text
stringlengths 56
1.16k
|
---|
[2023-09-01 17:11:48,964::train::INFO] [train] Iter 00395 | loss 2.6568 | loss(rot) 2.3111 | loss(pos) 0.3457 | loss(seq) 0.0000 | grad 4.2416 | lr 0.0010 | time_forward 1.1260 | time_backward 1.2760 |
[2023-09-01 17:11:57,479::train::INFO] [train] Iter 00396 | loss 2.3939 | loss(rot) 0.8646 | loss(pos) 0.9775 | loss(seq) 0.5518 | grad 5.1599 | lr 0.0010 | time_forward 3.7180 | time_backward 4.7930 |
[2023-09-01 17:12:06,018::train::INFO] [train] Iter 00397 | loss 3.6310 | loss(rot) 2.4116 | loss(pos) 0.6793 | loss(seq) 0.5401 | grad 4.6815 | lr 0.0010 | time_forward 3.5660 | time_backward 4.9690 |
[2023-09-01 17:12:09,648::train::INFO] [train] Iter 00398 | loss 3.3250 | loss(rot) 3.0503 | loss(pos) 0.2747 | loss(seq) 0.0000 | grad 3.5166 | lr 0.0010 | time_forward 1.5760 | time_backward 2.0500 |
[2023-09-01 17:12:17,743::train::INFO] [train] Iter 00399 | loss 3.3839 | loss(rot) 2.2823 | loss(pos) 0.7058 | loss(seq) 0.3958 | grad 7.6847 | lr 0.0010 | time_forward 3.3910 | time_backward 4.6880 |
[2023-09-01 17:12:27,413::train::INFO] [train] Iter 00400 | loss 1.8257 | loss(rot) 0.1016 | loss(pos) 1.7138 | loss(seq) 0.0103 | grad 3.3979 | lr 0.0010 | time_forward 4.3450 | time_backward 5.3210 |
[2023-09-01 17:12:36,546::train::INFO] [train] Iter 00401 | loss 4.1432 | loss(rot) 0.0256 | loss(pos) 4.1163 | loss(seq) 0.0013 | grad 6.6667 | lr 0.0010 | time_forward 4.0320 | time_backward 5.0970 |
[2023-09-01 17:12:45,671::train::INFO] [train] Iter 00402 | loss 3.6794 | loss(rot) 3.1118 | loss(pos) 0.2554 | loss(seq) 0.3121 | grad 3.0156 | lr 0.0010 | time_forward 3.7630 | time_backward 5.3590 |
[2023-09-01 17:12:53,368::train::INFO] [train] Iter 00403 | loss 3.2563 | loss(rot) 0.5405 | loss(pos) 2.6446 | loss(seq) 0.0711 | grad 9.9291 | lr 0.0010 | time_forward 3.2070 | time_backward 4.4860 |
[2023-09-01 17:13:01,846::train::INFO] [train] Iter 00404 | loss 3.3236 | loss(rot) 3.0362 | loss(pos) 0.2102 | loss(seq) 0.0772 | grad 3.5508 | lr 0.0010 | time_forward 3.9350 | time_backward 4.5390 |
[2023-09-01 17:13:11,049::train::INFO] [train] Iter 00405 | loss 3.4592 | loss(rot) 3.2340 | loss(pos) 0.2252 | loss(seq) 0.0000 | grad 2.9124 | lr 0.0010 | time_forward 3.8690 | time_backward 5.3300 |
[2023-09-01 17:13:21,681::train::INFO] [train] Iter 00406 | loss 3.7119 | loss(rot) 2.6890 | loss(pos) 0.6327 | loss(seq) 0.3901 | grad 5.0226 | lr 0.0010 | time_forward 4.4120 | time_backward 6.2160 |
[2023-09-01 17:13:31,724::train::INFO] [train] Iter 00407 | loss 2.6286 | loss(rot) 0.9057 | loss(pos) 1.4314 | loss(seq) 0.2914 | grad 5.4723 | lr 0.0010 | time_forward 4.1420 | time_backward 5.8980 |
[2023-09-01 17:13:41,978::train::INFO] [train] Iter 00408 | loss 2.4766 | loss(rot) 1.1963 | loss(pos) 1.0755 | loss(seq) 0.2047 | grad 9.6140 | lr 0.0010 | time_forward 4.1230 | time_backward 6.1280 |
