text
stringlengths
56
1.16k
[2023-09-01 17:47:03,657::train::INFO] [train] Iter 00695 | loss 3.0934 | loss(rot) 2.8482 | loss(pos) 0.2048 | loss(seq) 0.0404 | grad 2.9619 | lr 0.0010 | time_forward 1.3050 | time_backward 1.5570
[2023-09-01 17:47:12,036::train::INFO] [train] Iter 00696 | loss 2.5053 | loss(rot) 2.1700 | loss(pos) 0.2883 | loss(seq) 0.0470 | grad 4.4284 | lr 0.0010 | time_forward 3.4760 | time_backward 4.8970
[2023-09-01 17:47:21,644::train::INFO] [train] Iter 00697 | loss 3.3701 | loss(rot) 3.1536 | loss(pos) 0.2145 | loss(seq) 0.0020 | grad 2.3571 | lr 0.0010 | time_forward 4.0650 | time_backward 5.5390
[2023-09-01 17:47:24,420::train::INFO] [train] Iter 00698 | loss 3.0518 | loss(rot) 2.1539 | loss(pos) 0.4441 | loss(seq) 0.4538 | grad 4.2533 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4850
[2023-09-01 17:47:33,126::train::INFO] [train] Iter 00699 | loss 4.4511 | loss(rot) 2.6816 | loss(pos) 1.2488 | loss(seq) 0.5208 | grad 7.0606 | lr 0.0010 | time_forward 3.6730 | time_backward 4.9960
[2023-09-01 17:47:36,690::train::INFO] [train] Iter 00700 | loss 2.9157 | loss(rot) 0.7065 | loss(pos) 1.5308 | loss(seq) 0.6785 | grad 3.1878 | lr 0.0010 | time_forward 1.5330 | time_backward 2.0280
[2023-09-01 17:47:44,863::train::INFO] [train] Iter 00701 | loss 3.0980 | loss(rot) 2.8263 | loss(pos) 0.2706 | loss(seq) 0.0012 | grad 3.2021 | lr 0.0010 | time_forward 3.2660 | time_backward 4.9030
[2023-09-01 17:47:47,486::train::INFO] [train] Iter 00702 | loss 3.5001 | loss(rot) 2.1373 | loss(pos) 0.6797 | loss(seq) 0.6831 | grad 4.0346 | lr 0.0010 | time_forward 1.2840 | time_backward 1.3360
[2023-09-01 17:47:56,362::train::INFO] [train] Iter 00703 | loss 3.6694 | loss(rot) 3.3459 | loss(pos) 0.3235 | loss(seq) 0.0000 | grad 2.8961 | lr 0.0010 | time_forward 3.8600 | time_backward 4.9710
[2023-09-01 17:48:04,770::train::INFO] [train] Iter 00704 | loss 2.9964 | loss(rot) 2.3024 | loss(pos) 0.3419 | loss(seq) 0.3520 | grad 3.0130 | lr 0.0010 | time_forward 3.3290 | time_backward 5.0750
[2023-09-01 17:48:13,520::train::INFO] [train] Iter 00705 | loss 3.8932 | loss(rot) 3.7188 | loss(pos) 0.1744 | loss(seq) 0.0000 | grad 2.6704 | lr 0.0010 | time_forward 3.5170 | time_backward 5.2300
[2023-09-01 17:48:21,842::train::INFO] [train] Iter 00706 | loss 2.9101 | loss(rot) 1.8478 | loss(pos) 0.4903 | loss(seq) 0.5719 | grad 3.9159 | lr 0.0010 | time_forward 3.5970 | time_backward 4.7210
[2023-09-01 17:48:31,435::train::INFO] [train] Iter 00707 | loss 1.5727 | loss(rot) 0.1033 | loss(pos) 1.4602 | loss(seq) 0.0092 | grad 3.0145 | lr 0.0010 | time_forward 4.3090 | time_backward 5.2810
[2023-09-01 17:48:40,827::train::INFO] [train] Iter 00708 | loss 2.7100 | loss(rot) 2.2253 | loss(pos) 0.2607 | loss(seq) 0.2240 | grad 3.8292 | lr 0.0010 | time_forward 3.9430 | time_backward 5.4460
