text
stringlengths 56
1.16k
|
---|
[2023-10-25 13:23:24,583::train::INFO] [train] Iter 596266 | loss 0.4060 | loss(rot) 0.0359 | loss(pos) 0.0404 | loss(seq) 0.3297 | grad 2.2253 | lr 0.0000 | time_forward 1.3640 | time_backward 1.5520 |
[2023-10-25 13:23:32,939::train::INFO] [train] Iter 596267 | loss 0.1761 | loss(rot) 0.1501 | loss(pos) 0.0233 | loss(seq) 0.0027 | grad 3.1111 | lr 0.0000 | time_forward 3.5010 | time_backward 4.8530 |
[2023-10-25 13:23:41,542::train::INFO] [train] Iter 596268 | loss 0.6199 | loss(rot) 0.2710 | loss(pos) 0.0463 | loss(seq) 0.3027 | grad 4.1893 | lr 0.0000 | time_forward 3.3920 | time_backward 5.2070 |
[2023-10-25 13:23:51,859::train::INFO] [train] Iter 596269 | loss 0.7337 | loss(rot) 0.3287 | loss(pos) 0.2830 | loss(seq) 0.1220 | grad 2.6680 | lr 0.0000 | time_forward 4.3930 | time_backward 5.9210 |
[2023-10-25 13:24:01,979::train::INFO] [train] Iter 596270 | loss 0.6254 | loss(rot) 0.4124 | loss(pos) 0.1204 | loss(seq) 0.0927 | grad 2.6128 | lr 0.0000 | time_forward 4.0330 | time_backward 6.0840 |
[2023-10-25 13:24:11,335::train::INFO] [train] Iter 596271 | loss 0.3355 | loss(rot) 0.2921 | loss(pos) 0.0171 | loss(seq) 0.0263 | grad 14.7947 | lr 0.0000 | time_forward 4.0220 | time_backward 5.3300 |
[2023-10-25 13:24:20,279::train::INFO] [train] Iter 596272 | loss 1.6023 | loss(rot) 1.5598 | loss(pos) 0.0212 | loss(seq) 0.0213 | grad 2.9571 | lr 0.0000 | time_forward 3.6690 | time_backward 5.2720 |
[2023-10-25 13:24:23,212::train::INFO] [train] Iter 596273 | loss 0.2079 | loss(rot) 0.1473 | loss(pos) 0.0392 | loss(seq) 0.0214 | grad 2.3780 | lr 0.0000 | time_forward 1.4110 | time_backward 1.5180 |
[2023-10-25 13:24:31,691::train::INFO] [train] Iter 596274 | loss 0.3587 | loss(rot) 0.1509 | loss(pos) 0.0645 | loss(seq) 0.1433 | grad 3.2650 | lr 0.0000 | time_forward 3.4800 | time_backward 4.9960 |
[2023-10-25 13:24:41,405::train::INFO] [train] Iter 596275 | loss 0.4393 | loss(rot) 0.1808 | loss(pos) 0.1033 | loss(seq) 0.1552 | grad 4.7998 | lr 0.0000 | time_forward 3.9760 | time_backward 5.7330 |
[2023-10-25 13:24:44,378::train::INFO] [train] Iter 596276 | loss 1.4760 | loss(rot) 0.7718 | loss(pos) 0.1673 | loss(seq) 0.5369 | grad 3.0856 | lr 0.0000 | time_forward 1.5060 | time_backward 1.4600 |
[2023-10-25 13:24:54,187::train::INFO] [train] Iter 596277 | loss 0.6497 | loss(rot) 0.1175 | loss(pos) 0.0693 | loss(seq) 0.4628 | grad 3.0327 | lr 0.0000 | time_forward 3.8860 | time_backward 5.8780 |
[2023-10-25 13:24:57,740::train::INFO] [train] Iter 596278 | loss 0.5621 | loss(rot) 0.0936 | loss(pos) 0.0503 | loss(seq) 0.4183 | grad 2.9113 | lr 0.0000 | time_forward 1.7380 | time_backward 1.8100 |
[2023-10-25 13:25:06,906::train::INFO] [train] Iter 596279 | loss 0.4374 | loss(rot) 0.1950 | loss(pos) 0.0269 | loss(seq) 0.2156 | grad 2.0808 | lr 0.0000 | time_forward 4.1690 | time_backward 4.9910 |