[2023-09-01 17:13:44,289::train::INFO] [train] Iter 00409 | loss 2.3818 | loss(rot) 0.0127 | loss(pos) 2.3682 | loss(seq) 0.0009 | grad 4.2839 | lr 0.0010 | time_forward 1.0900 | time_backward 1.2170 |
[2023-09-01 17:13:52,481::train::INFO] [train] Iter 00410 | loss 2.4953 | loss(rot) 1.3290 | loss(pos) 0.7250 | loss(seq) 0.4413 | grad 4.9244 | lr 0.0010 | time_forward 3.5520 | time_backward 4.6360 |
[2023-09-01 17:13:55,446::train::INFO] [train] Iter 00411 | loss 1.7552 | loss(rot) 0.5765 | loss(pos) 1.1192 | loss(seq) 0.0594 | grad 4.2365 | lr 0.0010 | time_forward 1.4010 | time_backward 1.5600 |
[2023-09-01 17:13:57,933::train::INFO] [train] Iter 00412 | loss 2.8046 | loss(rot) 2.0735 | loss(pos) 0.4214 | loss(seq) 0.3098 | grad 3.7163 | lr 0.0010 | time_forward 1.1750 | time_backward 1.3090 |
[2023-09-01 17:14:00,339::train::INFO] [train] Iter 00413 | loss 3.4574 | loss(rot) 3.1971 | loss(pos) 0.2555 | loss(seq) 0.0047 | grad 3.5549 | lr 0.0010 | time_forward 1.1320 | time_backward 1.2700 |
[2023-09-01 17:14:08,658::train::INFO] [train] Iter 00414 | loss 2.4755 | loss(rot) 0.7747 | loss(pos) 1.5179 | loss(seq) 0.1829 | grad 34.7476 | lr 0.0010 | time_forward 3.5700 | time_backward 4.7270 |
[2023-09-01 17:14:19,419::train::INFO] [train] Iter 00415 | loss 3.8565 | loss(rot) 3.2015 | loss(pos) 0.6528 | loss(seq) 0.0022 | grad 4.9373 | lr 0.0010 | time_forward 4.6010 | time_backward 6.1570 |
[2023-09-01 17:14:22,019::train::INFO] [train] Iter 00416 | loss 2.0195 | loss(rot) 0.7149 | loss(pos) 1.1594 | loss(seq) 0.1452 | grad 4.8543 | lr 0.0010 | time_forward 1.2960 | time_backward 1.3010 |
[2023-09-01 17:14:24,846::train::INFO] [train] Iter 00417 | loss 1.8617 | loss(rot) 0.4193 | loss(pos) 1.3568 | loss(seq) 0.0855 | grad 6.6875 | lr 0.0010 | time_forward 1.3920 | time_backward 1.4310 |
[2023-09-01 17:14:34,873::train::INFO] [train] Iter 00418 | loss 3.5651 | loss(rot) 2.7028 | loss(pos) 0.8297 | loss(seq) 0.0325 | grad 8.4248 | lr 0.0010 | time_forward 4.1120 | time_backward 5.9110 |
[2023-09-01 17:14:37,780::train::INFO] [train] Iter 00419 | loss 2.1731 | loss(rot) 1.1669 | loss(pos) 0.5532 | loss(seq) 0.4531 | grad 5.3620 | lr 0.0010 | time_forward 1.4330 | time_backward 1.4700 |
[2023-09-01 17:14:47,818::train::INFO] [train] Iter 00420 | loss 3.8250 | loss(rot) 2.7553 | loss(pos) 0.7517 | loss(seq) 0.3179 | grad 6.5567 | lr 0.0010 | time_forward 4.5670 | time_backward 5.4680 |
[2023-09-01 17:14:57,275::train::INFO] [train] Iter 00421 | loss 3.8771 | loss(rot) 3.2509 | loss(pos) 0.6261 | loss(seq) 0.0001 | grad 6.7053 | lr 0.0010 | time_forward 4.0790 | time_backward 5.3740 |
[2023-09-01 17:14:59,878::train::INFO] [train] Iter 00422 | loss 2.3730 | loss(rot) 1.1732 | loss(pos) 0.9701 | loss(seq) 0.2297 | grad 5.9955 | lr 0.0010 | time_forward 1.2920 | time_backward 1.3010 |