[2023-09-01 17:48:48,802::train::INFO] [train] Iter 00709 | loss 1.5108 | loss(rot) 0.1638 | loss(pos) 1.3071 | loss(seq) 0.0399 | grad 5.0257 | lr 0.0010 | time_forward 3.4480 | time_backward 4.5240
[2023-09-01 17:48:58,760::train::INFO] [train] Iter 00710 | loss 2.8784 | loss(rot) 2.5377 | loss(pos) 0.2982 | loss(seq) 0.0424 | grad 4.1412 | lr 0.0010 | time_forward 4.1690 | time_backward 5.7860
[2023-09-01 17:49:01,635::train::INFO] [train] Iter 00711 | loss 3.6870 | loss(rot) 3.3559 | loss(pos) 0.3311 | loss(seq) 0.0000 | grad 3.8638 | lr 0.0010 | time_forward 1.3630 | time_backward 1.5090
[2023-09-01 17:49:11,943::train::INFO] [train] Iter 00712 | loss 3.7829 | loss(rot) 3.1584 | loss(pos) 0.4562 | loss(seq) 0.1682 | grad 5.0358 | lr 0.0010 | time_forward 4.3070 | time_backward 5.9530
[2023-09-01 17:49:22,243::train::INFO] [train] Iter 00713 | loss 2.6578 | loss(rot) 1.4790 | loss(pos) 0.6207 | loss(seq) 0.5582 | grad 3.7838 | lr 0.0010 | time_forward 4.3450 | time_backward 5.9510
[2023-09-01 17:49:25,143::train::INFO] [train] Iter 00714 | loss 3.4281 | loss(rot) 2.9592 | loss(pos) 0.4208 | loss(seq) 0.0480 | grad 3.0275 | lr 0.0010 | time_forward 1.3750 | time_backward 1.5220
[2023-09-01 17:49:35,197::train::INFO] [train] Iter 00715 | loss 3.2736 | loss(rot) 2.9630 | loss(pos) 0.3105 | loss(seq) 0.0000 | grad 3.1811 | lr 0.0010 | time_forward 3.9370 | time_backward 6.0790
[2023-09-01 17:49:38,079::train::INFO] [train] Iter 00716 | loss 3.7277 | loss(rot) 2.6955 | loss(pos) 0.5308 | loss(seq) 0.5015 | grad 3.6152 | lr 0.0010 | time_forward 1.3600 | time_backward 1.5190
[2023-09-01 17:49:46,811::train::INFO] [train] Iter 00717 | loss 1.4072 | loss(rot) 0.0569 | loss(pos) 1.3410 | loss(seq) 0.0093 | grad 3.9622 | lr 0.0010 | time_forward 3.7310 | time_backward 4.9980
[2023-09-01 17:49:56,458::train::INFO] [train] Iter 00718 | loss 2.0693 | loss(rot) 0.0506 | loss(pos) 2.0126 | loss(seq) 0.0061 | grad 2.4307 | lr 0.0010 | time_forward 4.0600 | time_backward 5.5830
[2023-09-01 17:50:05,392::train::INFO] [train] Iter 00719 | loss 2.8687 | loss(rot) 1.7508 | loss(pos) 0.6115 | loss(seq) 0.5065 | grad 3.8360 | lr 0.0010 | time_forward 3.7690 | time_backward 5.1610
[2023-09-01 17:50:08,376::train::INFO] [train] Iter 00720 | loss 1.8758 | loss(rot) 0.2859 | loss(pos) 1.5504 | loss(seq) 0.0395 | grad 4.1143 | lr 0.0010 | time_forward 1.3750 | time_backward 1.6060
[2023-09-01 17:50:18,188::train::INFO] [train] Iter 00721 | loss 3.2099 | loss(rot) 2.2059 | loss(pos) 0.3932 | loss(seq) 0.6108 | grad 2.6473 | lr 0.0010 | time_forward 3.8350 | time_backward 5.9600
[2023-09-01 17:50:24,149::train::INFO] [train] Iter 00722 | loss 3.1024 | loss(rot) 2.8893 | loss(pos) 0.1970 | loss(seq) 0.0161 | grad 3.1224 | lr 0.0010 | time_forward 2.4850 | time_backward 3.4740
