text
stringlengths 56
1.16k
|
---|
[2023-10-25 13:48:32,335::train::INFO] [train] Iter 596466 | loss 0.6662 | loss(rot) 0.2674 | loss(pos) 0.1627 | loss(seq) 0.2361 | grad 3.9836 | lr 0.0000 | time_forward 4.1590 | time_backward 5.9380 |
[2023-10-25 13:48:41,099::train::INFO] [train] Iter 596467 | loss 1.7153 | loss(rot) 0.0101 | loss(pos) 1.7051 | loss(seq) 0.0001 | grad 20.4059 | lr 0.0000 | time_forward 3.7390 | time_backward 5.0210 |
[2023-10-25 13:48:43,656::train::INFO] [train] Iter 596468 | loss 1.9735 | loss(rot) 1.8086 | loss(pos) 0.0600 | loss(seq) 0.1049 | grad 2.5770 | lr 0.0000 | time_forward 1.2240 | time_backward 1.3300 |
[2023-10-25 13:48:52,369::train::INFO] [train] Iter 596469 | loss 0.1934 | loss(rot) 0.0889 | loss(pos) 0.0122 | loss(seq) 0.0923 | grad 2.9596 | lr 0.0000 | time_forward 3.6930 | time_backward 4.9980 |
[2023-10-25 13:49:00,469::train::INFO] [train] Iter 596470 | loss 0.7512 | loss(rot) 0.5616 | loss(pos) 0.1756 | loss(seq) 0.0140 | grad 5.8000 | lr 0.0000 | time_forward 3.3760 | time_backward 4.7210 |
[2023-10-25 13:49:10,797::train::INFO] [train] Iter 596471 | loss 0.2115 | loss(rot) 0.0549 | loss(pos) 0.1313 | loss(seq) 0.0253 | grad 2.6823 | lr 0.0000 | time_forward 4.2530 | time_backward 6.0710 |
[2023-10-25 13:49:20,981::train::INFO] [train] Iter 596472 | loss 0.2146 | loss(rot) 0.1736 | loss(pos) 0.0277 | loss(seq) 0.0133 | grad 2.0164 | lr 0.0000 | time_forward 4.2590 | time_backward 5.9220 |
[2023-10-25 13:49:30,280::train::INFO] [train] Iter 596473 | loss 0.6357 | loss(rot) 0.0273 | loss(pos) 0.5964 | loss(seq) 0.0120 | grad 8.2684 | lr 0.0000 | time_forward 3.9570 | time_backward 5.3380 |
[2023-10-25 13:49:40,371::train::INFO] [train] Iter 596474 | loss 0.1701 | loss(rot) 0.0298 | loss(pos) 0.1071 | loss(seq) 0.0332 | grad 3.3762 | lr 0.0000 | time_forward 4.1100 | time_backward 5.9790 |
[2023-10-25 13:49:49,122::train::INFO] [train] Iter 596475 | loss 0.3084 | loss(rot) 0.2665 | loss(pos) 0.0302 | loss(seq) 0.0118 | grad 24.1852 | lr 0.0000 | time_forward 3.6960 | time_backward 5.0510 |
[2023-10-25 13:49:57,843::train::INFO] [train] Iter 596476 | loss 0.4337 | loss(rot) 0.1938 | loss(pos) 0.1146 | loss(seq) 0.1253 | grad 3.1808 | lr 0.0000 | time_forward 3.6800 | time_backward 5.0380 |
[2023-10-25 13:50:07,861::train::INFO] [train] Iter 596477 | loss 0.9973 | loss(rot) 0.9441 | loss(pos) 0.0531 | loss(seq) 0.0001 | grad 3.3476 | lr 0.0000 | time_forward 4.2450 | time_backward 5.7700 |
[2023-10-25 13:50:16,527::train::INFO] [train] Iter 596478 | loss 0.6264 | loss(rot) 0.1382 | loss(pos) 0.1249 | loss(seq) 0.3633 | grad 4.0739 | lr 0.0000 | time_forward 3.6550 | time_backward 5.0070 |
[2023-10-25 13:50:23,135::train::INFO] [train] Iter 596479 | loss 0.5040 | loss(rot) 0.0510 | loss(pos) 0.4274 | loss(seq) 0.0255 | grad 6.0241 | lr 0.0000 | time_forward 2.8360 | time_backward 3.7700 |