[2023-09-01 17:15:10,258::train::INFO] [train] Iter 00423 | loss 3.5242 | loss(rot) 2.6696 | loss(pos) 0.3513 | loss(seq) 0.5033 | grad 3.2700 | lr 0.0010 | time_forward 4.0380 | time_backward 6.3390 |
[2023-09-01 17:15:18,332::train::INFO] [train] Iter 00424 | loss 2.9228 | loss(rot) 1.9765 | loss(pos) 0.4954 | loss(seq) 0.4510 | grad 5.2268 | lr 0.0010 | time_forward 3.2650 | time_backward 4.8050 |
[2023-09-01 17:15:21,258::train::INFO] [train] Iter 00425 | loss 3.0837 | loss(rot) 2.4105 | loss(pos) 0.4275 | loss(seq) 0.2458 | grad 3.0238 | lr 0.0010 | time_forward 1.3960 | time_backward 1.5260 |
[2023-09-01 17:15:31,904::train::INFO] [train] Iter 00426 | loss 2.7604 | loss(rot) 0.9130 | loss(pos) 1.3841 | loss(seq) 0.4634 | grad 7.4695 | lr 0.0010 | time_forward 4.4700 | time_backward 6.1250 |
[2023-09-01 17:15:39,903::train::INFO] [train] Iter 00427 | loss 3.7490 | loss(rot) 2.1194 | loss(pos) 0.9691 | loss(seq) 0.6605 | grad 7.2300 | lr 0.0010 | time_forward 3.3150 | time_backward 4.6800 |
[2023-09-01 17:15:48,021::train::INFO] [train] Iter 00428 | loss 3.5156 | loss(rot) 2.9172 | loss(pos) 0.5961 | loss(seq) 0.0023 | grad 3.4738 | lr 0.0010 | time_forward 3.4370 | time_backward 4.6770 |
[2023-09-01 17:15:55,770::train::INFO] [train] Iter 00429 | loss 3.0227 | loss(rot) 1.8728 | loss(pos) 0.7019 | loss(seq) 0.4480 | grad 4.9571 | lr 0.0010 | time_forward 3.2970 | time_backward 4.4480 |
[2023-09-01 17:16:06,445::train::INFO] [train] Iter 00430 | loss 2.2923 | loss(rot) 0.9464 | loss(pos) 0.8672 | loss(seq) 0.4788 | grad 4.4587 | lr 0.0010 | time_forward 4.2290 | time_backward 6.4420 |
[2023-09-01 17:16:09,368::train::INFO] [train] Iter 00431 | loss 3.0763 | loss(rot) 2.7699 | loss(pos) 0.3064 | loss(seq) 0.0000 | grad 4.0533 | lr 0.0010 | time_forward 1.4040 | time_backward 1.5160 |
[2023-09-01 17:16:18,686::train::INFO] [train] Iter 00432 | loss 3.6972 | loss(rot) 2.9976 | loss(pos) 0.6995 | loss(seq) 0.0000 | grad 5.6951 | lr 0.0010 | time_forward 3.8630 | time_backward 5.4510 |
[2023-09-01 17:16:22,183::train::INFO] [train] Iter 00433 | loss 2.9660 | loss(rot) 0.1418 | loss(pos) 2.8167 | loss(seq) 0.0074 | grad 7.3462 | lr 0.0010 | time_forward 1.5620 | time_backward 1.9320 |
[2023-09-01 17:16:32,184::train::INFO] [train] Iter 00434 | loss 2.2753 | loss(rot) 0.7180 | loss(pos) 0.9770 | loss(seq) 0.5803 | grad 5.3265 | lr 0.0010 | time_forward 3.8510 | time_backward 6.1320 |
[2023-09-01 17:16:35,721::train::INFO] [train] Iter 00435 | loss 2.6009 | loss(rot) 1.3203 | loss(pos) 0.9773 | loss(seq) 0.3033 | grad 3.8525 | lr 0.0010 | time_forward 1.5390 | time_backward 1.9780 |
[2023-09-01 17:16:44,345::train::INFO] [train] Iter 00436 | loss 3.4751 | loss(rot) 2.9327 | loss(pos) 0.5171 | loss(seq) 0.0252 | grad 3.5770 | lr 0.0010 | time_forward 3.8290 | time_backward 4.7780 |
[2023-09-01 17:16:53,205::train::INFO] [train] Iter 00437 | loss 2.9235 | loss(rot) 2.4931 | loss(pos) 0.3792 | loss(seq) 0.0512 | grad 3.7394 | lr 0.0010 | time_forward 3.8050 | time_backward 5.0510 |