[2023-09-01 17:50:34,504::train::INFO] [train] Iter 00723 | loss 2.2233 | loss(rot) 1.0754 | loss(pos) 0.6577 | loss(seq) 0.4902 | grad 3.8645 | lr 0.0010 | time_forward 4.3770 | time_backward 5.9740
[2023-09-01 17:50:37,353::train::INFO] [train] Iter 00724 | loss 2.9875 | loss(rot) 1.6758 | loss(pos) 0.7338 | loss(seq) 0.5779 | grad 4.1981 | lr 0.0010 | time_forward 1.3220 | time_backward 1.5230
[2023-09-01 17:50:44,628::train::INFO] [train] Iter 00725 | loss 2.3112 | loss(rot) 0.3504 | loss(pos) 1.9200 | loss(seq) 0.0408 | grad 5.9740 | lr 0.0010 | time_forward 3.1370 | time_backward 4.0940
[2023-09-01 17:50:54,931::train::INFO] [train] Iter 00726 | loss 1.7355 | loss(rot) 0.1384 | loss(pos) 1.5804 | loss(seq) 0.0168 | grad 4.0590 | lr 0.0010 | time_forward 4.4240 | time_backward 5.8750
[2023-09-01 17:51:03,833::train::INFO] [train] Iter 00727 | loss 4.0348 | loss(rot) 0.0038 | loss(pos) 4.0310 | loss(seq) 0.0000 | grad 10.0575 | lr 0.0010 | time_forward 3.7720 | time_backward 5.1200
[2023-09-01 17:51:13,870::train::INFO] [train] Iter 00728 | loss 2.5212 | loss(rot) 1.4537 | loss(pos) 0.4400 | loss(seq) 0.6276 | grad 2.8773 | lr 0.0010 | time_forward 4.1700 | time_backward 5.8630
[2023-09-01 17:51:22,474::train::INFO] [train] Iter 00729 | loss 2.9677 | loss(rot) 2.5992 | loss(pos) 0.3685 | loss(seq) 0.0000 | grad 4.8590 | lr 0.0010 | time_forward 3.4120 | time_backward 5.1890
[2023-09-01 17:51:32,389::train::INFO] [train] Iter 00730 | loss 3.0799 | loss(rot) 2.5839 | loss(pos) 0.3071 | loss(seq) 0.1889 | grad 3.6425 | lr 0.0010 | time_forward 3.9440 | time_backward 5.9680
[2023-09-01 17:51:40,916::train::INFO] [train] Iter 00731 | loss 3.8445 | loss(rot) 3.1891 | loss(pos) 0.6554 | loss(seq) 0.0000 | grad 5.7896 | lr 0.0010 | time_forward 3.6230 | time_backward 4.9010
[2023-09-01 17:51:43,713::train::INFO] [train] Iter 00732 | loss 1.7737 | loss(rot) 0.8993 | loss(pos) 0.5356 | loss(seq) 0.3388 | grad 3.7847 | lr 0.0010 | time_forward 1.3500 | time_backward 1.4440
[2023-09-01 17:51:46,577::train::INFO] [train] Iter 00733 | loss 2.4080 | loss(rot) 1.1388 | loss(pos) 0.6168 | loss(seq) 0.6524 | grad 4.1194 | lr 0.0010 | time_forward 1.4100 | time_backward 1.4510
[2023-09-01 17:51:48,924::train::INFO] [train] Iter 00734 | loss 3.6055 | loss(rot) 2.9485 | loss(pos) 0.5172 | loss(seq) 0.1397 | grad 4.3884 | lr 0.0010 | time_forward 1.1150 | time_backward 1.2280
[2023-09-01 17:51:55,848::train::INFO] [train] Iter 00735 | loss 3.7121 | loss(rot) 0.0934 | loss(pos) 3.6090 | loss(seq) 0.0098 | grad 6.4025 | lr 0.0010 | time_forward 3.0040 | time_backward 3.9020
[2023-09-01 17:52:06,113::train::INFO] [train] Iter 00736 | loss 2.9721 | loss(rot) 2.1533 | loss(pos) 0.3462 | loss(seq) 0.4726 | grad 3.8233 | lr 0.0010 | time_forward 4.1560 | time_backward 6.1060
[2023-09-01 17:52:09,641::train::INFO] [train] Iter 00737 | loss 3.5748 | loss(rot) 3.0664 | loss(pos) 0.5064 | loss(seq) 0.0020 | grad 4.9672 | lr 0.0010 | time_forward 1.6390 | time_backward 1.8850