[2023-10-25 13:50:25,893::train::INFO] [train] Iter 596480 | loss 0.9122 | loss(rot) 0.8769 | loss(pos) 0.0322 | loss(seq) 0.0030 | grad 2.7115 | lr 0.0000 | time_forward 1.3140 | time_backward 1.4400 |
[2023-10-25 13:50:35,974::train::INFO] [train] Iter 596481 | loss 1.4147 | loss(rot) 1.3268 | loss(pos) 0.0394 | loss(seq) 0.0485 | grad 8.2635 | lr 0.0000 | time_forward 4.0500 | time_backward 5.9770 |
[2023-10-25 13:50:42,461::train::INFO] [train] Iter 596482 | loss 0.4220 | loss(rot) 0.0804 | loss(pos) 0.2733 | loss(seq) 0.0683 | grad 6.2156 | lr 0.0000 | time_forward 2.7040 | time_backward 3.7800 |
[2023-10-25 13:50:52,657::train::INFO] [train] Iter 596483 | loss 0.4921 | loss(rot) 0.2138 | loss(pos) 0.1252 | loss(seq) 0.1531 | grad 3.5848 | lr 0.0000 | time_forward 4.1270 | time_backward 6.0520 |
[2023-10-25 13:51:02,866::train::INFO] [train] Iter 596484 | loss 0.2979 | loss(rot) 0.2408 | loss(pos) 0.0472 | loss(seq) 0.0099 | grad 5.5639 | lr 0.0000 | time_forward 4.2630 | time_backward 5.9430 |
[2023-10-25 13:51:12,224::train::INFO] [train] Iter 596485 | loss 0.1284 | loss(rot) 0.0538 | loss(pos) 0.0263 | loss(seq) 0.0482 | grad 1.7772 | lr 0.0000 | time_forward 3.9790 | time_backward 5.3750 |
[2023-10-25 13:51:14,956::train::INFO] [train] Iter 596486 | loss 0.7691 | loss(rot) 0.4058 | loss(pos) 0.0727 | loss(seq) 0.2906 | grad 4.4691 | lr 0.0000 | time_forward 1.2640 | time_backward 1.4640 |
[2023-10-25 13:51:23,402::train::INFO] [train] Iter 596487 | loss 1.1747 | loss(rot) 0.8207 | loss(pos) 0.0426 | loss(seq) 0.3114 | grad 3.8859 | lr 0.0000 | time_forward 3.6200 | time_backward 4.8230 |
[2023-10-25 13:51:26,145::train::INFO] [train] Iter 596488 | loss 0.6368 | loss(rot) 0.3481 | loss(pos) 0.1575 | loss(seq) 0.1311 | grad 4.4091 | lr 0.0000 | time_forward 1.3190 | time_backward 1.4200 |
[2023-10-25 13:51:28,899::train::INFO] [train] Iter 596489 | loss 0.3968 | loss(rot) 0.1070 | loss(pos) 0.0741 | loss(seq) 0.2156 | grad 3.2705 | lr 0.0000 | time_forward 1.3430 | time_backward 1.4070 |
[2023-10-25 13:51:31,194::train::INFO] [train] Iter 596490 | loss 0.8699 | loss(rot) 0.4302 | loss(pos) 0.2038 | loss(seq) 0.2358 | grad 5.1981 | lr 0.0000 | time_forward 1.0700 | time_backward 1.2220 |
[2023-10-25 13:51:42,049::train::INFO] [train] Iter 596491 | loss 0.8239 | loss(rot) 0.2712 | loss(pos) 0.2714 | loss(seq) 0.2813 | grad 3.3846 | lr 0.0000 | time_forward 4.4940 | time_backward 6.3570 |
[2023-10-25 13:51:50,753::train::INFO] [train] Iter 596492 | loss 1.1974 | loss(rot) 1.0270 | loss(pos) 0.0506 | loss(seq) 0.1198 | grad 3.9972 | lr 0.0000 | time_forward 3.6810 | time_backward 5.0190 |
[2023-10-25 13:51:52,927::train::INFO] [train] Iter 596493 | loss 1.5050 | loss(rot) 1.1334 | loss(pos) 0.3411 | loss(seq) 0.0306 | grad 8.4692 | lr 0.0000 | time_forward 1.0140 | time_backward 1.1570 |
[2023-10-25 13:51:55,712::train::INFO] [train] Iter 596494 | loss 0.3180 | loss(rot) 0.2385 | loss(pos) 0.0248 | loss(seq) 0.0547 | grad 13.6416 | lr 0.0000 | time_forward 1.3500 | time_backward 1.4330 |