[2023-09-01 17:17:03,260::train::INFO] [train] Iter 00438 | loss 3.5758 | loss(rot) 3.1700 | loss(pos) 0.4058 | loss(seq) 0.0000 | grad 3.4005 | lr 0.0010 | time_forward 4.0530 | time_backward 5.9980 |
[2023-09-01 17:17:12,588::train::INFO] [train] Iter 00439 | loss 2.3314 | loss(rot) 1.5966 | loss(pos) 0.3039 | loss(seq) 0.4309 | grad 3.0763 | lr 0.0010 | time_forward 3.9030 | time_backward 5.4210 |
[2023-09-01 17:17:21,954::train::INFO] [train] Iter 00440 | loss 2.6681 | loss(rot) 2.1885 | loss(pos) 0.3154 | loss(seq) 0.1642 | grad 3.6995 | lr 0.0010 | time_forward 4.0520 | time_backward 5.3100 |
[2023-09-01 17:17:31,126::train::INFO] [train] Iter 00441 | loss 2.8578 | loss(rot) 1.7192 | loss(pos) 0.6868 | loss(seq) 0.4518 | grad 5.7510 | lr 0.0010 | time_forward 4.2190 | time_backward 4.9490 |
[2023-09-01 17:17:41,205::train::INFO] [train] Iter 00442 | loss 3.0962 | loss(rot) 0.4838 | loss(pos) 2.5927 | loss(seq) 0.0197 | grad 4.9844 | lr 0.0010 | time_forward 4.2120 | time_backward 5.8630 |
[2023-09-01 17:17:50,595::train::INFO] [train] Iter 00443 | loss 3.9498 | loss(rot) 3.1771 | loss(pos) 0.7397 | loss(seq) 0.0331 | grad 6.1538 | lr 0.0010 | time_forward 4.0150 | time_backward 5.3600 |
[2023-09-01 17:18:01,077::train::INFO] [train] Iter 00444 | loss 2.7192 | loss(rot) 1.7944 | loss(pos) 0.4746 | loss(seq) 0.4501 | grad 2.8507 | lr 0.0010 | time_forward 4.2410 | time_backward 6.2380 |
[2023-09-01 17:18:11,413::train::INFO] [train] Iter 00445 | loss 2.0053 | loss(rot) 0.1491 | loss(pos) 1.8476 | loss(seq) 0.0085 | grad 3.0727 | lr 0.0010 | time_forward 4.2860 | time_backward 6.0360 |
[2023-09-01 17:18:14,250::train::INFO] [train] Iter 00446 | loss 3.3016 | loss(rot) 2.6491 | loss(pos) 0.3460 | loss(seq) 0.3065 | grad 3.2028 | lr 0.0010 | time_forward 1.3620 | time_backward 1.4710 |
[2023-09-01 17:18:21,976::train::INFO] [train] Iter 00447 | loss 2.9297 | loss(rot) 0.4685 | loss(pos) 2.4541 | loss(seq) 0.0070 | grad 5.6782 | lr 0.0010 | time_forward 3.1140 | time_backward 4.6090 |
[2023-09-01 17:18:24,856::train::INFO] [train] Iter 00448 | loss 1.8579 | loss(rot) 0.7627 | loss(pos) 0.7110 | loss(seq) 0.3842 | grad 3.2334 | lr 0.0010 | time_forward 1.3800 | time_backward 1.4960 |
[2023-09-01 17:18:34,688::train::INFO] [train] Iter 00449 | loss 2.3790 | loss(rot) 1.6205 | loss(pos) 0.3330 | loss(seq) 0.4255 | grad 3.8741 | lr 0.0010 | time_forward 3.9740 | time_backward 5.8540 |
[2023-09-01 17:18:37,672::train::INFO] [train] Iter 00450 | loss 3.7543 | loss(rot) 2.5485 | loss(pos) 0.6591 | loss(seq) 0.5467 | grad 3.8787 | lr 0.0010 | time_forward 1.5330 | time_backward 1.4480 |
[2023-09-01 17:18:48,112::train::INFO] [train] Iter 00451 | loss 3.7748 | loss(rot) 0.0710 | loss(pos) 3.6978 | loss(seq) 0.0061 | grad 6.2306 | lr 0.0010 | time_forward 4.5250 | time_backward 5.9120 |