[2023-09-01 17:52:19,362::train::INFO] [train] Iter 00738 | loss 2.2472 | loss(rot) 0.7868 | loss(pos) 1.3881 | loss(seq) 0.0723 | grad 5.4632 | lr 0.0010 | time_forward 3.9570 | time_backward 5.7600
[2023-09-01 17:52:27,616::train::INFO] [train] Iter 00739 | loss 3.8769 | loss(rot) 3.3141 | loss(pos) 0.4863 | loss(seq) 0.0764 | grad 4.5132 | lr 0.0010 | time_forward 3.5980 | time_backward 4.6500
[2023-09-01 17:52:37,805::train::INFO] [train] Iter 00740 | loss 3.2028 | loss(rot) 2.8152 | loss(pos) 0.3875 | loss(seq) 0.0000 | grad 4.4981 | lr 0.0010 | time_forward 4.2280 | time_backward 5.9570
[2023-09-01 17:52:46,413::train::INFO] [train] Iter 00741 | loss 3.3524 | loss(rot) 2.6787 | loss(pos) 0.3236 | loss(seq) 0.3501 | grad 2.4849 | lr 0.0010 | time_forward 3.6440 | time_backward 4.9610
[2023-09-01 17:52:56,653::train::INFO] [train] Iter 00742 | loss 2.2536 | loss(rot) 0.8664 | loss(pos) 1.0179 | loss(seq) 0.3692 | grad 3.3934 | lr 0.0010 | time_forward 4.2120 | time_backward 6.0250
[2023-09-01 17:53:00,090::train::INFO] [train] Iter 00743 | loss 2.5778 | loss(rot) 1.6048 | loss(pos) 0.3603 | loss(seq) 0.6127 | grad 3.7883 | lr 0.0010 | time_forward 1.5120 | time_backward 1.9210
[2023-09-01 17:53:07,775::train::INFO] [train] Iter 00744 | loss 2.9301 | loss(rot) 1.6332 | loss(pos) 0.7252 | loss(seq) 0.5718 | grad 5.1744 | lr 0.0010 | time_forward 3.1620 | time_backward 4.5080
[2023-09-01 17:53:18,155::train::INFO] [train] Iter 00745 | loss 3.2395 | loss(rot) 2.6666 | loss(pos) 0.3960 | loss(seq) 0.1769 | grad 3.5219 | lr 0.0010 | time_forward 4.2840 | time_backward 6.0920
[2023-09-01 17:53:21,001::train::INFO] [train] Iter 00746 | loss 2.9267 | loss(rot) 2.5974 | loss(pos) 0.2573 | loss(seq) 0.0719 | grad 3.2170 | lr 0.0010 | time_forward 1.3980 | time_backward 1.4450
[2023-09-01 17:53:30,823::train::INFO] [train] Iter 00747 | loss 2.8560 | loss(rot) 1.8280 | loss(pos) 0.5023 | loss(seq) 0.5257 | grad 3.8767 | lr 0.0010 | time_forward 3.8030 | time_backward 5.9610
[2023-09-01 17:53:33,717::train::INFO] [train] Iter 00748 | loss 2.1885 | loss(rot) 0.9835 | loss(pos) 0.8563 | loss(seq) 0.3487 | grad 3.8017 | lr 0.0010 | time_forward 1.4480 | time_backward 1.4420
[2023-09-01 17:53:43,870::train::INFO] [train] Iter 00749 | loss 3.4952 | loss(rot) 2.5834 | loss(pos) 0.4293 | loss(seq) 0.4826 | grad 3.1333 | lr 0.0010 | time_forward 4.3420 | time_backward 5.8080
[2023-09-01 17:53:52,121::train::INFO] [train] Iter 00750 | loss 2.7784 | loss(rot) 2.4526 | loss(pos) 0.1807 | loss(seq) 0.1451 | grad 2.8926 | lr 0.0010 | time_forward 3.5860 | time_backward 4.6620
[2023-09-01 17:53:55,161::train::INFO] [train] Iter 00751 | loss 3.7614 | loss(rot) 2.7726 | loss(pos) 0.5527 | loss(seq) 0.4362 | grad 5.8649 | lr 0.0010 | time_forward 1.5230 | time_backward 1.4970