[2023-10-25 13:51:58,518::train::INFO] [train] Iter 596495 | loss 1.0099 | loss(rot) 0.9694 | loss(pos) 0.0346 | loss(seq) 0.0059 | grad 7.9507 | lr 0.0000 | time_forward 1.3630 | time_backward 1.4390 |
[2023-10-25 13:52:06,824::train::INFO] [train] Iter 596496 | loss 2.8259 | loss(rot) 2.4500 | loss(pos) 0.0740 | loss(seq) 0.3019 | grad 62.8458 | lr 0.0000 | time_forward 3.5380 | time_backward 4.7650 |
[2023-10-25 13:52:13,349::train::INFO] [train] Iter 596497 | loss 0.3409 | loss(rot) 0.0417 | loss(pos) 0.2951 | loss(seq) 0.0041 | grad 5.1123 | lr 0.0000 | time_forward 2.7550 | time_backward 3.7660 |
[2023-10-25 13:52:19,806::train::INFO] [train] Iter 596498 | loss 1.1895 | loss(rot) 0.6057 | loss(pos) 0.1774 | loss(seq) 0.4064 | grad 3.6064 | lr 0.0000 | time_forward 2.7180 | time_backward 3.7230 |
[2023-10-25 13:52:23,160::train::INFO] [train] Iter 596499 | loss 0.7864 | loss(rot) 0.7461 | loss(pos) 0.0388 | loss(seq) 0.0014 | grad 5.3922 | lr 0.0000 | time_forward 1.5490 | time_backward 1.7930 |
[2023-10-25 13:52:33,058::train::INFO] [train] Iter 596500 | loss 0.9779 | loss(rot) 0.9603 | loss(pos) 0.0134 | loss(seq) 0.0042 | grad 3.1749 | lr 0.0000 | time_forward 4.0180 | time_backward 5.8650 |
[2023-10-25 13:52:35,623::train::INFO] [train] Iter 596501 | loss 0.7142 | loss(rot) 0.1250 | loss(pos) 0.0822 | loss(seq) 0.5070 | grad 3.4810 | lr 0.0000 | time_forward 1.2340 | time_backward 1.3280 |
[2023-10-25 13:52:44,015::train::INFO] [train] Iter 596502 | loss 1.2646 | loss(rot) 0.0139 | loss(pos) 1.2499 | loss(seq) 0.0008 | grad 18.5618 | lr 0.0000 | time_forward 3.5280 | time_backward 4.8610 |
[2023-10-25 13:52:54,461::train::INFO] [train] Iter 596503 | loss 2.2631 | loss(rot) 1.7135 | loss(pos) 0.1593 | loss(seq) 0.3903 | grad 3.0569 | lr 0.0000 | time_forward 3.5590 | time_backward 6.8840 |
[2023-10-25 13:53:13,380::train::INFO] [train] Iter 596504 | loss 0.2644 | loss(rot) 0.1534 | loss(pos) 0.0593 | loss(seq) 0.0518 | grad 3.2618 | lr 0.0000 | time_forward 14.7700 | time_backward 4.1450 |
[2023-10-25 13:53:18,701::train::INFO] [train] Iter 596505 | loss 1.3343 | loss(rot) 0.3788 | loss(pos) 0.9538 | loss(seq) 0.0018 | grad 36.6753 | lr 0.0000 | time_forward 2.2580 | time_backward 3.0600 |
[2023-10-25 13:53:31,195::train::INFO] [train] Iter 596506 | loss 1.1130 | loss(rot) 0.7166 | loss(pos) 0.0555 | loss(seq) 0.3409 | grad 3.2954 | lr 0.0000 | time_forward 6.6060 | time_backward 5.8440 |
[2023-10-25 13:53:39,533::train::INFO] [train] Iter 596507 | loss 1.3815 | loss(rot) 0.8498 | loss(pos) 0.1164 | loss(seq) 0.4152 | grad 2.4769 | lr 0.0000 | time_forward 3.5070 | time_backward 4.8270 |
[2023-10-25 13:53:42,295::train::INFO] [train] Iter 596508 | loss 1.1664 | loss(rot) 1.0826 | loss(pos) 0.0725 | loss(seq) 0.0113 | grad 10.7630 | lr 0.0000 | time_forward 1.2960 | time_backward 1.4630 |