[2023-09-01 17:18:58,242::train::INFO] [train] Iter 00452 | loss 3.9789 | loss(rot) 3.5975 | loss(pos) 0.2746 | loss(seq) 0.1067 | grad 5.1632 | lr 0.0010 | time_forward 4.1890 | time_backward 5.9380 |
[2023-09-01 17:19:08,752::train::INFO] [train] Iter 00453 | loss 3.2193 | loss(rot) 1.4308 | loss(pos) 1.2088 | loss(seq) 0.5797 | grad 5.4972 | lr 0.0010 | time_forward 4.4080 | time_backward 6.0980 |
[2023-09-01 17:19:18,421::train::INFO] [train] Iter 00454 | loss 3.3636 | loss(rot) 2.6125 | loss(pos) 0.2576 | loss(seq) 0.4935 | grad 3.9534 | lr 0.0010 | time_forward 3.7630 | time_backward 5.9020 |
[2023-09-01 17:19:27,068::train::INFO] [train] Iter 00455 | loss 3.3364 | loss(rot) 2.9516 | loss(pos) 0.2637 | loss(seq) 0.1211 | grad 3.1950 | lr 0.0010 | time_forward 3.4170 | time_backward 5.2260 |
[2023-09-01 17:19:37,164::train::INFO] [train] Iter 00456 | loss 3.3835 | loss(rot) 2.8830 | loss(pos) 0.4643 | loss(seq) 0.0361 | grad 2.2219 | lr 0.0010 | time_forward 4.1270 | time_backward 5.9670 |
[2023-09-01 17:19:44,577::train::INFO] [train] Iter 00457 | loss 3.2376 | loss(rot) 2.6267 | loss(pos) 0.2450 | loss(seq) 0.3659 | grad 2.8759 | lr 0.0010 | time_forward 2.9520 | time_backward 4.4580 |
[2023-09-01 17:19:47,488::train::INFO] [train] Iter 00458 | loss 4.6572 | loss(rot) 0.0102 | loss(pos) 4.6466 | loss(seq) 0.0004 | grad 4.1569 | lr 0.0010 | time_forward 1.3620 | time_backward 1.5460 |
[2023-09-01 17:19:55,722::train::INFO] [train] Iter 00459 | loss 2.7437 | loss(rot) 1.3448 | loss(pos) 1.0307 | loss(seq) 0.3681 | grad 7.5720 | lr 0.0010 | time_forward 3.3460 | time_backward 4.8850 |
[2023-09-01 17:20:05,778::train::INFO] [train] Iter 00460 | loss 3.1520 | loss(rot) 2.4098 | loss(pos) 0.5189 | loss(seq) 0.2232 | grad 3.3284 | lr 0.0010 | time_forward 3.9840 | time_backward 6.0680 |
[2023-09-01 17:20:14,455::train::INFO] [train] Iter 00461 | loss 2.5849 | loss(rot) 2.2794 | loss(pos) 0.3054 | loss(seq) 0.0000 | grad 3.7659 | lr 0.0010 | time_forward 3.4720 | time_backward 5.2010 |
[2023-09-01 17:20:22,737::train::INFO] [train] Iter 00462 | loss 3.0630 | loss(rot) 2.7014 | loss(pos) 0.2117 | loss(seq) 0.1500 | grad 2.4867 | lr 0.0010 | time_forward 3.3070 | time_backward 4.9720 |
[2023-09-01 17:20:25,602::train::INFO] [train] Iter 00463 | loss 3.3916 | loss(rot) 2.9648 | loss(pos) 0.4266 | loss(seq) 0.0001 | grad 4.0710 | lr 0.0010 | time_forward 1.4270 | time_backward 1.4360 |
[2023-09-01 17:20:35,466::train::INFO] [train] Iter 00464 | loss 1.8175 | loss(rot) 0.2230 | loss(pos) 1.5803 | loss(seq) 0.0141 | grad 3.7492 | lr 0.0010 | time_forward 3.9600 | time_backward 5.9000 |
[2023-09-01 17:20:43,675::train::INFO] [train] Iter 00465 | loss 3.3075 | loss(rot) 2.2581 | loss(pos) 0.5981 | loss(seq) 0.4513 | grad 5.8465 | lr 0.0010 | time_forward 3.3440 | time_backward 4.8620 |
