text
stringlengths
56
1.16k
[2023-09-01 17:35:52,560::train::INFO] [train] Iter 00595 | loss 1.8247 | loss(rot) 0.1920 | loss(pos) 1.4079 | loss(seq) 0.2248 | grad 2.7840 | lr 0.0010 | time_forward 4.0120 | time_backward 5.1690
[2023-09-01 17:36:01,731::train::INFO] [train] Iter 00596 | loss 3.1836 | loss(rot) 2.4920 | loss(pos) 0.6592 | loss(seq) 0.0323 | grad 6.9376 | lr 0.0010 | time_forward 4.0070 | time_backward 5.1600
[2023-09-01 17:36:10,999::train::INFO] [train] Iter 00597 | loss 2.6038 | loss(rot) 1.7598 | loss(pos) 0.3497 | loss(seq) 0.4943 | grad 3.9707 | lr 0.0010 | time_forward 3.9970 | time_backward 5.2680
[2023-09-01 17:36:19,860::train::INFO] [train] Iter 00598 | loss 3.8526 | loss(rot) 3.5401 | loss(pos) 0.3121 | loss(seq) 0.0003 | grad 4.1156 | lr 0.0010 | time_forward 3.4680 | time_backward 5.3890
[2023-09-01 17:36:22,691::train::INFO] [train] Iter 00599 | loss 2.1439 | loss(rot) 0.0154 | loss(pos) 2.1268 | loss(seq) 0.0017 | grad 4.6573 | lr 0.0010 | time_forward 1.3350 | time_backward 1.4940
[2023-09-01 17:36:31,171::train::INFO] [train] Iter 00600 | loss 3.4318 | loss(rot) 2.7700 | loss(pos) 0.6007 | loss(seq) 0.0610 | grad 4.5585 | lr 0.0010 | time_forward 3.5740 | time_backward 4.9020
[2023-09-01 17:36:41,232::train::INFO] [train] Iter 00601 | loss 3.0709 | loss(rot) 2.8358 | loss(pos) 0.2253 | loss(seq) 0.0098 | grad 2.8068 | lr 0.0010 | time_forward 3.9720 | time_backward 6.0850
[2023-09-01 17:36:43,780::train::INFO] [train] Iter 00602 | loss 3.0590 | loss(rot) 2.5529 | loss(pos) 0.3675 | loss(seq) 0.1387 | grad 3.5175 | lr 0.0010 | time_forward 1.2590 | time_backward 1.2850
[2023-09-01 17:36:50,866::train::INFO] [train] Iter 00603 | loss 3.1843 | loss(rot) 2.6685 | loss(pos) 0.4994 | loss(seq) 0.0164 | grad 2.7126 | lr 0.0010 | time_forward 3.1060 | time_backward 3.9760
[2023-09-01 17:36:53,651::train::INFO] [train] Iter 00604 | loss 3.2737 | loss(rot) 0.4220 | loss(pos) 2.6111 | loss(seq) 0.2406 | grad 6.0345 | lr 0.0010 | time_forward 1.3350 | time_backward 1.4470
[2023-09-01 17:37:02,168::train::INFO] [train] Iter 00605 | loss 2.1546 | loss(rot) 1.2461 | loss(pos) 0.3605 | loss(seq) 0.5479 | grad 4.3208 | lr 0.0010 | time_forward 3.6440 | time_backward 4.8700
[2023-09-01 17:37:09,197::train::INFO] [train] Iter 00606 | loss 3.0098 | loss(rot) 1.9311 | loss(pos) 0.6898 | loss(seq) 0.3889 | grad 4.5611 | lr 0.0010 | time_forward 3.1060 | time_backward 3.9200
[2023-09-01 17:37:18,996::train::INFO] [train] Iter 00607 | loss 2.3557 | loss(rot) 0.1650 | loss(pos) 2.1675 | loss(seq) 0.0233 | grad 3.9354 | lr 0.0010 | time_forward 4.0310 | time_backward 5.7640
[2023-09-01 17:37:21,731::train::INFO] [train] Iter 00608 | loss 2.8351 | loss(rot) 2.0796 | loss(pos) 0.2659 | loss(seq) 0.4895 | grad 1.6537 | lr 0.0010 | time_forward 1.3250 | time_backward 1.4070
