text
stringlengths 56
1.16k
|
---|
[2023-10-25 14:13:34,607::train::INFO] [train] Iter 596666 | loss 0.4139 | loss(rot) 0.2230 | loss(pos) 0.1052 | loss(seq) 0.0857 | grad 3.2785 | lr 0.0000 | time_forward 3.9310 | time_backward 5.2600 |
[2023-10-25 14:13:43,136::train::INFO] [train] Iter 596667 | loss 1.1861 | loss(rot) 0.0055 | loss(pos) 1.1803 | loss(seq) 0.0003 | grad 15.6591 | lr 0.0000 | time_forward 3.6410 | time_backward 4.8840 |
[2023-10-25 14:13:52,920::train::INFO] [train] Iter 596668 | loss 1.6536 | loss(rot) 1.1581 | loss(pos) 0.1048 | loss(seq) 0.3906 | grad 9.7971 | lr 0.0000 | time_forward 4.0420 | time_backward 5.7380 |
[2023-10-25 14:14:02,611::train::INFO] [train] Iter 596669 | loss 0.4695 | loss(rot) 0.1664 | loss(pos) 0.1140 | loss(seq) 0.1891 | grad 2.7230 | lr 0.0000 | time_forward 3.9250 | time_backward 5.7630 |
[2023-10-25 14:14:12,500::train::INFO] [train] Iter 596670 | loss 0.9930 | loss(rot) 0.6633 | loss(pos) 0.0361 | loss(seq) 0.2936 | grad 24.1241 | lr 0.0000 | time_forward 3.9020 | time_backward 5.9840 |
[2023-10-25 14:14:22,284::train::INFO] [train] Iter 596671 | loss 0.6338 | loss(rot) 0.1498 | loss(pos) 0.2659 | loss(seq) 0.2181 | grad 2.3747 | lr 0.0000 | time_forward 4.0250 | time_backward 5.7570 |
[2023-10-25 14:14:29,819::train::INFO] [train] Iter 596672 | loss 0.8731 | loss(rot) 0.3148 | loss(pos) 0.2178 | loss(seq) 0.3405 | grad 5.8980 | lr 0.0000 | time_forward 3.2030 | time_backward 4.3290 |
[2023-10-25 14:14:38,488::train::INFO] [train] Iter 596673 | loss 0.6201 | loss(rot) 0.1961 | loss(pos) 0.1538 | loss(seq) 0.2701 | grad 3.0981 | lr 0.0000 | time_forward 3.6640 | time_backward 5.0010 |
[2023-10-25 14:14:45,908::train::INFO] [train] Iter 596674 | loss 1.4867 | loss(rot) 1.4427 | loss(pos) 0.0379 | loss(seq) 0.0061 | grad 13.8531 | lr 0.0000 | time_forward 3.1660 | time_backward 4.2500 |
[2023-10-25 14:14:54,960::train::INFO] [train] Iter 596675 | loss 1.1979 | loss(rot) 0.9066 | loss(pos) 0.0874 | loss(seq) 0.2038 | grad 18.3543 | lr 0.0000 | time_forward 3.8510 | time_backward 5.1970 |
[2023-10-25 14:14:57,744::train::INFO] [train] Iter 596676 | loss 0.8086 | loss(rot) 0.2014 | loss(pos) 0.5111 | loss(seq) 0.0961 | grad 4.7717 | lr 0.0000 | time_forward 1.3170 | time_backward 1.4640 |
[2023-10-25 14:15:03,685::train::INFO] [train] Iter 596677 | loss 0.3839 | loss(rot) 0.1018 | loss(pos) 0.0962 | loss(seq) 0.1860 | grad 3.5898 | lr 0.0000 | time_forward 2.5460 | time_backward 3.3900 |
[2023-10-25 14:15:12,757::train::INFO] [train] Iter 596678 | loss 0.8554 | loss(rot) 0.1984 | loss(pos) 0.2941 | loss(seq) 0.3629 | grad 2.5342 | lr 0.0000 | time_forward 3.6360 | time_backward 5.4200 |
[2023-10-25 14:15:15,583::train::INFO] [train] Iter 596679 | loss 0.2744 | loss(rot) 0.0520 | loss(pos) 0.0219 | loss(seq) 0.2004 | grad 1.9947 | lr 0.0000 | time_forward 1.3710 | time_backward 1.4520 |