[2023-09-01 17:20:52,889::train::INFO] [train] Iter 00466 | loss 3.1542 | loss(rot) 1.9893 | loss(pos) 0.7213 | loss(seq) 0.4436 | grad 5.3912 | lr 0.0010 | time_forward 3.7330 | time_backward 5.4780 |
[2023-09-01 17:21:01,923::train::INFO] [train] Iter 00467 | loss 3.1686 | loss(rot) 2.0431 | loss(pos) 0.6247 | loss(seq) 0.5009 | grad 3.4604 | lr 0.0010 | time_forward 3.5920 | time_backward 5.4390 |
[2023-09-01 17:21:04,865::train::INFO] [train] Iter 00468 | loss 3.3503 | loss(rot) 2.9479 | loss(pos) 0.3963 | loss(seq) 0.0061 | grad 5.8343 | lr 0.0010 | time_forward 1.4360 | time_backward 1.5020 |
[2023-09-01 17:21:13,325::train::INFO] [train] Iter 00469 | loss 2.3067 | loss(rot) 0.1215 | loss(pos) 2.1742 | loss(seq) 0.0110 | grad 5.9846 | lr 0.0010 | time_forward 3.6580 | time_backward 4.7740 |
[2023-09-01 17:21:16,763::train::INFO] [train] Iter 00470 | loss 3.4658 | loss(rot) 2.5164 | loss(pos) 0.4608 | loss(seq) 0.4885 | grad 2.6528 | lr 0.0010 | time_forward 1.4620 | time_backward 1.9720 |
[2023-09-01 17:21:26,019::train::INFO] [train] Iter 00471 | loss 3.3679 | loss(rot) 0.0236 | loss(pos) 3.3442 | loss(seq) 0.0000 | grad 4.6856 | lr 0.0010 | time_forward 3.9760 | time_backward 5.2590 |
[2023-09-01 17:21:36,268::train::INFO] [train] Iter 00472 | loss 1.4511 | loss(rot) 0.4210 | loss(pos) 0.9188 | loss(seq) 0.1113 | grad 4.8784 | lr 0.0010 | time_forward 4.1900 | time_backward 6.0360 |
[2023-09-01 17:21:39,361::train::INFO] [train] Iter 00473 | loss 3.3393 | loss(rot) 2.6571 | loss(pos) 0.3665 | loss(seq) 0.3157 | grad 2.9527 | lr 0.0010 | time_forward 1.3670 | time_backward 1.7220 |
[2023-09-01 17:21:47,660::train::INFO] [train] Iter 00474 | loss 2.5142 | loss(rot) 1.4238 | loss(pos) 0.6534 | loss(seq) 0.4370 | grad 4.1533 | lr 0.0010 | time_forward 3.3360 | time_backward 4.9590 |
[2023-09-01 17:21:56,529::train::INFO] [train] Iter 00475 | loss 3.3787 | loss(rot) 2.8857 | loss(pos) 0.4146 | loss(seq) 0.0784 | grad 4.7446 | lr 0.0010 | time_forward 3.5520 | time_backward 5.3140 |
[2023-09-01 17:21:58,507::train::INFO] [train] Iter 00476 | loss 3.1712 | loss(rot) 1.7808 | loss(pos) 0.8593 | loss(seq) 0.5311 | grad 4.2143 | lr 0.0010 | time_forward 0.9180 | time_backward 1.0560 |
[2023-09-01 17:22:08,345::train::INFO] [train] Iter 00477 | loss 3.5382 | loss(rot) 2.5349 | loss(pos) 0.3955 | loss(seq) 0.6078 | grad 4.0867 | lr 0.0010 | time_forward 3.7480 | time_backward 6.0860 |
[2023-09-01 17:22:11,110::train::INFO] [train] Iter 00478 | loss 2.3484 | loss(rot) 1.0293 | loss(pos) 0.8753 | loss(seq) 0.4438 | grad 5.3501 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4700 |
[2023-09-01 17:22:19,829::train::INFO] [train] Iter 00479 | loss 2.4535 | loss(rot) 0.9862 | loss(pos) 0.8986 | loss(seq) 0.5687 | grad 6.4113 | lr 0.0010 | time_forward 3.7350 | time_backward 4.9810 |
[2023-09-01 17:22:22,633::train::INFO] [train] Iter 00480 | loss 3.6210 | loss(rot) 3.0430 | loss(pos) 0.2981 | loss(seq) 0.2799 | grad 2.5421 | lr 0.0010 | time_forward 1.3230 | time_backward 1.4770 |