[2023-09-01 17:37:30,125::train::INFO] [train] Iter 00609 | loss 1.7393 | loss(rot) 0.0151 | loss(pos) 1.7215 | loss(seq) 0.0027 | grad 4.0875 | lr 0.0010 | time_forward 3.7090 | time_backward 4.6810
[2023-09-01 17:37:33,016::train::INFO] [train] Iter 00610 | loss 3.5295 | loss(rot) 3.0917 | loss(pos) 0.3690 | loss(seq) 0.0688 | grad 4.4310 | lr 0.0010 | time_forward 1.4310 | time_backward 1.4570
[2023-09-01 17:37:43,005::train::INFO] [train] Iter 00611 | loss 2.2491 | loss(rot) 1.2055 | loss(pos) 0.5556 | loss(seq) 0.4880 | grad 3.3454 | lr 0.0010 | time_forward 4.0580 | time_backward 5.9280
[2023-09-01 17:37:46,039::train::INFO] [train] Iter 00612 | loss 2.5938 | loss(rot) 1.4611 | loss(pos) 0.6240 | loss(seq) 0.5087 | grad 3.0555 | lr 0.0010 | time_forward 1.5840 | time_backward 1.4320
[2023-09-01 17:37:52,576::train::INFO] [train] Iter 00613 | loss 3.0565 | loss(rot) 2.2200 | loss(pos) 0.2971 | loss(seq) 0.5393 | grad 3.6557 | lr 0.0010 | time_forward 2.7110 | time_backward 3.8230
[2023-09-01 17:38:01,708::train::INFO] [train] Iter 00614 | loss 2.2202 | loss(rot) 0.1341 | loss(pos) 2.0770 | loss(seq) 0.0091 | grad 4.1106 | lr 0.0010 | time_forward 3.9420 | time_backward 5.1870
[2023-09-01 17:38:09,502::train::INFO] [train] Iter 00615 | loss 3.4970 | loss(rot) 3.0185 | loss(pos) 0.4548 | loss(seq) 0.0237 | grad 5.1373 | lr 0.0010 | time_forward 3.3150 | time_backward 4.4750
[2023-09-01 17:38:19,211::train::INFO] [train] Iter 00616 | loss 3.5155 | loss(rot) 3.0985 | loss(pos) 0.3471 | loss(seq) 0.0699 | grad 4.0967 | lr 0.0010 | time_forward 4.0910 | time_backward 5.6140
[2023-09-01 17:38:27,744::train::INFO] [train] Iter 00617 | loss 2.6742 | loss(rot) 2.0263 | loss(pos) 0.5897 | loss(seq) 0.0582 | grad 6.5724 | lr 0.0010 | time_forward 3.7510 | time_backward 4.7800
[2023-09-01 17:38:35,937::train::INFO] [train] Iter 00618 | loss 2.3548 | loss(rot) 1.5493 | loss(pos) 0.4576 | loss(seq) 0.3479 | grad 4.6619 | lr 0.0010 | time_forward 3.6370 | time_backward 4.5520
[2023-09-01 17:38:44,268::train::INFO] [train] Iter 00619 | loss 1.8882 | loss(rot) 0.7815 | loss(pos) 1.0070 | loss(seq) 0.0998 | grad 5.1646 | lr 0.0010 | time_forward 3.6420 | time_backward 4.6860
[2023-09-01 17:38:54,190::train::INFO] [train] Iter 00620 | loss 3.3607 | loss(rot) 2.9338 | loss(pos) 0.3119 | loss(seq) 0.1150 | grad 5.0519 | lr 0.0010 | time_forward 4.1260 | time_backward 5.7930
[2023-09-01 17:38:58,068::train::INFO] [train] Iter 00621 | loss 2.9730 | loss(rot) 1.7290 | loss(pos) 0.6389 | loss(seq) 0.6051 | grad 2.4980 | lr 0.0010 | time_forward 1.6420 | time_backward 2.2200
[2023-09-01 17:39:06,492::train::INFO] [train] Iter 00622 | loss 2.0940 | loss(rot) 1.8829 | loss(pos) 0.2081 | loss(seq) 0.0030 | grad 3.0246 | lr 0.0010 | time_forward 3.5660 | time_backward 4.8540