[2023-10-25 13:53:50,810::train::INFO] [train] Iter 596509 | loss 0.5508 | loss(rot) 0.3866 | loss(pos) 0.0309 | loss(seq) 0.1332 | grad 3.3589 | lr 0.0000 | time_forward 3.6130 | time_backward 4.9000 |
[2023-10-25 13:54:00,815::train::INFO] [train] Iter 596510 | loss 1.2936 | loss(rot) 0.9858 | loss(pos) 0.1147 | loss(seq) 0.1930 | grad 7.6369 | lr 0.0000 | time_forward 4.0740 | time_backward 5.9270 |
[2023-10-25 13:54:10,519::train::INFO] [train] Iter 596511 | loss 0.2361 | loss(rot) 0.1723 | loss(pos) 0.0109 | loss(seq) 0.0530 | grad 2.5146 | lr 0.0000 | time_forward 3.7140 | time_backward 5.9860 |
[2023-10-25 13:54:20,020::train::INFO] [train] Iter 596512 | loss 1.6799 | loss(rot) 1.6046 | loss(pos) 0.0326 | loss(seq) 0.0427 | grad 4.6113 | lr 0.0000 | time_forward 4.0100 | time_backward 5.4880 |
[2023-10-25 13:54:31,473::train::INFO] [train] Iter 596513 | loss 0.6554 | loss(rot) 0.0227 | loss(pos) 0.6319 | loss(seq) 0.0009 | grad 12.7260 | lr 0.0000 | time_forward 4.8390 | time_backward 6.6080 |
[2023-10-25 13:54:42,791::train::INFO] [train] Iter 596514 | loss 0.6095 | loss(rot) 0.2846 | loss(pos) 0.0231 | loss(seq) 0.3018 | grad 2.7637 | lr 0.0000 | time_forward 4.5570 | time_backward 6.7570 |
[2023-10-25 13:54:52,557::train::INFO] [train] Iter 596515 | loss 0.3770 | loss(rot) 0.1331 | loss(pos) 0.0514 | loss(seq) 0.1925 | grad 3.0697 | lr 0.0000 | time_forward 4.4590 | time_backward 5.3030 |
[2023-10-25 13:55:00,863::train::INFO] [train] Iter 596516 | loss 0.2228 | loss(rot) 0.1943 | loss(pos) 0.0281 | loss(seq) 0.0003 | grad 3.0264 | lr 0.0000 | time_forward 3.5430 | time_backward 4.7590 |
[2023-10-25 13:55:09,396::train::INFO] [train] Iter 596517 | loss 0.1482 | loss(rot) 0.1024 | loss(pos) 0.0160 | loss(seq) 0.0298 | grad 1.6150 | lr 0.0000 | time_forward 3.5950 | time_backward 4.9340 |
[2023-10-25 13:55:20,015::train::INFO] [train] Iter 596518 | loss 0.6932 | loss(rot) 0.1952 | loss(pos) 0.2460 | loss(seq) 0.2520 | grad 3.6171 | lr 0.0000 | time_forward 4.6610 | time_backward 5.9540 |
[2023-10-25 13:55:30,127::train::INFO] [train] Iter 596519 | loss 2.5866 | loss(rot) 2.4598 | loss(pos) 0.1039 | loss(seq) 0.0229 | grad 2.9242 | lr 0.0000 | time_forward 4.2520 | time_backward 5.8570 |
[2023-10-25 13:55:40,127::train::INFO] [train] Iter 596520 | loss 0.9658 | loss(rot) 0.3929 | loss(pos) 0.1729 | loss(seq) 0.4000 | grad 3.5647 | lr 0.0000 | time_forward 3.9820 | time_backward 6.0150 |
[2023-10-25 13:55:45,892::train::INFO] [train] Iter 596521 | loss 0.2758 | loss(rot) 0.1396 | loss(pos) 0.0540 | loss(seq) 0.0822 | grad 3.5148 | lr 0.0000 | time_forward 2.4710 | time_backward 3.2920 |
[2023-10-25 13:55:48,413::train::INFO] [train] Iter 596522 | loss 1.3144 | loss(rot) 1.2739 | loss(pos) 0.0321 | loss(seq) 0.0084 | grad 4.8300 | lr 0.0000 | time_forward 1.0880 | time_backward 1.4280 |