[2023-10-25 13:25:15,494::train::INFO] [train] Iter 596280 | loss 0.5211 | loss(rot) 0.1134 | loss(pos) 0.0779 | loss(seq) 0.3297 | grad 2.9254 | lr 0.0000 | time_forward 3.6680 | time_backward 4.9170 |
[2023-10-25 13:25:23,419::train::INFO] [train] Iter 596281 | loss 1.1327 | loss(rot) 0.0071 | loss(pos) 1.1253 | loss(seq) 0.0003 | grad 9.7016 | lr 0.0000 | time_forward 3.3670 | time_backward 4.5550 |
[2023-10-25 13:25:33,605::train::INFO] [train] Iter 596282 | loss 1.2044 | loss(rot) 0.0689 | loss(pos) 1.1325 | loss(seq) 0.0030 | grad 6.1826 | lr 0.0000 | time_forward 4.2270 | time_backward 5.9560 |
[2023-10-25 13:25:42,903::train::INFO] [train] Iter 596283 | loss 0.8011 | loss(rot) 0.0167 | loss(pos) 0.7829 | loss(seq) 0.0014 | grad 10.5500 | lr 0.0000 | time_forward 3.8020 | time_backward 5.4930 |
[2023-10-25 13:25:45,219::train::INFO] [train] Iter 596284 | loss 0.5171 | loss(rot) 0.2248 | loss(pos) 0.0475 | loss(seq) 0.2448 | grad 3.4017 | lr 0.0000 | time_forward 1.0650 | time_backward 1.2490 |
[2023-10-25 13:25:48,626::train::INFO] [train] Iter 596285 | loss 0.9237 | loss(rot) 0.0732 | loss(pos) 0.8462 | loss(seq) 0.0044 | grad 7.3612 | lr 0.0000 | time_forward 1.5220 | time_backward 1.8790 |
[2023-10-25 13:25:56,917::train::INFO] [train] Iter 596286 | loss 0.8109 | loss(rot) 0.1284 | loss(pos) 0.1028 | loss(seq) 0.5798 | grad 3.5349 | lr 0.0000 | time_forward 3.5210 | time_backward 4.7680 |
[2023-10-25 13:26:04,320::train::INFO] [train] Iter 596287 | loss 1.1659 | loss(rot) 0.8077 | loss(pos) 0.0201 | loss(seq) 0.3381 | grad 5.1366 | lr 0.0000 | time_forward 3.1140 | time_backward 4.2850 |
[2023-10-25 13:26:07,012::train::INFO] [train] Iter 596288 | loss 0.3853 | loss(rot) 0.1766 | loss(pos) 0.0410 | loss(seq) 0.1676 | grad 2.6197 | lr 0.0000 | time_forward 1.2330 | time_backward 1.4550 |
[2023-10-25 13:26:09,818::train::INFO] [train] Iter 596289 | loss 0.2969 | loss(rot) 0.0647 | loss(pos) 0.1499 | loss(seq) 0.0823 | grad 6.5542 | lr 0.0000 | time_forward 1.3370 | time_backward 1.4670 |
[2023-10-25 13:26:19,826::train::INFO] [train] Iter 596290 | loss 0.3067 | loss(rot) 0.2296 | loss(pos) 0.0306 | loss(seq) 0.0464 | grad 2.1921 | lr 0.0000 | time_forward 4.0620 | time_backward 5.9430 |
[2023-10-25 13:26:29,867::train::INFO] [train] Iter 596291 | loss 0.2597 | loss(rot) 0.2120 | loss(pos) 0.0472 | loss(seq) 0.0005 | grad 25.4624 | lr 0.0000 | time_forward 4.0430 | time_backward 5.9940 |
[2023-10-25 13:26:37,881::train::INFO] [train] Iter 596292 | loss 1.5365 | loss(rot) 0.8625 | loss(pos) 0.1482 | loss(seq) 0.5259 | grad 4.1169 | lr 0.0000 | time_forward 3.4200 | time_backward 4.5920 |
[2023-10-25 13:26:40,133::train::INFO] [train] Iter 596293 | loss 0.7947 | loss(rot) 0.2943 | loss(pos) 0.1219 | loss(seq) 0.3785 | grad 3.7009 | lr 0.0000 | time_forward 1.0360 | time_backward 1.2120 |
[2023-10-25 13:26:42,854::train::INFO] [train] Iter 596294 | loss 0.4973 | loss(rot) 0.3146 | loss(pos) 0.0424 | loss(seq) 0.1403 | grad 2.5940 | lr 0.0000 | time_forward 1.2890 | time_backward 1.4290 |