[2023-10-25 14:15:24,017::train::INFO] [train] Iter 596680 | loss 0.4288 | loss(rot) 0.1297 | loss(pos) 0.1984 | loss(seq) 0.1007 | grad 2.9821 | lr 0.0000 | time_forward 3.5950 | time_backward 4.8360 |
[2023-10-25 14:15:32,609::train::INFO] [train] Iter 596681 | loss 2.3546 | loss(rot) 1.2570 | loss(pos) 0.3572 | loss(seq) 0.7404 | grad 18.7932 | lr 0.0000 | time_forward 3.5820 | time_backward 5.0060 |
[2023-10-25 14:15:42,942::train::INFO] [train] Iter 596682 | loss 1.5437 | loss(rot) 1.1211 | loss(pos) 0.1152 | loss(seq) 0.3074 | grad 5.4659 | lr 0.0000 | time_forward 4.3390 | time_backward 5.9910 |
[2023-10-25 14:15:53,209::train::INFO] [train] Iter 596683 | loss 0.3693 | loss(rot) 0.1125 | loss(pos) 0.1754 | loss(seq) 0.0813 | grad 3.4139 | lr 0.0000 | time_forward 4.3340 | time_backward 5.9290 |
[2023-10-25 14:16:03,606::train::INFO] [train] Iter 596684 | loss 0.3471 | loss(rot) 0.2002 | loss(pos) 0.0352 | loss(seq) 0.1118 | grad 3.4795 | lr 0.0000 | time_forward 4.3190 | time_backward 6.0750 |
[2023-10-25 14:16:13,154::train::INFO] [train] Iter 596685 | loss 0.2770 | loss(rot) 0.0750 | loss(pos) 0.1833 | loss(seq) 0.0187 | grad 4.2922 | lr 0.0000 | time_forward 3.9480 | time_backward 5.5970 |
[2023-10-25 14:16:19,030::train::INFO] [train] Iter 596686 | loss 1.6634 | loss(rot) 1.2574 | loss(pos) 0.0983 | loss(seq) 0.3077 | grad 3.0025 | lr 0.0000 | time_forward 2.5440 | time_backward 3.3290 |
[2023-10-25 14:16:26,905::train::INFO] [train] Iter 596687 | loss 1.9292 | loss(rot) 1.4118 | loss(pos) 0.0916 | loss(seq) 0.4257 | grad 3.9402 | lr 0.0000 | time_forward 3.3280 | time_backward 4.5440 |
[2023-10-25 14:16:35,736::train::INFO] [train] Iter 596688 | loss 0.5977 | loss(rot) 0.3192 | loss(pos) 0.0518 | loss(seq) 0.2267 | grad 3.3258 | lr 0.0000 | time_forward 3.6570 | time_backward 5.1700 |
[2023-10-25 14:16:44,559::train::INFO] [train] Iter 596689 | loss 0.9520 | loss(rot) 0.7175 | loss(pos) 0.0715 | loss(seq) 0.1630 | grad 4.4202 | lr 0.0000 | time_forward 3.7280 | time_backward 5.0910 |
[2023-10-25 14:16:52,933::train::INFO] [train] Iter 596690 | loss 0.7939 | loss(rot) 0.7732 | loss(pos) 0.0206 | loss(seq) 0.0000 | grad 4.1341 | lr 0.0000 | time_forward 3.5840 | time_backward 4.7860 |
[2023-10-25 14:17:02,367::train::INFO] [train] Iter 596691 | loss 0.7873 | loss(rot) 0.0877 | loss(pos) 0.6953 | loss(seq) 0.0043 | grad 8.4758 | lr 0.0000 | time_forward 3.8680 | time_backward 5.5630 |
[2023-10-25 14:17:10,653::train::INFO] [train] Iter 596692 | loss 1.6489 | loss(rot) 1.0997 | loss(pos) 0.0992 | loss(seq) 0.4501 | grad 4.7785 | lr 0.0000 | time_forward 3.4910 | time_backward 4.7930 |
[2023-10-25 14:17:19,452::train::INFO] [train] Iter 596693 | loss 0.3556 | loss(rot) 0.1201 | loss(pos) 0.0963 | loss(seq) 0.1391 | grad 3.2208 | lr 0.0000 | time_forward 3.8000 | time_backward 4.9950 |
[2023-10-25 14:17:28,961::train::INFO] [train] Iter 596694 | loss 1.3383 | loss(rot) 1.1904 | loss(pos) 0.0504 | loss(seq) 0.0975 | grad 32.9977 | lr 0.0000 | time_forward 4.0140 | time_backward 5.4910 |
