6163 | loss(seq) 0.2658 | grad 3.7481 | lr 0.0010 | time_forward 1.3510 | time_backward 1.3110
[2023-09-01 17:09:13,443::train::INFO] [train] Iter 00374 | loss 2.6776 | loss(rot) 1.5794 | loss(pos) 0.5705 | loss(seq) 0.5277 | grad 4.4654 | lr 0.0010 | time_forward 3.1440 | time_backward 4.8100
[2023-09-01 17:09:22,683::train::INFO] [train] Iter 00375 | loss 2.0615 | loss(rot) 0.9899 | loss(pos) 0.7414 | loss(seq) 0.3302 | grad 3.8835 | lr 0.0010 | time_forward 3.8060 | time_backward 5.4050
[2023-09-01 17:09:31,243::train::INFO] [train] Iter 00376 | loss 3.4042 | loss(rot) 2.8497 | loss(pos) 0.5525 | loss(seq) 0.0020 | grad 5.8347 | lr 0.0010 | time_forward 3.4570 | time_backward 5.1000
[2023-09-01 17:09:34,132::train::INFO] [train] Iter 00377 | loss 4.1216 | loss(rot) 3.1970 | loss(pos) 0.5480 | loss(seq) 0.3766 | grad 3.9315 | lr 0.0010 | time_forward 1.3740 | time_backward 1.5110
[2023-09-01 17:09:44,444::train::INFO] [train] Iter 00378 | loss 3.4678 | loss(rot) 2.8038 | loss(pos) 0.4598 | loss(seq) 0.2041 | grad 5.0053 | lr 0.0010 | time_forward 4.2020 | time_backward 6.1060
[2023-09-01 17:09:50,131::train::INFO] [train] Iter 00379 | loss 1.4744 | loss(rot) 0.5719 | loss(pos) 0.8495 | loss(seq) 0.0530 | grad 4.2071 | lr 0.0010 | time_forward 2.3300 | time_backward 3.3530
[2023-09-01 17:10:00,446::train::INFO] [train] Iter 00380 | loss 3.5713 | loss(rot) 2.8412 | loss(pos) 0.4750 | loss(seq) 0.2551 | grad 5.5576 | lr 0.0010 | time_forward 4.3680 | time_backward 5.9430
[2023-09-01 17:10:03,246::train::INFO] [train] Iter 00381 | loss 2.8389 | loss(rot) 0.2459 | loss(pos) 2.3057 | loss(seq) 0.2873 | grad 6.1895 | lr 0.0010 | time_forward 1.3490 | time_backward 1.4470
[2023-09-01 17:10:13,424::train::INFO] [train] Iter 00382 | loss 2.7867 | loss(rot) 1.0689 | loss(pos) 1.3058 | loss(seq) 0.4120 | grad 5.0594 | lr 0.0010 | time_forward 4.0030 | time_backward 6.1720
[2023-09-01 17:10:16,233::train::INFO] [train] Iter 00383 | loss 4.3431 | loss(rot) 3.4474 | loss(pos) 0.8425 | loss(seq) 0.0533 | grad 8.0115 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4800
[2023-09-01 17:10:26,346::train::INFO] [train] Iter 00384 | loss 1.5718 | loss(rot) 0.2026 | loss(pos) 0.8865 | loss(seq) 0.4826 | grad 2.6969 | lr 0.0010 | time_forward 4.0150 | time_backward 6.0950
[2023-09-01 17:10:34,332::train::INFO] [train] Iter 00385 | loss 2.6087 | loss(rot) 0.5769 | loss(pos) 1.7999 | loss(seq) 0.2318 | grad 3.8922 | lr 0.0010 | time_forward 3.2320 | time_backward 4.7500
[2023-09-01 17:10:42,217::train::INFO] [train] Iter 00386 | loss 2.4966 | loss(rot) 1.0312 | loss(pos) 0.9489 | loss(seq) 0.5165 | grad 4.9925 | lr 0.0010 | time_forward 3.2880 | time_backward 4.5940
[2023-09-01 17:10:51,404::train::INFO] [train] Iter 00387 | loss 2.8219 | loss(rot) 2.0209 | loss(pos) 0.4738 | loss(seq) 0.3272 | grad 4.2253 | lr 0.0010 | time_forward 3.9030 | time_backward 5.2810
[2023-09-01 17:11:02,535::train::INFO] [train] Iter 00388 | loss 1.9318 | loss(rot) 1.0651 | loss(pos) 0.6993 | loss(seq) 0.1674 | grad 5.6134 | lr 0.0010 | time_forward 4.4990 | time_backward 6.6280
[2023-09-01 17:11:10,640::train::INFO] [train] Iter 00389 | loss 3.1722 | loss(rot) 2.2360 | loss(pos) 0.4655 | loss(seq) 0.4706 | grad 5.2540 | lr 0.0010 | time_forward 3.4420 | time_backward 4.6600
[2023-09-01 17:11:21,666::train::INFO] [train] Iter 00390 | loss 3.3782 | loss(rot) 0.1525 | loss(pos) 3.1183 | loss(seq) 0.1074 | grad 7.4934 | lr 0.0010 | time_forward 4.2390 | time_backward 6.7830
[2023-09-01 17:11:31,413::train::INFO] [train] Iter 00391 | loss 3.8193 | loss(rot) 3.3586 | loss(pos) 0.4563 | loss(seq) 0.0044 | grad 4.3128 | lr 0.0010 | time_forward 3.8620 | time_backward 5.8820
[2023-09-01 17:11:34,196::train::INFO] [train] Iter 00392 | loss 2.5170 | loss(rot) 0.8511 | loss(pos) 1.3110 | loss(seq) 0.3548 | grad 5.2991 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4810
[2023-09-01 17:11:37,184::train::INFO] [train] Iter 00393 | loss 3.6832 | loss(rot) 2.5155 | loss(pos) 0.6799 | loss(seq) 0.4878 | grad 6.2729 | lr 0.0010 | time_forward 1.4430 | time_backward 1.5420
[2023-09-01 17:11:46,559::train::INFO] [train] Iter 00394 | loss 2.7937 | loss(rot) 2.4105 | loss(pos) 0.3565 | loss(seq) 0.0267 | grad 3.5479 | lr 0.0010 | time_forward 4.0410 | time_backward 5.3300