[2023-10-25 13:55:58,458::train::INFO] [train] Iter 596523 | loss 0.7962 | loss(rot) 0.0774 | loss(pos) 0.6940 | loss(seq) 0.0248 | grad 10.3550 | lr 0.0000 | time_forward 3.9160 | time_backward 6.1250 |
[2023-10-25 13:56:08,502::train::INFO] [train] Iter 596524 | loss 0.4201 | loss(rot) 0.0621 | loss(pos) 0.3068 | loss(seq) 0.0511 | grad 3.4661 | lr 0.0000 | time_forward 4.0010 | time_backward 6.0400 |
[2023-10-25 13:56:17,127::train::INFO] [train] Iter 596525 | loss 0.2429 | loss(rot) 0.0317 | loss(pos) 0.2046 | loss(seq) 0.0065 | grad 6.1324 | lr 0.0000 | time_forward 3.6500 | time_backward 4.9720 |
[2023-10-25 13:56:24,277::train::INFO] [train] Iter 596526 | loss 0.7611 | loss(rot) 0.5893 | loss(pos) 0.0144 | loss(seq) 0.1574 | grad 4.7463 | lr 0.0000 | time_forward 3.0330 | time_backward 4.1140 |
[2023-10-25 13:56:27,087::train::INFO] [train] Iter 596527 | loss 0.8274 | loss(rot) 0.3755 | loss(pos) 0.2184 | loss(seq) 0.2335 | grad 2.9797 | lr 0.0000 | time_forward 1.3180 | time_backward 1.4900 |
[2023-10-25 13:56:30,670::train::INFO] [train] Iter 596528 | loss 0.5709 | loss(rot) 0.0276 | loss(pos) 0.5396 | loss(seq) 0.0037 | grad 5.5305 | lr 0.0000 | time_forward 1.5870 | time_backward 1.9650 |
[2023-10-25 13:56:39,333::train::INFO] [train] Iter 596529 | loss 0.4297 | loss(rot) 0.2604 | loss(pos) 0.0211 | loss(seq) 0.1481 | grad 3.4600 | lr 0.0000 | time_forward 3.6550 | time_backward 5.0050 |
[2023-10-25 13:56:49,400::train::INFO] [train] Iter 596530 | loss 0.1896 | loss(rot) 0.1651 | loss(pos) 0.0246 | loss(seq) 0.0000 | grad 1.7613 | lr 0.0000 | time_forward 4.1540 | time_backward 5.8960 |
[2023-10-25 13:56:52,327::train::INFO] [train] Iter 596531 | loss 2.4096 | loss(rot) 1.8940 | loss(pos) 0.0685 | loss(seq) 0.4471 | grad 6.8255 | lr 0.0000 | time_forward 1.3450 | time_backward 1.5780 |
[2023-10-25 13:56:55,694::train::INFO] [train] Iter 596532 | loss 1.2773 | loss(rot) 0.8034 | loss(pos) 0.1162 | loss(seq) 0.3577 | grad 3.6104 | lr 0.0000 | time_forward 1.5330 | time_backward 1.8320 |
[2023-10-25 13:57:05,626::train::INFO] [train] Iter 596533 | loss 0.4121 | loss(rot) 0.2006 | loss(pos) 0.0167 | loss(seq) 0.1947 | grad 2.5040 | lr 0.0000 | time_forward 4.0520 | time_backward 5.8540 |
[2023-10-25 13:57:14,158::train::INFO] [train] Iter 596534 | loss 0.7325 | loss(rot) 0.5033 | loss(pos) 0.0546 | loss(seq) 0.1747 | grad 4.6861 | lr 0.0000 | time_forward 3.5240 | time_backward 5.0050 |
[2023-10-25 13:57:17,538::train::INFO] [train] Iter 596535 | loss 0.8142 | loss(rot) 0.2999 | loss(pos) 0.1350 | loss(seq) 0.3794 | grad 2.9371 | lr 0.0000 | time_forward 1.4790 | time_backward 1.8970 |
[2023-10-25 13:57:20,346::train::INFO] [train] Iter 596536 | loss 1.4769 | loss(rot) 0.0065 | loss(pos) 1.4697 | loss(seq) 0.0007 | grad 12.2165 | lr 0.0000 | time_forward 1.3150 | time_backward 1.4780 |
[2023-10-25 13:57:29,298::train::INFO] [train] Iter 596537 | loss 0.3111 | loss(rot) 0.1644 | loss(pos) 0.0327 | loss(seq) 0.1140 | grad 2.9083 | lr 0.0000 | time_forward 3.8140 | time_backward 5.1330 |