[2023-09-01 17:22:29,443::train::INFO] [train] Iter 00481 | loss 3.3782 | loss(rot) 2.4931 | loss(pos) 0.8781 | loss(seq) 0.0071 | grad 9.1279 | lr 0.0010 | time_forward 3.0100 | time_backward 3.7980 |
[2023-09-01 17:22:39,251::train::INFO] [train] Iter 00482 | loss 3.2596 | loss(rot) 2.8260 | loss(pos) 0.4062 | loss(seq) 0.0273 | grad 4.6823 | lr 0.0010 | time_forward 3.9380 | time_backward 5.8660 |
[2023-09-01 17:22:42,057::train::INFO] [train] Iter 00483 | loss 2.6228 | loss(rot) 1.0621 | loss(pos) 1.0520 | loss(seq) 0.5086 | grad 6.6251 | lr 0.0010 | time_forward 1.3650 | time_backward 1.4250 |
[2023-09-01 17:22:50,694::train::INFO] [train] Iter 00484 | loss 2.2626 | loss(rot) 1.0576 | loss(pos) 0.7143 | loss(seq) 0.4908 | grad 3.7892 | lr 0.0010 | time_forward 3.6880 | time_backward 4.9460 |
[2023-09-01 17:22:53,090::train::INFO] [train] Iter 00485 | loss 3.2674 | loss(rot) 2.7414 | loss(pos) 0.4847 | loss(seq) 0.0414 | grad 6.9717 | lr 0.0010 | time_forward 1.1270 | time_backward 1.2650 |
[2023-09-01 17:23:01,125::train::INFO] [train] Iter 00486 | loss 1.7362 | loss(rot) 0.7808 | loss(pos) 0.5850 | loss(seq) 0.3704 | grad 3.7189 | lr 0.0010 | time_forward 3.3640 | time_backward 4.6680 |
[2023-09-01 17:23:11,383::train::INFO] [train] Iter 00487 | loss 2.3288 | loss(rot) 0.0183 | loss(pos) 2.3106 | loss(seq) 0.0000 | grad 2.8828 | lr 0.0010 | time_forward 4.2350 | time_backward 6.0200 |
[2023-09-01 17:23:19,885::train::INFO] [train] Iter 00488 | loss 3.8540 | loss(rot) 3.4624 | loss(pos) 0.3916 | loss(seq) 0.0000 | grad 4.2234 | lr 0.0010 | time_forward 3.5730 | time_backward 4.9250 |
[2023-09-01 17:23:22,813::train::INFO] [train] Iter 00489 | loss 1.7958 | loss(rot) 0.5563 | loss(pos) 1.2003 | loss(seq) 0.0392 | grad 4.5808 | lr 0.0010 | time_forward 1.3740 | time_backward 1.5510 |
[2023-09-01 17:23:31,438::train::INFO] [train] Iter 00490 | loss 2.4458 | loss(rot) 0.1008 | loss(pos) 2.3330 | loss(seq) 0.0119 | grad 4.7862 | lr 0.0010 | time_forward 3.7280 | time_backward 4.8620 |
[2023-09-01 17:23:39,636::train::INFO] [train] Iter 00491 | loss 2.1252 | loss(rot) 1.1603 | loss(pos) 0.4636 | loss(seq) 0.5013 | grad 4.1394 | lr 0.0010 | time_forward 3.5070 | time_backward 4.6870 |
[2023-09-01 17:23:42,399::train::INFO] [train] Iter 00492 | loss 3.8120 | loss(rot) 3.3380 | loss(pos) 0.4583 | loss(seq) 0.0157 | grad 4.7678 | lr 0.0010 | time_forward 1.3360 | time_backward 1.4230 |
[2023-09-01 17:23:45,942::train::INFO] [train] Iter 00493 | loss 3.1846 | loss(rot) 2.8812 | loss(pos) 0.3033 | loss(seq) 0.0000 | grad 4.1535 | lr 0.0010 | time_forward 1.5800 | time_backward 1.9600 |
[2023-09-01 17:23:56,009::train::INFO] [train] Iter 00494 | loss 3.0832 | loss(rot) 2.1902 | loss(pos) 0.4211 | loss(seq) 0.4720 | grad 4.7040 | lr 0.0010 | time_forward 4.1400 | time_backward 5.9230 |
Subsets and Splits