[2023-10-25 13:26:51,986::train::INFO] [train] Iter 596295 | loss 0.5335 | loss(rot) 0.2983 | loss(pos) 0.2216 | loss(seq) 0.0136 | grad 3.7686 | lr 0.0000 | time_forward 3.9130 | time_backward 5.2160 |
[2023-10-25 13:26:54,786::train::INFO] [train] Iter 596296 | loss 0.1772 | loss(rot) 0.1106 | loss(pos) 0.0309 | loss(seq) 0.0356 | grad 2.3321 | lr 0.0000 | time_forward 1.2530 | time_backward 1.5440 |
[2023-10-25 13:27:04,845::train::INFO] [train] Iter 596297 | loss 0.5131 | loss(rot) 0.0705 | loss(pos) 0.1223 | loss(seq) 0.3203 | grad 4.3483 | lr 0.0000 | time_forward 4.2020 | time_backward 5.8540 |
[2023-10-25 13:27:12,850::train::INFO] [train] Iter 596298 | loss 1.9379 | loss(rot) 1.8995 | loss(pos) 0.0358 | loss(seq) 0.0026 | grad 3.2730 | lr 0.0000 | time_forward 3.3390 | time_backward 4.6620 |
[2023-10-25 13:27:21,217::train::INFO] [train] Iter 596299 | loss 2.7342 | loss(rot) 2.6786 | loss(pos) 0.0556 | loss(seq) 0.0000 | grad 14.1110 | lr 0.0000 | time_forward 3.5360 | time_backward 4.8290 |
[2023-10-25 13:27:23,497::train::INFO] [train] Iter 596300 | loss 0.6613 | loss(rot) 0.4826 | loss(pos) 0.0176 | loss(seq) 0.1611 | grad 1.6546 | lr 0.0000 | time_forward 1.0490 | time_backward 1.2270 |
[2023-10-25 13:27:33,306::train::INFO] [train] Iter 596301 | loss 0.9637 | loss(rot) 0.7859 | loss(pos) 0.0243 | loss(seq) 0.1535 | grad 5.3050 | lr 0.0000 | time_forward 3.9920 | time_backward 5.8130 |
[2023-10-25 13:27:43,274::train::INFO] [train] Iter 596302 | loss 0.6593 | loss(rot) 0.2184 | loss(pos) 0.0922 | loss(seq) 0.3487 | grad 2.6893 | lr 0.0000 | time_forward 4.1010 | time_backward 5.8650 |
[2023-10-25 13:27:49,878::train::INFO] [train] Iter 596303 | loss 0.3399 | loss(rot) 0.1154 | loss(pos) 0.2094 | loss(seq) 0.0152 | grad 3.1148 | lr 0.0000 | time_forward 2.8220 | time_backward 3.7800 |
[2023-10-25 13:27:57,450::train::INFO] [train] Iter 596304 | loss 2.2855 | loss(rot) 2.0740 | loss(pos) 0.0647 | loss(seq) 0.1469 | grad 6.6553 | lr 0.0000 | time_forward 3.1510 | time_backward 4.4170 |
[2023-10-25 13:28:07,423::train::INFO] [train] Iter 596305 | loss 1.1697 | loss(rot) 0.6893 | loss(pos) 0.2155 | loss(seq) 0.2649 | grad 2.9782 | lr 0.0000 | time_forward 4.1740 | time_backward 5.7950 |
[2023-10-25 13:28:17,186::train::INFO] [train] Iter 596306 | loss 0.7902 | loss(rot) 0.4247 | loss(pos) 0.1189 | loss(seq) 0.2466 | grad 3.2537 | lr 0.0000 | time_forward 3.9610 | time_backward 5.7980 |
[2023-10-25 13:28:25,597::train::INFO] [train] Iter 596307 | loss 0.6391 | loss(rot) 0.1045 | loss(pos) 0.1445 | loss(seq) 0.3901 | grad 3.9695 | lr 0.0000 | time_forward 3.5240 | time_backward 4.8840 |
[2023-10-25 13:28:34,322::train::INFO] [train] Iter 596308 | loss 0.6735 | loss(rot) 0.4367 | loss(pos) 0.0381 | loss(seq) 0.1987 | grad 22.7778 | lr 0.0000 | time_forward 3.6980 | time_backward 5.0250 |