[2023-09-01 17:54:05,503::train::INFO] [train] Iter 00752 | loss 3.2054 | loss(rot) 2.3735 | loss(pos) 0.4124 | loss(seq) 0.4195 | grad 3.4443 | lr 0.0010 | time_forward 4.4110 | time_backward 5.9280
[2023-09-01 17:54:08,258::train::INFO] [train] Iter 00753 | loss 2.5829 | loss(rot) 2.2946 | loss(pos) 0.2756 | loss(seq) 0.0126 | grad 3.2627 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4410
[2023-09-01 17:54:16,840::train::INFO] [train] Iter 00754 | loss 2.0360 | loss(rot) 0.9751 | loss(pos) 0.6609 | loss(seq) 0.4000 | grad 3.5703 | lr 0.0010 | time_forward 3.4790 | time_backward 5.0990
[2023-09-01 17:54:19,586::train::INFO] [train] Iter 00755 | loss 3.1262 | loss(rot) 2.7526 | loss(pos) 0.3495 | loss(seq) 0.0240 | grad 3.5812 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4650
[2023-09-01 17:54:22,473::train::INFO] [train] Iter 00756 | loss 3.9316 | loss(rot) 2.2804 | loss(pos) 1.0731 | loss(seq) 0.5782 | grad 3.4307 | lr 0.0010 | time_forward 1.3690 | time_backward 1.5140
[2023-09-01 17:54:31,741::train::INFO] [train] Iter 00757 | loss 1.5562 | loss(rot) 0.7170 | loss(pos) 0.3416 | loss(seq) 0.4975 | grad 3.4416 | lr 0.0010 | time_forward 4.2460 | time_backward 5.0200
[2023-09-01 17:54:38,661::train::INFO] [train] Iter 00758 | loss 3.2523 | loss(rot) 2.7693 | loss(pos) 0.4830 | loss(seq) 0.0000 | grad 5.0571 | lr 0.0010 | time_forward 2.9880 | time_backward 3.9280
[2023-09-01 17:54:47,689::train::INFO] [train] Iter 00759 | loss 2.0922 | loss(rot) 0.7021 | loss(pos) 1.3704 | loss(seq) 0.0198 | grad 4.5305 | lr 0.0010 | time_forward 3.7210 | time_backward 5.3040
[2023-09-01 17:54:57,388::train::INFO] [train] Iter 00760 | loss 3.5173 | loss(rot) 2.4674 | loss(pos) 0.3969 | loss(seq) 0.6530 | grad 3.7020 | lr 0.0010 | time_forward 4.1030 | time_backward 5.5930
[2023-09-01 17:55:07,341::train::INFO] [train] Iter 00761 | loss 2.3734 | loss(rot) 0.1112 | loss(pos) 2.2519 | loss(seq) 0.0103 | grad 4.2178 | lr 0.0010 | time_forward 4.2920 | time_backward 5.6580
[2023-09-01 17:55:16,150::train::INFO] [train] Iter 00762 | loss 1.6815 | loss(rot) 0.5546 | loss(pos) 0.3693 | loss(seq) 0.7576 | grad 2.9107 | lr 0.0010 | time_forward 3.8200 | time_backward 4.9830
[2023-09-01 17:55:25,076::train::INFO] [train] Iter 00763 | loss 1.8731 | loss(rot) 0.2717 | loss(pos) 1.3811 | loss(seq) 0.2203 | grad 2.6133 | lr 0.0010 | time_forward 3.5830 | time_backward 5.3390
[2023-09-01 17:55:33,504::train::INFO] [train] Iter 00764 | loss 1.8146 | loss(rot) 0.6577 | loss(pos) 0.8426 | loss(seq) 0.3143 | grad 3.3547 | lr 0.0010 | time_forward 3.5960 | time_backward 4.8280
[2023-09-01 17:55:40,552::train::INFO] [train] Iter 00765 | loss 2.6471 | loss(rot) 1.8700 | loss(pos) 0.3755 | loss(seq) 0.4016 | grad 5.6206 | lr 0.0010 | time_forward 3.0360 | time_backward 4.0080