[2023-09-01 17:39:13,976::train::INFO] [train] Iter 00623 | loss 2.9511 | loss(rot) 2.6058 | loss(pos) 0.2156 | loss(seq) 0.1298 | grad 3.3355 | lr 0.0010 | time_forward 3.1410 | time_backward 4.3410
[2023-09-01 17:39:16,517::train::INFO] [train] Iter 00624 | loss 2.9005 | loss(rot) 1.7393 | loss(pos) 0.8973 | loss(seq) 0.2640 | grad 6.4900 | lr 0.0010 | time_forward 1.2340 | time_backward 1.3030
[2023-09-01 17:39:19,211::train::INFO] [train] Iter 00625 | loss 2.7593 | loss(rot) 2.1376 | loss(pos) 0.3011 | loss(seq) 0.3205 | grad 3.6793 | lr 0.0010 | time_forward 1.3640 | time_backward 1.3260
[2023-09-01 17:39:27,783::train::INFO] [train] Iter 00626 | loss 2.6010 | loss(rot) 2.3543 | loss(pos) 0.2074 | loss(seq) 0.0393 | grad 4.0052 | lr 0.0010 | time_forward 3.4720 | time_backward 5.0810
[2023-09-01 17:39:30,384::train::INFO] [train] Iter 00627 | loss 3.4028 | loss(rot) 2.5590 | loss(pos) 0.4910 | loss(seq) 0.3529 | grad 5.4564 | lr 0.0010 | time_forward 1.2360 | time_backward 1.3630
[2023-09-01 17:39:42,414::train::INFO] [train] Iter 00628 | loss 1.8275 | loss(rot) 0.3156 | loss(pos) 1.4598 | loss(seq) 0.0521 | grad 3.7472 | lr 0.0010 | time_forward 5.9790 | time_backward 5.8100
[2023-09-01 17:39:45,423::train::INFO] [train] Iter 00629 | loss 3.2318 | loss(rot) 2.6654 | loss(pos) 0.5032 | loss(seq) 0.0632 | grad 4.0542 | lr 0.0010 | time_forward 1.3570 | time_backward 1.6330
[2023-09-01 17:39:53,895::train::INFO] [train] Iter 00630 | loss 3.1206 | loss(rot) 0.3105 | loss(pos) 2.8065 | loss(seq) 0.0036 | grad 8.4116 | lr 0.0010 | time_forward 3.5510 | time_backward 4.9020
[2023-09-01 17:39:56,807::train::INFO] [train] Iter 00631 | loss 1.5233 | loss(rot) 0.4260 | loss(pos) 1.0143 | loss(seq) 0.0829 | grad 3.7828 | lr 0.0010 | time_forward 1.3670 | time_backward 1.5410
[2023-09-01 17:40:06,036::train::INFO] [train] Iter 00632 | loss 2.9485 | loss(rot) 1.4290 | loss(pos) 1.0479 | loss(seq) 0.4717 | grad 4.1495 | lr 0.0010 | time_forward 3.6560 | time_backward 5.5700
[2023-09-01 17:40:08,911::train::INFO] [train] Iter 00633 | loss 3.4392 | loss(rot) 3.1847 | loss(pos) 0.2545 | loss(seq) 0.0000 | grad 3.4401 | lr 0.0010 | time_forward 1.4890 | time_backward 1.3830
[2023-09-01 17:40:11,905::train::INFO] [train] Iter 00634 | loss 2.4212 | loss(rot) 0.1438 | loss(pos) 2.2422 | loss(seq) 0.0352 | grad 5.3155 | lr 0.0010 | time_forward 1.3860 | time_backward 1.6040
[2023-09-01 17:40:20,641::train::INFO] [train] Iter 00635 | loss 3.4789 | loss(rot) 1.9555 | loss(pos) 0.9825 | loss(seq) 0.5408 | grad 5.3594 | lr 0.0010 | time_forward 3.7380 | time_backward 4.9950
[2023-09-01 17:40:30,817::train::INFO] [train] Iter 00636 | loss 2.4829 | loss(rot) 1.3942 | loss(pos) 0.6034 | loss(seq) 0.4854 | grad 4.2036 | lr 0.0010 | time_forward 4.2690 | time_backward 5.9030
[2023-09-01 17:40:36,870::train::INFO] [train] Iter 00637 | loss 3.5417 | loss(rot) 0.0858 | loss(pos) 2.7265 | loss(seq) 0.7294 | grad 7.0797 | lr 0.0010 | time_forward 2.6430 | time_backward 3.3940