[2023-10-25 14:17:32,221::train::INFO] [train] Iter 596695 | loss 1.6451 | loss(rot) 1.3097 | loss(pos) 0.0576 | loss(seq) 0.2778 | grad 3.7752 | lr 0.0000 | time_forward 1.4610 | time_backward 1.7960 |
[2023-10-25 14:17:34,761::train::INFO] [train] Iter 596696 | loss 0.1498 | loss(rot) 0.1220 | loss(pos) 0.0195 | loss(seq) 0.0084 | grad 2.0601 | lr 0.0000 | time_forward 1.2220 | time_backward 1.3010 |
[2023-10-25 14:17:44,054::train::INFO] [train] Iter 596697 | loss 1.8901 | loss(rot) 1.1561 | loss(pos) 0.1933 | loss(seq) 0.5407 | grad 4.4590 | lr 0.0000 | time_forward 3.7980 | time_backward 5.4760 |
[2023-10-25 14:17:53,715::train::INFO] [train] Iter 596698 | loss 1.1947 | loss(rot) 1.1715 | loss(pos) 0.0222 | loss(seq) 0.0011 | grad 11.8416 | lr 0.0000 | time_forward 3.9950 | time_backward 5.6630 |
[2023-10-25 14:18:02,131::train::INFO] [train] Iter 596699 | loss 1.8593 | loss(rot) 1.4941 | loss(pos) 0.1383 | loss(seq) 0.2269 | grad 3.2816 | lr 0.0000 | time_forward 3.5650 | time_backward 4.8470 |
[2023-10-25 14:18:10,634::train::INFO] [train] Iter 596700 | loss 0.2444 | loss(rot) 0.0447 | loss(pos) 0.1929 | loss(seq) 0.0068 | grad 3.4703 | lr 0.0000 | time_forward 3.5510 | time_backward 4.9490 |
[2023-10-25 14:18:20,136::train::INFO] [train] Iter 596701 | loss 0.5439 | loss(rot) 0.2566 | loss(pos) 0.1012 | loss(seq) 0.1861 | grad 3.8160 | lr 0.0000 | time_forward 3.8960 | time_backward 5.6040 |
[2023-10-25 14:18:23,107::train::INFO] [train] Iter 596702 | loss 0.5918 | loss(rot) 0.0388 | loss(pos) 0.5493 | loss(seq) 0.0036 | grad 8.9717 | lr 0.0000 | time_forward 1.3400 | time_backward 1.6270 |
[2023-10-25 14:18:31,961::train::INFO] [train] Iter 596703 | loss 0.2528 | loss(rot) 0.2158 | loss(pos) 0.0320 | loss(seq) 0.0050 | grad 19.7611 | lr 0.0000 | time_forward 3.7470 | time_backward 5.1040 |
[2023-10-25 14:18:40,466::train::INFO] [train] Iter 596704 | loss 0.6562 | loss(rot) 0.2958 | loss(pos) 0.0355 | loss(seq) 0.3248 | grad 3.2824 | lr 0.0000 | time_forward 3.5810 | time_backward 4.9210 |
[2023-10-25 14:18:43,327::train::INFO] [train] Iter 596705 | loss 0.3518 | loss(rot) 0.2729 | loss(pos) 0.0280 | loss(seq) 0.0510 | grad 3.0902 | lr 0.0000 | time_forward 1.3630 | time_backward 1.4940 |
[2023-10-25 14:18:46,238::train::INFO] [train] Iter 596706 | loss 1.0391 | loss(rot) 0.4837 | loss(pos) 0.1436 | loss(seq) 0.4118 | grad 3.5692 | lr 0.0000 | time_forward 1.3820 | time_backward 1.4800 |
[2023-10-25 14:18:55,069::train::INFO] [train] Iter 596707 | loss 1.2048 | loss(rot) 0.6610 | loss(pos) 0.1570 | loss(seq) 0.3868 | grad 3.9566 | lr 0.0000 | time_forward 3.7760 | time_backward 5.0280 |
[2023-10-25 14:18:57,872::train::INFO] [train] Iter 596708 | loss 1.2161 | loss(rot) 0.6666 | loss(pos) 0.0804 | loss(seq) 0.4691 | grad 12.3804 | lr 0.0000 | time_forward 1.2950 | time_backward 1.5040 |