[2023-09-01 17:55:50,437::train::INFO] [train] Iter 00766 | loss 3.1276 | loss(rot) 0.0251 | loss(pos) 3.0985 | loss(seq) 0.0040 | grad 4.9588 | lr 0.0010 | time_forward 3.7160 | time_backward 6.1660
[2023-09-01 17:55:53,308::train::INFO] [train] Iter 00767 | loss 2.5800 | loss(rot) 0.0163 | loss(pos) 2.5632 | loss(seq) 0.0004 | grad 5.0194 | lr 0.0010 | time_forward 1.3580 | time_backward 1.4940
[2023-09-01 17:55:55,715::train::INFO] [train] Iter 00768 | loss 2.6727 | loss(rot) 1.0212 | loss(pos) 1.3033 | loss(seq) 0.3483 | grad 6.4533 | lr 0.0010 | time_forward 1.1430 | time_backward 1.2620
[2023-09-01 17:55:59,167::train::INFO] [train] Iter 00769 | loss 3.2887 | loss(rot) 2.1222 | loss(pos) 0.6570 | loss(seq) 0.5095 | grad 2.9733 | lr 0.0010 | time_forward 1.5720 | time_backward 1.8760
[2023-09-01 17:56:08,608::train::INFO] [train] Iter 00770 | loss 3.4599 | loss(rot) 2.8786 | loss(pos) 0.3400 | loss(seq) 0.2414 | grad 3.3862 | lr 0.0010 | time_forward 4.0450 | time_backward 5.3920
[2023-09-01 17:56:16,206::train::INFO] [train] Iter 00771 | loss 3.0843 | loss(rot) 2.8726 | loss(pos) 0.2003 | loss(seq) 0.0114 | grad 2.7984 | lr 0.0010 | time_forward 3.2550 | time_backward 4.3290
[2023-09-01 17:56:24,135::train::INFO] [train] Iter 00772 | loss 1.9434 | loss(rot) 0.5896 | loss(pos) 1.0438 | loss(seq) 0.3100 | grad 3.6687 | lr 0.0010 | time_forward 3.5100 | time_backward 4.4150
[2023-09-01 17:56:32,179::train::INFO] [train] Iter 00773 | loss 2.7726 | loss(rot) 2.2850 | loss(pos) 0.1861 | loss(seq) 0.3014 | grad 2.7145 | lr 0.0010 | time_forward 3.3780 | time_backward 4.6620
[2023-09-01 17:56:34,788::train::INFO] [train] Iter 00774 | loss 2.5387 | loss(rot) 1.5343 | loss(pos) 0.4707 | loss(seq) 0.5336 | grad 3.9189 | lr 0.0010 | time_forward 1.2770 | time_backward 1.3280
[2023-09-01 17:56:44,651::train::INFO] [train] Iter 00775 | loss 2.0811 | loss(rot) 0.6273 | loss(pos) 1.4082 | loss(seq) 0.0456 | grad 4.0919 | lr 0.0010 | time_forward 4.0890 | time_backward 5.7330
[2023-09-01 17:56:54,539::train::INFO] [train] Iter 00776 | loss 3.1861 | loss(rot) 2.5588 | loss(pos) 0.2395 | loss(seq) 0.3879 | grad 2.5861 | lr 0.0010 | time_forward 4.1080 | time_backward 5.7630
[2023-09-01 17:56:57,327::train::INFO] [train] Iter 00777 | loss 3.5848 | loss(rot) 3.1673 | loss(pos) 0.4105 | loss(seq) 0.0070 | grad 6.4660 | lr 0.0010 | time_forward 1.3240 | time_backward 1.4600
[2023-09-01 17:57:06,003::train::INFO] [train] Iter 00778 | loss 3.3124 | loss(rot) 2.0990 | loss(pos) 0.6321 | loss(seq) 0.5812 | grad 5.0043 | lr 0.0010 | time_forward 3.7330 | time_backward 4.9400
[2023-09-01 17:57:14,871::train::INFO] [train] Iter 00779 | loss 2.8200 | loss(rot) 1.8825 | loss(pos) 0.4357 | loss(seq) 0.5018 | grad 5.6414 | lr 0.0010 | time_forward 3.7560 | time_backward 5.1080
[2023-09-01 17:57:23,470::train::INFO] [train] Iter 00780 | loss 3.1271 | loss(rot) 2.5491 | loss(pos) 0.4754 | loss(seq) 0.1026 | grad 4.2866 | lr 0.0010 | time_forward 3.6200 | time_backward 4.9750