[2023-09-01 17:40:45,977::train::INFO] [train] Iter 00638 | loss 4.2810 | loss(rot) 3.5833 | loss(pos) 0.6862 | loss(seq) 0.0115 | grad 8.2325 | lr 0.0010 | time_forward 3.7060 | time_backward 5.3970
[2023-09-01 17:40:48,863::train::INFO] [train] Iter 00639 | loss 2.8388 | loss(rot) 2.4931 | loss(pos) 0.2919 | loss(seq) 0.0538 | grad 4.2382 | lr 0.0010 | time_forward 1.4080 | time_backward 1.4750
[2023-09-01 17:40:58,332::train::INFO] [train] Iter 00640 | loss 3.3343 | loss(rot) 2.3048 | loss(pos) 0.5557 | loss(seq) 0.4739 | grad 5.5204 | lr 0.0010 | time_forward 4.0320 | time_backward 5.4330
[2023-09-01 17:41:07,066::train::INFO] [train] Iter 00641 | loss 2.0522 | loss(rot) 0.8929 | loss(pos) 0.9208 | loss(seq) 0.2385 | grad 4.9674 | lr 0.0010 | time_forward 3.7750 | time_backward 4.9570
[2023-09-01 17:41:16,712::train::INFO] [train] Iter 00642 | loss 2.3487 | loss(rot) 0.5138 | loss(pos) 1.2377 | loss(seq) 0.5972 | grad 5.0679 | lr 0.0010 | time_forward 4.1250 | time_backward 5.5170
[2023-09-01 17:41:24,417::train::INFO] [train] Iter 00643 | loss 2.7931 | loss(rot) 1.8123 | loss(pos) 0.4696 | loss(seq) 0.5111 | grad 3.7780 | lr 0.0010 | time_forward 3.3520 | time_backward 4.3500
[2023-09-01 17:41:34,662::train::INFO] [train] Iter 00644 | loss 2.8872 | loss(rot) 1.1889 | loss(pos) 1.3568 | loss(seq) 0.3415 | grad 4.8782 | lr 0.0010 | time_forward 4.3050 | time_backward 5.9370
[2023-09-01 17:41:43,722::train::INFO] [train] Iter 00645 | loss 2.6576 | loss(rot) 1.2830 | loss(pos) 0.8068 | loss(seq) 0.5678 | grad 4.1183 | lr 0.0010 | time_forward 4.0030 | time_backward 5.0540
[2023-09-01 17:41:46,571::train::INFO] [train] Iter 00646 | loss 3.1030 | loss(rot) 2.0213 | loss(pos) 0.5385 | loss(seq) 0.5432 | grad 4.4993 | lr 0.0010 | time_forward 1.3790 | time_backward 1.4660
[2023-09-01 17:41:55,420::train::INFO] [train] Iter 00647 | loss 2.9137 | loss(rot) 2.0053 | loss(pos) 0.3849 | loss(seq) 0.5235 | grad 4.9331 | lr 0.0010 | time_forward 3.7580 | time_backward 5.0320
[2023-09-01 17:42:04,540::train::INFO] [train] Iter 00648 | loss 2.6572 | loss(rot) 1.5353 | loss(pos) 0.6407 | loss(seq) 0.4811 | grad 4.2018 | lr 0.0010 | time_forward 3.9460 | time_backward 5.1720
[2023-09-01 17:42:12,414::train::INFO] [train] Iter 00649 | loss 3.0638 | loss(rot) 1.8553 | loss(pos) 0.7217 | loss(seq) 0.4869 | grad 2.8669 | lr 0.0010 | time_forward 3.4910 | time_backward 4.3800
[2023-09-01 17:42:22,296::train::INFO] [train] Iter 00650 | loss 2.5077 | loss(rot) 1.8575 | loss(pos) 0.2430 | loss(seq) 0.4072 | grad 2.7098 | lr 0.0010 | time_forward 4.0190 | time_backward 5.8590
[2023-09-01 17:42:25,030::train::INFO] [train] Iter 00651 | loss 2.7875 | loss(rot) 1.9082 | loss(pos) 0.3757 | loss(seq) 0.5036 | grad 3.0092 | lr 0.0010 | time_forward 1.3090 | time_backward 1.4220