[2023-10-25 13:28:43,393::train::INFO] [train] Iter 596309 | loss 1.4151 | loss(rot) 1.1643 | loss(pos) 0.0656 | loss(seq) 0.1852 | grad 3.5425 | lr 0.0000 | time_forward 3.8050 | time_backward 5.2620 |
[2023-10-25 13:28:46,183::train::INFO] [train] Iter 596310 | loss 0.8599 | loss(rot) 0.5672 | loss(pos) 0.0361 | loss(seq) 0.2566 | grad 5.2380 | lr 0.0000 | time_forward 1.2930 | time_backward 1.4940 |
[2023-10-25 13:28:56,103::train::INFO] [train] Iter 596311 | loss 0.6218 | loss(rot) 0.2441 | loss(pos) 0.0734 | loss(seq) 0.3043 | grad 2.3228 | lr 0.0000 | time_forward 4.0400 | time_backward 5.8770 |
[2023-10-25 13:29:05,988::train::INFO] [train] Iter 596312 | loss 1.6123 | loss(rot) 0.4646 | loss(pos) 1.1413 | loss(seq) 0.0064 | grad 7.9380 | lr 0.0000 | time_forward 4.1950 | time_backward 5.6870 |
[2023-10-25 13:29:09,212::train::INFO] [train] Iter 596313 | loss 0.6991 | loss(rot) 0.2454 | loss(pos) 0.2008 | loss(seq) 0.2528 | grad 2.7317 | lr 0.0000 | time_forward 1.4690 | time_backward 1.7520 |
[2023-10-25 13:29:12,091::train::INFO] [train] Iter 596314 | loss 0.5432 | loss(rot) 0.1961 | loss(pos) 0.0614 | loss(seq) 0.2857 | grad 3.8451 | lr 0.0000 | time_forward 1.3900 | time_backward 1.4750 |
[2023-10-25 13:29:21,222::train::INFO] [train] Iter 596315 | loss 0.2857 | loss(rot) 0.2156 | loss(pos) 0.0702 | loss(seq) 0.0000 | grad 3.8330 | lr 0.0000 | time_forward 3.9190 | time_backward 5.2080 |
[2023-10-25 13:29:31,246::train::INFO] [train] Iter 596316 | loss 0.5442 | loss(rot) 0.2288 | loss(pos) 0.0510 | loss(seq) 0.2645 | grad 2.4423 | lr 0.0000 | time_forward 4.0320 | time_backward 5.9900 |
[2023-10-25 13:29:42,162::train::INFO] [train] Iter 596317 | loss 2.0230 | loss(rot) 1.9882 | loss(pos) 0.0319 | loss(seq) 0.0029 | grad 15.1720 | lr 0.0000 | time_forward 4.6510 | time_backward 6.2620 |
[2023-10-25 13:29:44,949::train::INFO] [train] Iter 596318 | loss 1.6484 | loss(rot) 0.0035 | loss(pos) 1.6446 | loss(seq) 0.0002 | grad 9.5040 | lr 0.0000 | time_forward 1.3270 | time_backward 1.4560 |
[2023-10-25 13:29:54,228::train::INFO] [train] Iter 596319 | loss 0.5245 | loss(rot) 0.4369 | loss(pos) 0.0296 | loss(seq) 0.0580 | grad 35.7614 | lr 0.0000 | time_forward 3.9310 | time_backward 5.3440 |
[2023-10-25 13:30:02,627::train::INFO] [train] Iter 596320 | loss 0.6722 | loss(rot) 0.2187 | loss(pos) 0.0364 | loss(seq) 0.4171 | grad 4.2432 | lr 0.0000 | time_forward 3.5340 | time_backward 4.8630 |
[2023-10-25 13:30:11,223::train::INFO] [train] Iter 596321 | loss 0.1579 | loss(rot) 0.0946 | loss(pos) 0.0233 | loss(seq) 0.0400 | grad 1.8407 | lr 0.0000 | time_forward 3.6400 | time_backward 4.9530 |
[2023-10-25 13:30:21,201::train::INFO] [train] Iter 596322 | loss 0.8438 | loss(rot) 0.8125 | loss(pos) 0.0214 | loss(seq) 0.0099 | grad 40.5017 | lr 0.0000 | time_forward 4.2860 | time_backward 5.6880 |
