text
stringlengths
56
1.16k
[2023-10-25 14:01:52,470::train::INFO] [train] Iter 596566 | loss 0.4332 | loss(rot) 0.1586 | loss(pos) 0.1182 | loss(seq) 0.1563 | grad 2.6588 | lr 0.0000 | time_forward 1.0590 | time_backward 1.2540
[2023-10-25 14:02:02,738::train::INFO] [train] Iter 596567 | loss 2.0194 | loss(rot) 1.9721 | loss(pos) 0.0472 | loss(seq) 0.0001 | grad 4.7062 | lr 0.0000 | time_forward 4.0350 | time_backward 6.2220
[2023-10-25 14:02:05,529::train::INFO] [train] Iter 596568 | loss 0.2533 | loss(rot) 0.2079 | loss(pos) 0.0454 | loss(seq) -0.0000 | grad 4.5540 | lr 0.0000 | time_forward 1.3120 | time_backward 1.4760
[2023-10-25 14:02:13,476::train::INFO] [train] Iter 596569 | loss 0.3611 | loss(rot) 0.2165 | loss(pos) 0.0407 | loss(seq) 0.1039 | grad 4.9834 | lr 0.0000 | time_forward 3.3560 | time_backward 4.5870
[2023-10-25 14:02:22,885::train::INFO] [train] Iter 596570 | loss 0.3204 | loss(rot) 0.1443 | loss(pos) 0.0381 | loss(seq) 0.1380 | grad 3.2937 | lr 0.0000 | time_forward 3.7140 | time_backward 5.6930
[2023-10-25 14:02:25,722::train::INFO] [train] Iter 596571 | loss 1.2467 | loss(rot) 0.8142 | loss(pos) 0.0685 | loss(seq) 0.3641 | grad 6.5198 | lr 0.0000 | time_forward 1.3660 | time_backward 1.4670
[2023-10-25 14:02:35,779::train::INFO] [train] Iter 596572 | loss 0.4553 | loss(rot) 0.1581 | loss(pos) 0.0367 | loss(seq) 0.2605 | grad 3.0497 | lr 0.0000 | time_forward 4.1600 | time_backward 5.8950
[2023-10-25 14:02:46,188::train::INFO] [train] Iter 596573 | loss 1.5121 | loss(rot) 1.4620 | loss(pos) 0.0335 | loss(seq) 0.0166 | grad 13.1859 | lr 0.0000 | time_forward 4.2450 | time_backward 6.1600
[2023-10-25 14:02:48,536::train::INFO] [train] Iter 596574 | loss 1.1665 | loss(rot) 0.7621 | loss(pos) 0.0559 | loss(seq) 0.3485 | grad 4.7991 | lr 0.0000 | time_forward 1.0790 | time_backward 1.2660
[2023-10-25 14:02:57,737::train::INFO] [train] Iter 596575 | loss 1.1996 | loss(rot) 0.5050 | loss(pos) 0.1168 | loss(seq) 0.5777 | grad 2.4472 | lr 0.0000 | time_forward 3.7850 | time_backward 5.4130
[2023-10-25 14:03:06,190::train::INFO] [train] Iter 596576 | loss 0.4386 | loss(rot) 0.3609 | loss(pos) 0.0212 | loss(seq) 0.0566 | grad 8.9636 | lr 0.0000 | time_forward 3.4440 | time_backward 5.0050
[2023-10-25 14:03:09,053::train::INFO] [train] Iter 596577 | loss 0.1192 | loss(rot) 0.0604 | loss(pos) 0.0175 | loss(seq) 0.0413 | grad 1.7267 | lr 0.0000 | time_forward 1.3400 | time_backward 1.5200
[2023-10-25 14:03:16,723::train::INFO] [train] Iter 596578 | loss 0.8975 | loss(rot) 0.0788 | loss(pos) 0.7999 | loss(seq) 0.0188 | grad 9.1309 | lr 0.0000 | time_forward 3.3060 | time_backward 4.3620
[2023-10-25 14:03:28,150::train::INFO] [train] Iter 596579 | loss 0.8955 | loss(rot) 0.1339 | loss(pos) 0.6935 | loss(seq) 0.0681 | grad 11.2224 | lr 0.0000 | time_forward 6.0020 | time_backward 5.4210
[2023-10-25 14:03:38,938::train::INFO] [train] Iter 596580 | loss 0.5705 | loss(rot) 0.5127 | loss(pos) 0.0267 | loss(seq) 0.0311 | grad 4.2619 | lr 0.0000 | time_forward 5.0930 | time_backward 5.6910