[2023-10-25 14:19:00,596::train::INFO] [train] Iter 596709 | loss 0.2579 | loss(rot) 0.1412 | loss(pos) 0.0215 | loss(seq) 0.0952 | grad 2.4249 | lr 0.0000 | time_forward 1.2840 | time_backward 1.4370 |
[2023-10-25 14:19:03,380::train::INFO] [train] Iter 596710 | loss 0.5443 | loss(rot) 0.4426 | loss(pos) 0.0183 | loss(seq) 0.0834 | grad 4.5286 | lr 0.0000 | time_forward 1.3480 | time_backward 1.4330 |
[2023-10-25 14:19:11,325::train::INFO] [train] Iter 596711 | loss 0.2624 | loss(rot) 0.0345 | loss(pos) 0.2053 | loss(seq) 0.0225 | grad 8.2696 | lr 0.0000 | time_forward 3.2980 | time_backward 4.6440 |
[2023-10-25 14:19:14,317::train::INFO] [train] Iter 596712 | loss 0.6724 | loss(rot) 0.2410 | loss(pos) 0.4172 | loss(seq) 0.0142 | grad 7.0196 | lr 0.0000 | time_forward 1.3330 | time_backward 1.6570 |
[2023-10-25 14:19:17,742::train::INFO] [train] Iter 596713 | loss 0.4162 | loss(rot) 0.0750 | loss(pos) 0.3279 | loss(seq) 0.0133 | grad 4.7670 | lr 0.0000 | time_forward 1.5310 | time_backward 1.8900 |
[2023-10-25 14:19:27,097::train::INFO] [train] Iter 596714 | loss 0.4940 | loss(rot) 0.1769 | loss(pos) 0.1344 | loss(seq) 0.1828 | grad 2.3831 | lr 0.0000 | time_forward 4.0290 | time_backward 5.3230 |
[2023-10-25 14:19:35,259::train::INFO] [train] Iter 596715 | loss 0.2703 | loss(rot) 0.0236 | loss(pos) 0.2361 | loss(seq) 0.0106 | grad 5.2964 | lr 0.0000 | time_forward 3.4450 | time_backward 4.7030 |
[2023-10-25 14:19:44,627::train::INFO] [train] Iter 596716 | loss 0.9340 | loss(rot) 0.4544 | loss(pos) 0.1082 | loss(seq) 0.3714 | grad 3.5728 | lr 0.0000 | time_forward 4.0160 | time_backward 5.3490 |
[2023-10-25 14:19:53,412::train::INFO] [train] Iter 596717 | loss 0.3841 | loss(rot) 0.0280 | loss(pos) 0.3530 | loss(seq) 0.0031 | grad 7.6108 | lr 0.0000 | time_forward 3.7450 | time_backward 5.0360 |
[2023-10-25 14:19:56,173::train::INFO] [train] Iter 596718 | loss 0.8162 | loss(rot) 0.0136 | loss(pos) 0.8014 | loss(seq) 0.0013 | grad 13.9373 | lr 0.0000 | time_forward 1.3160 | time_backward 1.4420 |
[2023-10-25 14:20:05,541::train::INFO] [train] Iter 596719 | loss 0.2914 | loss(rot) 0.2166 | loss(pos) 0.0382 | loss(seq) 0.0366 | grad 2.3644 | lr 0.0000 | time_forward 3.8940 | time_backward 5.4720 |
[2023-10-25 14:20:13,896::train::INFO] [train] Iter 596720 | loss 0.1829 | loss(rot) 0.1488 | loss(pos) 0.0335 | loss(seq) 0.0006 | grad 1.7671 | lr 0.0000 | time_forward 3.4830 | time_backward 4.8690 |
[2023-10-25 14:20:16,830::train::INFO] [train] Iter 596721 | loss 1.0197 | loss(rot) 0.6248 | loss(pos) 0.3108 | loss(seq) 0.0840 | grad 4.7166 | lr 0.0000 | time_forward 1.3140 | time_backward 1.6160 |
[2023-10-25 14:20:25,587::train::INFO] [train] Iter 596722 | loss 1.1196 | loss(rot) 1.0735 | loss(pos) 0.0386 | loss(seq) 0.0075 | grad 3.4139 | lr 0.0000 | time_forward 3.6780 | time_backward 5.0760 |