[2023-10-25 13:30:28,672::train::INFO] [train] Iter 596323 | loss 0.4349 | loss(rot) 0.1331 | loss(pos) 0.0308 | loss(seq) 0.2709 | grad 3.5446 | lr 0.0000 | time_forward 3.1530 | time_backward 4.3160 |
[2023-10-25 13:30:31,404::train::INFO] [train] Iter 596324 | loss 1.5822 | loss(rot) 0.9098 | loss(pos) 0.2145 | loss(seq) 0.4579 | grad 5.5566 | lr 0.0000 | time_forward 1.3110 | time_backward 1.4180 |
[2023-10-25 13:30:39,371::train::INFO] [train] Iter 596325 | loss 0.2381 | loss(rot) 0.1960 | loss(pos) 0.0420 | loss(seq) 0.0000 | grad 2.2225 | lr 0.0000 | time_forward 3.3990 | time_backward 4.5640 |
[2023-10-25 13:30:48,398::train::INFO] [train] Iter 596326 | loss 0.1852 | loss(rot) 0.0195 | loss(pos) 0.1638 | loss(seq) 0.0018 | grad 2.9319 | lr 0.0000 | time_forward 3.8330 | time_backward 5.1910 |
[2023-10-25 13:30:58,241::train::INFO] [train] Iter 596327 | loss 1.3914 | loss(rot) 1.3026 | loss(pos) 0.0527 | loss(seq) 0.0361 | grad 2.9475 | lr 0.0000 | time_forward 4.1690 | time_backward 5.6700 |
[2023-10-25 13:31:07,979::train::INFO] [train] Iter 596328 | loss 0.6623 | loss(rot) 0.1231 | loss(pos) 0.4857 | loss(seq) 0.0534 | grad 3.7145 | lr 0.0000 | time_forward 3.9760 | time_backward 5.7580 |
[2023-10-25 13:31:17,810::train::INFO] [train] Iter 596329 | loss 1.5177 | loss(rot) 0.9616 | loss(pos) 0.1525 | loss(seq) 0.4037 | grad 4.0192 | lr 0.0000 | time_forward 4.1530 | time_backward 5.6760 |
[2023-10-25 13:31:26,569::train::INFO] [train] Iter 596330 | loss 0.8161 | loss(rot) 0.7109 | loss(pos) 0.0306 | loss(seq) 0.0746 | grad 6.8673 | lr 0.0000 | time_forward 3.6400 | time_backward 5.1160 |
[2023-10-25 13:31:34,089::train::INFO] [train] Iter 596331 | loss 0.2779 | loss(rot) 0.2511 | loss(pos) 0.0243 | loss(seq) 0.0025 | grad 2.7358 | lr 0.0000 | time_forward 3.1810 | time_backward 4.3350 |
[2023-10-25 13:31:44,028::train::INFO] [train] Iter 596332 | loss 0.2778 | loss(rot) 0.2053 | loss(pos) 0.0189 | loss(seq) 0.0536 | grad 2.9556 | lr 0.0000 | time_forward 4.0400 | time_backward 5.8960 |
[2023-10-25 13:31:52,449::train::INFO] [train] Iter 596333 | loss 0.3233 | loss(rot) 0.1153 | loss(pos) 0.0095 | loss(seq) 0.1986 | grad 2.5131 | lr 0.0000 | time_forward 3.6450 | time_backward 4.7730 |
[2023-10-25 13:32:01,465::train::INFO] [train] Iter 596334 | loss 0.4232 | loss(rot) 0.1277 | loss(pos) 0.0194 | loss(seq) 0.2761 | grad 2.6575 | lr 0.0000 | time_forward 3.8250 | time_backward 5.1870 |
[2023-10-25 13:32:04,210::train::INFO] [train] Iter 596335 | loss 2.3563 | loss(rot) 0.0387 | loss(pos) 2.3176 | loss(seq) 0.0000 | grad 18.8916 | lr 0.0000 | time_forward 1.2630 | time_backward 1.4790 |
[2023-10-25 13:32:06,662::train::INFO] [train] Iter 596336 | loss 0.4125 | loss(rot) 0.2143 | loss(pos) 0.0391 | loss(seq) 0.1591 | grad 4.9750 | lr 0.0000 | time_forward 1.1270 | time_backward 1.3200 |
[2023-10-25 13:32:16,081::train::INFO] [train] Iter 596337 | loss 0.1286 | loss(rot) 0.0850 | loss(pos) 0.0431 | loss(seq) 0.0005 | grad 1.8432 | lr 0.0000 | time_forward 3.8860 | time_backward 5.5280 |