[2023-09-01 17:42:27,839::train::INFO] [train] Iter 00652 | loss 1.8721 | loss(rot) 1.0827 | loss(pos) 0.3247 | loss(seq) 0.4647 | grad 3.1366 | lr 0.0010 | time_forward 1.3370 | time_backward 1.4370
[2023-09-01 17:42:30,403::train::INFO] [train] Iter 00653 | loss 1.6186 | loss(rot) 0.2734 | loss(pos) 1.3063 | loss(seq) 0.0390 | grad 5.1162 | lr 0.0010 | time_forward 1.2080 | time_backward 1.3090
[2023-09-01 17:42:39,429::train::INFO] [train] Iter 00654 | loss 3.3619 | loss(rot) 2.9695 | loss(pos) 0.1211 | loss(seq) 0.2713 | grad 1.9877 | lr 0.0010 | time_forward 3.7000 | time_backward 5.3220
[2023-09-01 17:42:48,889::train::INFO] [train] Iter 00655 | loss 2.9503 | loss(rot) 0.0029 | loss(pos) 2.9473 | loss(seq) 0.0000 | grad 6.7826 | lr 0.0010 | time_forward 3.7460 | time_backward 5.7100
[2023-09-01 17:42:57,582::train::INFO] [train] Iter 00656 | loss 2.7151 | loss(rot) 1.8931 | loss(pos) 0.3970 | loss(seq) 0.4250 | grad 3.6024 | lr 0.0010 | time_forward 3.9130 | time_backward 4.7770
[2023-09-01 17:43:04,881::train::INFO] [train] Iter 00657 | loss 2.5739 | loss(rot) 1.5249 | loss(pos) 0.6584 | loss(seq) 0.3906 | grad 5.9866 | lr 0.0010 | time_forward 3.1010 | time_backward 4.1770
[2023-09-01 17:43:15,295::train::INFO] [train] Iter 00658 | loss 2.0626 | loss(rot) 0.6946 | loss(pos) 0.9754 | loss(seq) 0.3926 | grad 3.7505 | lr 0.0010 | time_forward 3.9300 | time_backward 6.4810
[2023-09-01 17:43:17,836::train::INFO] [train] Iter 00659 | loss 1.5275 | loss(rot) 0.5488 | loss(pos) 0.8828 | loss(seq) 0.0958 | grad 2.8923 | lr 0.0010 | time_forward 1.2430 | time_backward 1.2950
[2023-09-01 17:43:20,673::train::INFO] [train] Iter 00660 | loss 3.0656 | loss(rot) 2.1448 | loss(pos) 0.4265 | loss(seq) 0.4943 | grad 4.1099 | lr 0.0010 | time_forward 1.3440 | time_backward 1.4650
[2023-09-01 17:43:23,574::train::INFO] [train] Iter 00661 | loss 3.6261 | loss(rot) 2.8158 | loss(pos) 0.7831 | loss(seq) 0.0273 | grad 4.0162 | lr 0.0010 | time_forward 1.3710 | time_backward 1.4820
[2023-09-01 17:43:33,244::train::INFO] [train] Iter 00662 | loss 3.5099 | loss(rot) 2.7266 | loss(pos) 0.5995 | loss(seq) 0.1838 | grad 4.3008 | lr 0.0010 | time_forward 3.8740 | time_backward 5.7920
[2023-09-01 17:43:36,080::train::INFO] [train] Iter 00663 | loss 1.9209 | loss(rot) 1.2039 | loss(pos) 0.3229 | loss(seq) 0.3941 | grad 4.6951 | lr 0.0010 | time_forward 1.3770 | time_backward 1.4540
[2023-09-01 17:43:38,528::train::INFO] [train] Iter 00664 | loss 2.3682 | loss(rot) 1.0325 | loss(pos) 0.7788 | loss(seq) 0.5569 | grad 4.6040 | lr 0.0010 | time_forward 1.1750 | time_backward 1.2300
[2023-09-01 17:43:47,476::train::INFO] [train] Iter 00665 | loss 3.3561 | loss(rot) 2.7521 | loss(pos) 0.3224 | loss(seq) 0.2816 | grad 4.0093 | lr 0.0010 | time_forward 3.8120 | time_backward 5.1310