[2023-10-25 13:57:37,801::train::INFO] [train] Iter 596538 | loss 1.1146 | loss(rot) 0.7049 | loss(pos) 0.0508 | loss(seq) 0.3589 | grad 5.7437 | lr 0.0000 | time_forward 3.4770 | time_backward 5.0230 |
[2023-10-25 13:57:41,354::train::INFO] [train] Iter 596539 | loss 0.7725 | loss(rot) 0.0985 | loss(pos) 0.6341 | loss(seq) 0.0398 | grad 5.2506 | lr 0.0000 | time_forward 1.4970 | time_backward 2.0530 |
[2023-10-25 13:57:50,819::train::INFO] [train] Iter 596540 | loss 1.3473 | loss(rot) 0.8290 | loss(pos) 0.1139 | loss(seq) 0.4044 | grad 21.9708 | lr 0.0000 | time_forward 3.9890 | time_backward 5.4590 |
[2023-10-25 13:57:53,741::train::INFO] [train] Iter 596541 | loss 0.4724 | loss(rot) 0.1065 | loss(pos) 0.0959 | loss(seq) 0.2699 | grad 3.4126 | lr 0.0000 | time_forward 1.4420 | time_backward 1.4770 |
[2023-10-25 13:58:02,640::train::INFO] [train] Iter 596542 | loss 0.2815 | loss(rot) 0.1780 | loss(pos) 0.0191 | loss(seq) 0.0844 | grad 3.0083 | lr 0.0000 | time_forward 3.7740 | time_backward 5.0730 |
[2023-10-25 13:58:12,738::train::INFO] [train] Iter 596543 | loss 0.5954 | loss(rot) 0.2228 | loss(pos) 0.1045 | loss(seq) 0.2681 | grad 3.1306 | lr 0.0000 | time_forward 4.2220 | time_backward 5.8740 |
[2023-10-25 13:58:22,788::train::INFO] [train] Iter 596544 | loss 0.5560 | loss(rot) 0.1729 | loss(pos) 0.0347 | loss(seq) 0.3483 | grad 3.5602 | lr 0.0000 | time_forward 4.1790 | time_backward 5.8460 |
[2023-10-25 13:58:30,990::train::INFO] [train] Iter 596545 | loss 0.8801 | loss(rot) 0.3280 | loss(pos) 0.1574 | loss(seq) 0.3947 | grad 2.5096 | lr 0.0000 | time_forward 3.4350 | time_backward 4.7640 |
[2023-10-25 13:58:42,074::train::INFO] [train] Iter 596546 | loss 1.1371 | loss(rot) 0.0450 | loss(pos) 1.0502 | loss(seq) 0.0420 | grad 10.1668 | lr 0.0000 | time_forward 5.0720 | time_backward 6.0080 |
[2023-10-25 13:58:50,755::train::INFO] [train] Iter 596547 | loss 0.2452 | loss(rot) 0.2054 | loss(pos) 0.0149 | loss(seq) 0.0248 | grad 2.0957 | lr 0.0000 | time_forward 3.2600 | time_backward 5.4180 |
[2023-10-25 13:59:02,973::train::INFO] [train] Iter 596548 | loss 1.3614 | loss(rot) 1.2477 | loss(pos) 0.0278 | loss(seq) 0.0859 | grad 3.8211 | lr 0.0000 | time_forward 6.4250 | time_backward 5.7890 |
[2023-10-25 13:59:12,288::train::INFO] [train] Iter 596549 | loss 0.2336 | loss(rot) 0.0832 | loss(pos) 0.0228 | loss(seq) 0.1277 | grad 1.5930 | lr 0.0000 | time_forward 3.8120 | time_backward 5.5010 |
[2023-10-25 13:59:22,488::train::INFO] [train] Iter 596550 | loss 0.5492 | loss(rot) 0.3639 | loss(pos) 0.1336 | loss(seq) 0.0518 | grad 2.9634 | lr 0.0000 | time_forward 4.8550 | time_backward 5.3420 |
[2023-10-25 13:59:31,521::train::INFO] [train] Iter 596551 | loss 1.2194 | loss(rot) 1.1651 | loss(pos) 0.0237 | loss(seq) 0.0305 | grad 6.5897 | lr 0.0000 | time_forward 3.4900 | time_backward 5.5400 |