[2023-10-25 13:32:26,968::train::INFO] [train] Iter 596338 | loss 0.9876 | loss(rot) 0.0115 | loss(pos) 0.9757 | loss(seq) 0.0004 | grad 17.5942 | lr 0.0000 | time_forward 4.4410 | time_backward 6.4420 |
[2023-10-25 13:32:29,760::train::INFO] [train] Iter 596339 | loss 1.3282 | loss(rot) 0.8197 | loss(pos) 0.0920 | loss(seq) 0.4165 | grad 2.3583 | lr 0.0000 | time_forward 1.3110 | time_backward 1.4780 |
[2023-10-25 13:32:38,053::train::INFO] [train] Iter 596340 | loss 0.9367 | loss(rot) 0.5555 | loss(pos) 0.0658 | loss(seq) 0.3154 | grad 4.4565 | lr 0.0000 | time_forward 3.4970 | time_backward 4.7930 |
[2023-10-25 13:32:48,311::train::INFO] [train] Iter 596341 | loss 0.3544 | loss(rot) 0.2184 | loss(pos) 0.0171 | loss(seq) 0.1189 | grad 2.5764 | lr 0.0000 | time_forward 4.1050 | time_backward 6.1490 |
[2023-10-25 13:32:56,784::train::INFO] [train] Iter 596342 | loss 0.6355 | loss(rot) 0.3034 | loss(pos) 0.0253 | loss(seq) 0.3068 | grad 2.6599 | lr 0.0000 | time_forward 3.5860 | time_backward 4.8850 |
[2023-10-25 13:32:59,640::train::INFO] [train] Iter 596343 | loss 0.4282 | loss(rot) 0.2962 | loss(pos) 0.0847 | loss(seq) 0.0473 | grad 13.8356 | lr 0.0000 | time_forward 1.3630 | time_backward 1.4900 |
[2023-10-25 13:33:05,866::train::INFO] [train] Iter 596344 | loss 0.2382 | loss(rot) 0.2103 | loss(pos) 0.0245 | loss(seq) 0.0034 | grad 4.2967 | lr 0.0000 | time_forward 2.7290 | time_backward 3.4930 |
[2023-10-25 13:33:14,974::train::INFO] [train] Iter 596345 | loss 0.9480 | loss(rot) 0.2984 | loss(pos) 0.2732 | loss(seq) 0.3764 | grad 3.3872 | lr 0.0000 | time_forward 3.8790 | time_backward 5.2140 |
[2023-10-25 13:33:17,738::train::INFO] [train] Iter 596346 | loss 0.6604 | loss(rot) 0.1326 | loss(pos) 0.3192 | loss(seq) 0.2086 | grad 5.7604 | lr 0.0000 | time_forward 1.3460 | time_backward 1.4160 |
[2023-10-25 13:33:26,315::train::INFO] [train] Iter 596347 | loss 0.4517 | loss(rot) 0.3220 | loss(pos) 0.0234 | loss(seq) 0.1063 | grad 3.6807 | lr 0.0000 | time_forward 3.6460 | time_backward 4.9080 |
[2023-10-25 13:33:37,145::train::INFO] [train] Iter 596348 | loss 2.3564 | loss(rot) 2.0131 | loss(pos) 0.1446 | loss(seq) 0.1986 | grad 5.7066 | lr 0.0000 | time_forward 4.4630 | time_backward 6.3640 |
[2023-10-25 13:33:40,223::train::INFO] [train] Iter 596349 | loss 0.4273 | loss(rot) 0.1351 | loss(pos) 0.1029 | loss(seq) 0.1892 | grad 3.8860 | lr 0.0000 | time_forward 1.3250 | time_backward 1.7490 |
[2023-10-25 13:33:49,101::train::INFO] [train] Iter 596350 | loss 0.3795 | loss(rot) 0.1126 | loss(pos) 0.0268 | loss(seq) 0.2400 | grad 2.2847 | lr 0.0000 | time_forward 3.6870 | time_backward 5.1850 |
[2023-10-25 13:33:57,590::train::INFO] [train] Iter 596351 | loss 0.9199 | loss(rot) 0.3816 | loss(pos) 0.1458 | loss(seq) 0.3925 | grad 6.7061 | lr 0.0000 | time_forward 3.6600 | time_backward 4.8260 |