[2023-09-01 17:43:50,014::train::INFO] [train] Iter 00666 | loss 3.1558 | loss(rot) 2.7262 | loss(pos) 0.4175 | loss(seq) 0.0121 | grad 5.0932 | lr 0.0010 | time_forward 1.2150 | time_backward 1.3200
[2023-09-01 17:43:55,430::train::INFO] [train] Iter 00667 | loss 2.8304 | loss(rot) 2.6363 | loss(pos) 0.1877 | loss(seq) 0.0065 | grad 3.4058 | lr 0.0010 | time_forward 2.9390 | time_backward 2.4400
[2023-09-01 17:44:04,915::train::INFO] [train] Iter 00668 | loss 2.0031 | loss(rot) 0.5602 | loss(pos) 1.1982 | loss(seq) 0.2447 | grad 4.2192 | lr 0.0010 | time_forward 3.9580 | time_backward 5.5220
[2023-09-01 17:44:07,830::train::INFO] [train] Iter 00669 | loss 2.5724 | loss(rot) 1.3530 | loss(pos) 0.7925 | loss(seq) 0.4269 | grad 4.1773 | lr 0.0010 | time_forward 1.3180 | time_backward 1.5140
[2023-09-01 17:44:11,435::train::INFO] [train] Iter 00670 | loss 2.3450 | loss(rot) 1.0238 | loss(pos) 1.1775 | loss(seq) 0.1438 | grad 4.5842 | lr 0.0010 | time_forward 1.6360 | time_backward 1.9160
[2023-09-01 17:44:21,235::train::INFO] [train] Iter 00671 | loss 2.9888 | loss(rot) 1.8575 | loss(pos) 0.6556 | loss(seq) 0.4757 | grad 5.3405 | lr 0.0010 | time_forward 3.9640 | time_backward 5.8330
[2023-09-01 17:44:24,088::train::INFO] [train] Iter 00672 | loss 2.3536 | loss(rot) 0.8593 | loss(pos) 1.0565 | loss(seq) 0.4377 | grad 5.7128 | lr 0.0010 | time_forward 1.3330 | time_backward 1.4850
[2023-09-01 17:44:27,190::train::INFO] [train] Iter 00673 | loss 2.6646 | loss(rot) 1.5771 | loss(pos) 0.6223 | loss(seq) 0.4652 | grad 4.4699 | lr 0.0010 | time_forward 1.6420 | time_backward 1.4570
[2023-09-01 17:44:30,043::train::INFO] [train] Iter 00674 | loss 3.9824 | loss(rot) 3.3417 | loss(pos) 0.6196 | loss(seq) 0.0211 | grad 6.3086 | lr 0.0010 | time_forward 1.4010 | time_backward 1.4490
[2023-09-01 17:44:39,093::train::INFO] [train] Iter 00675 | loss 3.4879 | loss(rot) 3.1649 | loss(pos) 0.2927 | loss(seq) 0.0303 | grad 3.3490 | lr 0.0010 | time_forward 3.7020 | time_backward 5.3450
[2023-09-01 17:44:46,943::train::INFO] [train] Iter 00676 | loss 2.4516 | loss(rot) 1.4866 | loss(pos) 0.4282 | loss(seq) 0.5368 | grad 2.7528 | lr 0.0010 | time_forward 3.3210 | time_backward 4.5250
[2023-09-01 17:44:55,833::train::INFO] [train] Iter 00677 | loss 2.0547 | loss(rot) 1.2052 | loss(pos) 0.4240 | loss(seq) 0.4255 | grad 3.3227 | lr 0.0010 | time_forward 3.6560 | time_backward 5.2320
[2023-09-01 17:45:05,530::train::INFO] [train] Iter 00678 | loss 3.0119 | loss(rot) 1.3981 | loss(pos) 0.7958 | loss(seq) 0.8181 | grad 3.6988 | lr 0.0010 | time_forward 4.0010 | time_backward 5.6920
[2023-09-01 17:45:08,374::train::INFO] [train] Iter 00679 | loss 3.2152 | loss(rot) 2.7206 | loss(pos) 0.1881 | loss(seq) 0.3065 | grad 3.4190 | lr 0.0010 | time_forward 1.3470 | time_backward 1.4940
[2023-09-01 17:45:17,212::train::INFO] [train] Iter 00680 | loss 2.2530 | loss(rot) 1.9734 | loss(pos) 0.2796 | loss(seq) 0.0000 | grad 3.9714 | lr 0.0010 | time_forward 3.7910 | time_backward 5.0430