[2023-10-25 14:20:34,913::train::INFO] [train] Iter 596723 | loss 0.7353 | loss(rot) 0.4667 | loss(pos) 0.0710 | loss(seq) 0.1976 | grad 3.2004 | lr 0.0000 | time_forward 3.8420 | time_backward 5.4800 |
[2023-10-25 14:20:43,605::train::INFO] [train] Iter 596724 | loss 0.6129 | loss(rot) 0.3410 | loss(pos) 0.0858 | loss(seq) 0.1861 | grad 2.9952 | lr 0.0000 | time_forward 3.6670 | time_backward 5.0230 |
[2023-10-25 14:20:53,052::train::INFO] [train] Iter 596725 | loss 0.4444 | loss(rot) 0.1234 | loss(pos) 0.1835 | loss(seq) 0.1376 | grad 4.1114 | lr 0.0000 | time_forward 3.8970 | time_backward 5.5470 |
[2023-10-25 14:21:01,455::train::INFO] [train] Iter 596726 | loss 0.9528 | loss(rot) 0.8972 | loss(pos) 0.0556 | loss(seq) 0.0000 | grad 5.1610 | lr 0.0000 | time_forward 3.5260 | time_backward 4.8740 |
[2023-10-25 14:21:04,188::train::INFO] [train] Iter 596727 | loss 0.8778 | loss(rot) 0.8384 | loss(pos) 0.0260 | loss(seq) 0.0133 | grad 5.5409 | lr 0.0000 | time_forward 1.2920 | time_backward 1.4380 |
[2023-10-25 14:21:06,997::train::INFO] [train] Iter 596728 | loss 0.4369 | loss(rot) 0.1107 | loss(pos) 0.0276 | loss(seq) 0.2986 | grad 2.3421 | lr 0.0000 | time_forward 1.3600 | time_backward 1.4450 |
[2023-10-25 14:21:09,769::train::INFO] [train] Iter 596729 | loss 1.0633 | loss(rot) 0.1902 | loss(pos) 0.0993 | loss(seq) 0.7738 | grad 3.8770 | lr 0.0000 | time_forward 1.3710 | time_backward 1.3990 |
[2023-10-25 14:21:12,562::train::INFO] [train] Iter 596730 | loss 1.2830 | loss(rot) 0.7338 | loss(pos) 0.0815 | loss(seq) 0.4678 | grad 3.7493 | lr 0.0000 | time_forward 1.3370 | time_backward 1.4150 |
[2023-10-25 14:21:20,395::train::INFO] [train] Iter 596731 | loss 0.2495 | loss(rot) 0.0329 | loss(pos) 0.1496 | loss(seq) 0.0670 | grad 3.7777 | lr 0.0000 | time_forward 3.3350 | time_backward 4.4890 |
[2023-10-25 14:21:29,825::train::INFO] [train] Iter 596732 | loss 0.7440 | loss(rot) 0.6956 | loss(pos) 0.0191 | loss(seq) 0.0293 | grad 3.1135 | lr 0.0000 | time_forward 3.8560 | time_backward 5.5710 |
[2023-10-25 14:21:39,301::train::INFO] [train] Iter 596733 | loss 0.2507 | loss(rot) 0.1988 | loss(pos) 0.0340 | loss(seq) 0.0179 | grad 1.6418 | lr 0.0000 | time_forward 3.9110 | time_backward 5.5620 |
[2023-10-25 14:21:48,309::train::INFO] [train] Iter 596734 | loss 0.6623 | loss(rot) 0.3522 | loss(pos) 0.0352 | loss(seq) 0.2750 | grad 45.9135 | lr 0.0000 | time_forward 3.6250 | time_backward 5.3800 |
[2023-10-25 14:21:50,893::train::INFO] [train] Iter 596735 | loss 0.3142 | loss(rot) 0.0791 | loss(pos) 0.1167 | loss(seq) 0.1183 | grad 2.7473 | lr 0.0000 | time_forward 1.3050 | time_backward 1.2760 |
[2023-10-25 14:22:00,430::train::INFO] [train] Iter 596736 | loss 0.5592 | loss(rot) 0.1478 | loss(pos) 0.1332 | loss(seq) 0.2782 | grad 4.2874 | lr 0.0000 | time_forward 3.9600 | time_backward 5.5520 |
[2023-10-25 14:22:10,125::train::INFO] [train] Iter 596737 | loss 0.7286 | loss(rot) 0.3224 | loss(pos) 0.0485 | loss(seq) 0.3577 | grad 62.2909 | lr 0.0000 | time_forward 3.9620 | time_backward 5.7290 |