[2023-09-01 17:57:32,699::train::INFO] [train] Iter 00781 | loss 3.3076 | loss(rot) 2.8741 | loss(pos) 0.2683 | loss(seq) 0.1652 | grad 3.7138 | lr 0.0010 | time_forward 3.8950 | time_backward 5.3310
[2023-09-01 17:57:36,234::train::INFO] [train] Iter 00782 | loss 1.7174 | loss(rot) 0.5987 | loss(pos) 1.0292 | loss(seq) 0.0895 | grad 5.4528 | lr 0.0010 | time_forward 1.5500 | time_backward 1.9820
[2023-09-01 17:57:45,902::train::INFO] [train] Iter 00783 | loss 3.6647 | loss(rot) 2.8131 | loss(pos) 0.4580 | loss(seq) 0.3936 | grad 3.5633 | lr 0.0010 | time_forward 3.6350 | time_backward 6.0290
[2023-09-01 17:57:53,677::train::INFO] [train] Iter 00784 | loss 2.6816 | loss(rot) 2.2848 | loss(pos) 0.2297 | loss(seq) 0.1671 | grad 4.3220 | lr 0.0010 | time_forward 3.0020 | time_backward 4.7710
[2023-09-01 17:58:02,354::train::INFO] [train] Iter 00785 | loss 2.7918 | loss(rot) 2.5889 | loss(pos) 0.1897 | loss(seq) 0.0133 | grad 3.0331 | lr 0.0010 | time_forward 3.6070 | time_backward 5.0660
[2023-09-01 17:58:12,426::train::INFO] [train] Iter 00786 | loss 3.6154 | loss(rot) 3.0812 | loss(pos) 0.4112 | loss(seq) 0.1230 | grad 3.7815 | lr 0.0010 | time_forward 4.0430 | time_backward 6.0260
[2023-09-01 17:58:15,245::train::INFO] [train] Iter 00787 | loss 3.7273 | loss(rot) 3.0989 | loss(pos) 0.3739 | loss(seq) 0.2544 | grad 3.3500 | lr 0.0010 | time_forward 1.3650 | time_backward 1.4510
[2023-09-01 17:58:18,004::train::INFO] [train] Iter 00788 | loss 2.5399 | loss(rot) 2.2650 | loss(pos) 0.2242 | loss(seq) 0.0506 | grad 4.0675 | lr 0.0010 | time_forward 1.3490 | time_backward 1.4070
[2023-09-01 17:58:25,726::train::INFO] [train] Iter 00789 | loss 1.2855 | loss(rot) 0.1054 | loss(pos) 1.1691 | loss(seq) 0.0110 | grad 4.3311 | lr 0.0010 | time_forward 3.3310 | time_backward 4.3870
[2023-09-01 17:58:34,741::train::INFO] [train] Iter 00790 | loss 2.0005 | loss(rot) 0.5318 | loss(pos) 1.1562 | loss(seq) 0.3125 | grad 4.6731 | lr 0.0010 | time_forward 3.9240 | time_backward 5.0890
[2023-09-01 17:58:38,238::train::INFO] [train] Iter 00791 | loss 2.2940 | loss(rot) 1.3709 | loss(pos) 0.4900 | loss(seq) 0.4330 | grad 2.9148 | lr 0.0010 | time_forward 1.5580 | time_backward 1.9350
[2023-09-01 17:58:47,048::train::INFO] [train] Iter 00792 | loss 2.8324 | loss(rot) 2.1948 | loss(pos) 0.2402 | loss(seq) 0.3973 | grad 3.3853 | lr 0.0010 | time_forward 3.8640 | time_backward 4.9420
[2023-09-01 17:58:56,733::train::INFO] [train] Iter 00793 | loss 1.7266 | loss(rot) 0.2631 | loss(pos) 1.1941 | loss(seq) 0.2694 | grad 3.8620 | lr 0.0010 | time_forward 4.0900 | time_backward 5.5930
[2023-09-01 17:59:05,859::train::INFO] [train] Iter 00794 | loss 3.0405 | loss(rot) 2.6543 | loss(pos) 0.3851 | loss(seq) 0.0011 | grad 5.0642 | lr 0.0010 | time_forward 3.6490 | time_backward 5.4730