[2023-09-01 17:45:24,423::train::INFO] [train] Iter 00681 | loss 3.3714 | loss(rot) 2.9615 | loss(pos) 0.2719 | loss(seq) 0.1379 | grad 4.5658 | lr 0.0010 | time_forward 3.1240 | time_backward 4.0840
[2023-09-01 17:45:27,336::train::INFO] [train] Iter 00682 | loss 3.3570 | loss(rot) 2.7603 | loss(pos) 0.2640 | loss(seq) 0.3327 | grad 4.3840 | lr 0.0010 | time_forward 1.3590 | time_backward 1.5500
[2023-09-01 17:45:30,349::train::INFO] [train] Iter 00683 | loss 3.2281 | loss(rot) 2.5202 | loss(pos) 0.3282 | loss(seq) 0.3797 | grad 3.0097 | lr 0.0010 | time_forward 1.4490 | time_backward 1.5210
[2023-09-01 17:45:39,421::train::INFO] [train] Iter 00684 | loss 2.7092 | loss(rot) 0.3997 | loss(pos) 2.0534 | loss(seq) 0.2560 | grad 4.1813 | lr 0.0010 | time_forward 3.7330 | time_backward 5.2820
[2023-09-01 17:45:48,288::train::INFO] [train] Iter 00685 | loss 3.0678 | loss(rot) 2.1717 | loss(pos) 0.4530 | loss(seq) 0.4431 | grad 3.7595 | lr 0.0010 | time_forward 3.8990 | time_backward 4.9650
[2023-09-01 17:45:57,134::train::INFO] [train] Iter 00686 | loss 1.9406 | loss(rot) 1.2354 | loss(pos) 0.4086 | loss(seq) 0.2965 | grad 3.3166 | lr 0.0010 | time_forward 3.7320 | time_backward 5.1110
[2023-09-01 17:46:05,566::train::INFO] [train] Iter 00687 | loss 1.7481 | loss(rot) 0.1853 | loss(pos) 1.5369 | loss(seq) 0.0260 | grad 7.1077 | lr 0.0010 | time_forward 3.4890 | time_backward 4.9400
[2023-09-01 17:46:15,115::train::INFO] [train] Iter 00688 | loss 1.9474 | loss(rot) 0.7826 | loss(pos) 0.7770 | loss(seq) 0.3878 | grad 3.0688 | lr 0.0010 | time_forward 3.7880 | time_backward 5.7590
[2023-09-01 17:46:23,669::train::INFO] [train] Iter 00689 | loss 2.9130 | loss(rot) 2.5042 | loss(pos) 0.2361 | loss(seq) 0.1727 | grad 3.4890 | lr 0.0010 | time_forward 3.5670 | time_backward 4.9840
[2023-09-01 17:46:31,450::train::INFO] [train] Iter 00690 | loss 3.7146 | loss(rot) 2.9181 | loss(pos) 0.6248 | loss(seq) 0.1718 | grad 5.4197 | lr 0.0010 | time_forward 3.0910 | time_backward 4.6870
[2023-09-01 17:46:34,282::train::INFO] [train] Iter 00691 | loss 2.5841 | loss(rot) 2.2265 | loss(pos) 0.3576 | loss(seq) 0.0000 | grad 4.4746 | lr 0.0010 | time_forward 1.3280 | time_backward 1.5010
[2023-09-01 17:46:42,446::train::INFO] [train] Iter 00692 | loss 4.0180 | loss(rot) 3.2347 | loss(pos) 0.7821 | loss(seq) 0.0012 | grad 7.8043 | lr 0.0010 | time_forward 3.3140 | time_backward 4.8460
[2023-09-01 17:46:51,624::train::INFO] [train] Iter 00693 | loss 3.5792 | loss(rot) 2.7422 | loss(pos) 0.5118 | loss(seq) 0.3252 | grad 5.7142 | lr 0.0010 | time_forward 3.8730 | time_backward 5.3020
[2023-09-01 17:47:00,792::train::INFO] [train] Iter 00694 | loss 2.5985 | loss(rot) 1.3324 | loss(pos) 0.5955 | loss(seq) 0.6706 | grad 4.9871 | lr 0.0010 | time_forward 3.6860 | time_backward 5.4800