[2023-10-25 14:22:13,108::train::INFO] [train] Iter 596738 | loss 1.0252 | loss(rot) 0.6494 | loss(pos) 0.0470 | loss(seq) 0.3287 | grad 2.5772 | lr 0.0000 | time_forward 1.3870 | time_backward 1.5930 |
[2023-10-25 14:22:16,090::train::INFO] [train] Iter 596739 | loss 0.7482 | loss(rot) 0.5258 | loss(pos) 0.0196 | loss(seq) 0.2028 | grad 4.7159 | lr 0.0000 | time_forward 1.4630 | time_backward 1.5150 |
[2023-10-25 14:22:19,318::train::INFO] [train] Iter 596740 | loss 2.0791 | loss(rot) 1.6205 | loss(pos) 0.1029 | loss(seq) 0.3556 | grad 4.9309 | lr 0.0000 | time_forward 1.5030 | time_backward 1.7100 |
[2023-10-25 14:22:28,308::train::INFO] [train] Iter 596741 | loss 0.3849 | loss(rot) 0.2420 | loss(pos) 0.1100 | loss(seq) 0.0329 | grad 4.1538 | lr 0.0000 | time_forward 3.7830 | time_backward 5.1590 |
[2023-10-25 14:22:38,117::train::INFO] [train] Iter 596742 | loss 0.3779 | loss(rot) 0.0194 | loss(pos) 0.3569 | loss(seq) 0.0017 | grad 10.1431 | lr 0.0000 | time_forward 3.9210 | time_backward 5.8850 |
[2023-10-25 14:22:47,127::train::INFO] [train] Iter 596743 | loss 1.2600 | loss(rot) 0.7079 | loss(pos) 0.0825 | loss(seq) 0.4697 | grad 2.7265 | lr 0.0000 | time_forward 3.8330 | time_backward 5.1730 |
[2023-10-25 14:22:56,888::train::INFO] [train] Iter 596744 | loss 0.6846 | loss(rot) 0.4860 | loss(pos) 0.0788 | loss(seq) 0.1199 | grad 11.6440 | lr 0.0000 | time_forward 4.0720 | time_backward 5.6850 |
[2023-10-25 14:23:05,881::train::INFO] [train] Iter 596745 | loss 1.2415 | loss(rot) 1.2176 | loss(pos) 0.0239 | loss(seq) 0.0000 | grad 3.6500 | lr 0.0000 | time_forward 3.7830 | time_backward 5.2070 |
[2023-10-25 14:23:15,478::train::INFO] [train] Iter 596746 | loss 0.6754 | loss(rot) 0.4490 | loss(pos) 0.0229 | loss(seq) 0.2035 | grad 2.4829 | lr 0.0000 | time_forward 3.9720 | time_backward 5.6230 |
[2023-10-25 14:23:22,529::train::INFO] [train] Iter 596747 | loss 0.3819 | loss(rot) 0.2085 | loss(pos) 0.0114 | loss(seq) 0.1620 | grad 1.7788 | lr 0.0000 | time_forward 3.0100 | time_backward 4.0370 |
[2023-10-25 14:23:32,272::train::INFO] [train] Iter 596748 | loss 0.5461 | loss(rot) 0.4198 | loss(pos) 0.0267 | loss(seq) 0.0996 | grad 26.0252 | lr 0.0000 | time_forward 4.0240 | time_backward 5.7160 |
[2023-10-25 14:23:35,166::train::INFO] [train] Iter 596749 | loss 0.3735 | loss(rot) 0.3248 | loss(pos) 0.0389 | loss(seq) 0.0098 | grad 3.1674 | lr 0.0000 | time_forward 1.3920 | time_backward 1.4990 |
[2023-10-25 14:23:44,825::train::INFO] [train] Iter 596750 | loss 2.0447 | loss(rot) 1.4717 | loss(pos) 0.1169 | loss(seq) 0.4562 | grad 9.9482 | lr 0.0000 | time_forward 4.0350 | time_backward 5.6200 |
[2023-10-25 14:23:47,699::train::INFO] [train] Iter 596751 | loss 1.6066 | loss(rot) 1.5617 | loss(pos) 0.0439 | loss(seq) 0.0010 | grad 4.4077 | lr 0.0000 | time_forward 1.3860 | time_backward 1.4850 |