[2023-10-25 13:59:49,232::train::INFO] [train] Iter 596552 | loss 0.5936 | loss(rot) 0.5484 | loss(pos) 0.0164 | loss(seq) 0.0287 | grad 2.7773 | lr 0.0000 | time_forward 8.7760 | time_backward 8.9310 |
[2023-10-25 13:59:57,234::train::INFO] [train] Iter 596553 | loss 0.3936 | loss(rot) 0.1026 | loss(pos) 0.0315 | loss(seq) 0.2595 | grad 2.0342 | lr 0.0000 | time_forward 3.4080 | time_backward 4.5890 |
[2023-10-25 14:00:05,404::train::INFO] [train] Iter 596554 | loss 0.1810 | loss(rot) 0.0720 | loss(pos) 0.0784 | loss(seq) 0.0306 | grad 2.5862 | lr 0.0000 | time_forward 3.4210 | time_backward 4.7460 |
[2023-10-25 14:00:16,986::train::INFO] [train] Iter 596555 | loss 0.1740 | loss(rot) 0.0881 | loss(pos) 0.0360 | loss(seq) 0.0499 | grad 2.5915 | lr 0.0000 | time_forward 5.7250 | time_backward 5.8530 |
[2023-10-25 14:00:29,314::train::INFO] [train] Iter 596556 | loss 0.2080 | loss(rot) 0.1441 | loss(pos) 0.0169 | loss(seq) 0.0470 | grad 1.3941 | lr 0.0000 | time_forward 6.2570 | time_backward 6.0680 |
[2023-10-25 14:00:43,773::train::INFO] [train] Iter 596557 | loss 0.8410 | loss(rot) 0.5095 | loss(pos) 0.1230 | loss(seq) 0.2085 | grad 2.8937 | lr 0.0000 | time_forward 8.3940 | time_backward 6.0620 |
[2023-10-25 14:00:50,815::train::INFO] [train] Iter 596558 | loss 0.4999 | loss(rot) 0.4527 | loss(pos) 0.0386 | loss(seq) 0.0087 | grad 2.5727 | lr 0.0000 | time_forward 2.8870 | time_backward 4.1520 |
[2023-10-25 14:01:00,019::train::INFO] [train] Iter 596559 | loss 0.4291 | loss(rot) 0.0786 | loss(pos) 0.0222 | loss(seq) 0.3284 | grad 2.6245 | lr 0.0000 | time_forward 3.6430 | time_backward 5.5410 |
[2023-10-25 14:01:02,773::train::INFO] [train] Iter 596560 | loss 0.8188 | loss(rot) 0.2383 | loss(pos) 0.0798 | loss(seq) 0.5006 | grad 3.8051 | lr 0.0000 | time_forward 1.3200 | time_backward 1.4290 |
[2023-10-25 14:01:21,047::train::INFO] [train] Iter 596561 | loss 0.4438 | loss(rot) 0.0391 | loss(pos) 0.4029 | loss(seq) 0.0018 | grad 9.2476 | lr 0.0000 | time_forward 12.5280 | time_backward 5.7230 |
[2023-10-25 14:01:29,104::train::INFO] [train] Iter 596562 | loss 0.6772 | loss(rot) 0.3406 | loss(pos) 0.2452 | loss(seq) 0.0913 | grad 4.8193 | lr 0.0000 | time_forward 3.4110 | time_backward 4.6430 |
[2023-10-25 14:01:37,438::train::INFO] [train] Iter 596563 | loss 0.8592 | loss(rot) 0.6770 | loss(pos) 0.0371 | loss(seq) 0.1450 | grad 6.9052 | lr 0.0000 | time_forward 3.4770 | time_backward 4.8530 |
[2023-10-25 14:01:40,867::train::INFO] [train] Iter 596564 | loss 0.1775 | loss(rot) 0.0732 | loss(pos) 0.0291 | loss(seq) 0.0752 | grad 1.6308 | lr 0.0000 | time_forward 1.5430 | time_backward 1.8830 |
[2023-10-25 14:01:50,154::train::INFO] [train] Iter 596565 | loss 0.7431 | loss(rot) 0.6934 | loss(pos) 0.0395 | loss(seq) 0.0103 | grad 3.0508 | lr 0.0000 | time_forward 4.1830 | time_backward 5.1000 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.