[2023-10-25 13:34:06,355::train::INFO] [train] Iter 596352 | loss 0.1882 | loss(rot) 0.1534 | loss(pos) 0.0341 | loss(seq) 0.0007 | grad 1.9218 | lr 0.0000 | time_forward 3.6740 | time_backward 5.0870 |
[2023-10-25 13:34:15,095::train::INFO] [train] Iter 596353 | loss 0.4060 | loss(rot) 0.1584 | loss(pos) 0.0420 | loss(seq) 0.2057 | grad 2.7243 | lr 0.0000 | time_forward 3.6940 | time_backward 5.0430 |
[2023-10-25 13:34:22,320::train::INFO] [train] Iter 596354 | loss 1.4317 | loss(rot) 0.1227 | loss(pos) 0.4980 | loss(seq) 0.8110 | grad 11.7058 | lr 0.0000 | time_forward 3.0500 | time_backward 4.1710 |
[2023-10-25 13:34:32,244::train::INFO] [train] Iter 596355 | loss 0.7084 | loss(rot) 0.3907 | loss(pos) 0.0329 | loss(seq) 0.2847 | grad 3.3976 | lr 0.0000 | time_forward 3.9420 | time_backward 5.9780 |
[2023-10-25 13:34:41,640::train::INFO] [train] Iter 596356 | loss 2.1350 | loss(rot) 1.3919 | loss(pos) 0.4080 | loss(seq) 0.3350 | grad 5.1384 | lr 0.0000 | time_forward 4.1700 | time_backward 5.2230 |
[2023-10-25 13:34:49,650::train::INFO] [train] Iter 596357 | loss 0.4961 | loss(rot) 0.1990 | loss(pos) 0.0317 | loss(seq) 0.2654 | grad 2.9925 | lr 0.0000 | time_forward 3.4330 | time_backward 4.5730 |
[2023-10-25 13:34:52,438::train::INFO] [train] Iter 596358 | loss 0.3978 | loss(rot) 0.0724 | loss(pos) 0.0549 | loss(seq) 0.2704 | grad 2.1679 | lr 0.0000 | time_forward 1.3190 | time_backward 1.4660 |
[2023-10-25 13:35:02,815::train::INFO] [train] Iter 596359 | loss 0.2590 | loss(rot) 0.0650 | loss(pos) 0.1769 | loss(seq) 0.0171 | grad 6.0243 | lr 0.0000 | time_forward 4.1600 | time_backward 6.1940 |
[2023-10-25 13:35:11,208::train::INFO] [train] Iter 596360 | loss 1.3040 | loss(rot) 1.2829 | loss(pos) 0.0201 | loss(seq) 0.0010 | grad 5.8837 | lr 0.0000 | time_forward 3.5840 | time_backward 4.8040 |
[2023-10-25 13:35:20,310::train::INFO] [train] Iter 596361 | loss 0.2630 | loss(rot) 0.2370 | loss(pos) 0.0174 | loss(seq) 0.0086 | grad 12.1623 | lr 0.0000 | time_forward 3.8990 | time_backward 5.2000 |
[2023-10-25 13:35:23,131::train::INFO] [train] Iter 596362 | loss 1.7156 | loss(rot) 1.6331 | loss(pos) 0.0336 | loss(seq) 0.0489 | grad 9.3359 | lr 0.0000 | time_forward 1.3110 | time_backward 1.5070 |
[2023-10-25 13:35:25,993::train::INFO] [train] Iter 596363 | loss 1.5251 | loss(rot) 0.1655 | loss(pos) 1.3560 | loss(seq) 0.0035 | grad 8.8456 | lr 0.0000 | time_forward 1.3720 | time_backward 1.4460 |
[2023-10-25 13:35:33,936::train::INFO] [train] Iter 596364 | loss 2.1078 | loss(rot) 1.9486 | loss(pos) 0.0304 | loss(seq) 0.1289 | grad 4.8266 | lr 0.0000 | time_forward 3.3560 | time_backward 4.5830 |
[2023-10-25 13:35:44,473::train::INFO] [train] Iter 596365 | loss 2.1532 | loss(rot) 1.8391 | loss(pos) 0.1421 | loss(seq) 0.1720 | grad 7.4323 | lr 0.0000 | time_forward 4.3310 | time_backward 6.2020 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.