[2023-10-25 14:23:56,349::train::INFO] [train] Iter 596752 | loss 0.1725 | loss(rot) 0.0872 | loss(pos) 0.0310 | loss(seq) 0.0542 | grad 2.2867 | lr 0.0000 | time_forward 3.7240 | time_backward 4.9230 |
[2023-10-25 14:23:59,131::train::INFO] [train] Iter 596753 | loss 0.6026 | loss(rot) 0.4078 | loss(pos) 0.0366 | loss(seq) 0.1581 | grad 27.8031 | lr 0.0000 | time_forward 1.3400 | time_backward 1.4400 |
[2023-10-25 14:24:01,999::train::INFO] [train] Iter 596754 | loss 0.1533 | loss(rot) 0.1309 | loss(pos) 0.0201 | loss(seq) 0.0023 | grad 2.6941 | lr 0.0000 | time_forward 1.4130 | time_backward 1.4510 |
[2023-10-25 14:24:09,961::train::INFO] [train] Iter 596755 | loss 0.5275 | loss(rot) 0.0646 | loss(pos) 0.3993 | loss(seq) 0.0637 | grad 10.2910 | lr 0.0000 | time_forward 3.3690 | time_backward 4.5900 |
[2023-10-25 14:24:19,529::train::INFO] [train] Iter 596756 | loss 0.8372 | loss(rot) 0.0237 | loss(pos) 0.8128 | loss(seq) 0.0007 | grad 9.1780 | lr 0.0000 | time_forward 3.8130 | time_backward 5.7530 |
[2023-10-25 14:24:22,415::train::INFO] [train] Iter 596757 | loss 0.9471 | loss(rot) 0.6600 | loss(pos) 0.1017 | loss(seq) 0.1854 | grad 4.2507 | lr 0.0000 | time_forward 1.4360 | time_backward 1.4470 |
[2023-10-25 14:24:25,222::train::INFO] [train] Iter 596758 | loss 0.3306 | loss(rot) 0.2934 | loss(pos) 0.0183 | loss(seq) 0.0189 | grad 39.8448 | lr 0.0000 | time_forward 1.3510 | time_backward 1.4290 |
[2023-10-25 14:24:33,137::train::INFO] [train] Iter 596759 | loss 0.3435 | loss(rot) 0.1796 | loss(pos) 0.0374 | loss(seq) 0.1266 | grad 2.8585 | lr 0.0000 | time_forward 3.4010 | time_backward 4.5100 |
[2023-10-25 14:24:41,439::train::INFO] [train] Iter 596760 | loss 1.5738 | loss(rot) 1.5226 | loss(pos) 0.0280 | loss(seq) 0.0233 | grad 21.7579 | lr 0.0000 | time_forward 3.5400 | time_backward 4.7590 |
[2023-10-25 14:24:49,750::train::INFO] [train] Iter 596761 | loss 0.3622 | loss(rot) 0.0692 | loss(pos) 0.1225 | loss(seq) 0.1704 | grad 3.2892 | lr 0.0000 | time_forward 3.5780 | time_backward 4.7300 |
[2023-10-25 14:24:58,400::train::INFO] [train] Iter 596762 | loss 2.0407 | loss(rot) 1.9539 | loss(pos) 0.0778 | loss(seq) 0.0090 | grad 6.2549 | lr 0.0000 | time_forward 3.6010 | time_backward 5.0460 |
[2023-10-25 14:25:08,099::train::INFO] [train] Iter 596763 | loss 0.9522 | loss(rot) 0.4321 | loss(pos) 0.2122 | loss(seq) 0.3079 | grad 3.3372 | lr 0.0000 | time_forward 4.0180 | time_backward 5.6770 |
[2023-10-25 14:25:16,682::train::INFO] [train] Iter 596764 | loss 0.3712 | loss(rot) 0.0966 | loss(pos) 0.0279 | loss(seq) 0.2468 | grad 3.0413 | lr 0.0000 | time_forward 3.6680 | time_backward 4.9110 |
[2023-10-25 14:25:26,163::train::INFO] [train] Iter 596765 | loss 1.3463 | loss(rot) 1.0501 | loss(pos) 0.0457 | loss(seq) 0.2505 | grad 8.9542 | lr 0.0000 | time_forward 3.8090 | time_backward 5.6680 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.