[2023-10-25 14:03:52,316::train::INFO] [train] Iter 596581 | loss 1.1981 | loss(rot) 0.5027 | loss(pos) 0.1133 | loss(seq) 0.5821 | grad 5.3614 | lr 0.0000 | time_forward 8.2390 | time_backward 5.1350
[2023-10-25 14:03:55,025::train::INFO] [train] Iter 596582 | loss 0.6258 | loss(rot) 0.1932 | loss(pos) 0.0496 | loss(seq) 0.3830 | grad 3.1309 | lr 0.0000 | time_forward 1.2580 | time_backward 1.4490
[2023-10-25 14:03:56,878::train::INFO] [train] Iter 596583 | loss 1.8389 | loss(rot) 1.3852 | loss(pos) 0.0094 | loss(seq) 0.4444 | grad 5.6310 | lr 0.0000 | time_forward 0.8800 | time_backward 0.9700
[2023-10-25 14:04:06,324::train::INFO] [train] Iter 596584 | loss 0.2290 | loss(rot) 0.1275 | loss(pos) 0.0246 | loss(seq) 0.0768 | grad 1.9975 | lr 0.0000 | time_forward 3.8150 | time_backward 5.6270
[2023-10-25 14:04:15,156::train::INFO] [train] Iter 596585 | loss 1.5776 | loss(rot) 0.0071 | loss(pos) 1.5697 | loss(seq) 0.0008 | grad 9.9149 | lr 0.0000 | time_forward 3.7310 | time_backward 5.0990
[2023-10-25 14:04:18,035::train::INFO] [train] Iter 596586 | loss 0.4153 | loss(rot) 0.2807 | loss(pos) 0.0233 | loss(seq) 0.1113 | grad 17.3838 | lr 0.0000 | time_forward 1.3920 | time_backward 1.4830
[2023-10-25 14:04:27,353::train::INFO] [train] Iter 596587 | loss 0.5822 | loss(rot) 0.2218 | loss(pos) 0.1630 | loss(seq) 0.1974 | grad 3.1046 | lr 0.0000 | time_forward 3.9920 | time_backward 5.3230
[2023-10-25 14:04:40,055::train::INFO] [train] Iter 596588 | loss 0.3985 | loss(rot) 0.3376 | loss(pos) 0.0609 | loss(seq) 0.0000 | grad 2.8342 | lr 0.0000 | time_forward 5.3410 | time_backward 7.3570
[2023-10-25 14:04:48,903::train::INFO] [train] Iter 596589 | loss 0.9067 | loss(rot) 0.6553 | loss(pos) 0.0279 | loss(seq) 0.2235 | grad 2.6101 | lr 0.0000 | time_forward 4.0380 | time_backward 4.8070
[2023-10-25 14:04:51,231::train::INFO] [train] Iter 596590 | loss 0.7107 | loss(rot) 0.1292 | loss(pos) 0.2931 | loss(seq) 0.2884 | grad 3.4475 | lr 0.0000 | time_forward 1.0690 | time_backward 1.2550
[2023-10-25 14:04:59,019::train::INFO] [train] Iter 596591 | loss 1.0942 | loss(rot) 0.1368 | loss(pos) 0.5766 | loss(seq) 0.3807 | grad 5.8008 | lr 0.0000 | time_forward 3.3440 | time_backward 4.4400
[2023-10-25 14:05:01,581::train::INFO] [train] Iter 596592 | loss 1.4026 | loss(rot) 1.3582 | loss(pos) 0.0439 | loss(seq) 0.0005 | grad 4.3192 | lr 0.0000 | time_forward 1.1970 | time_backward 1.3630
[2023-10-25 14:05:10,671::train::INFO] [train] Iter 596593 | loss 0.5398 | loss(rot) 0.0963 | loss(pos) 0.4127 | loss(seq) 0.0308 | grad 8.7068 | lr 0.0000 | time_forward 3.7560 | time_backward 5.3300
[2023-10-25 14:05:15,218::train::INFO] [train] Iter 596594 | loss 0.9522 | loss(rot) 0.9121 | loss(pos) 0.0350 | loss(seq) 0.0050 | grad 4.0145 | lr 0.0000 | time_forward 2.0880 | time_backward 2.4550
[2023-10-25 14:05:17,835::train::INFO] [train] Iter 596595 | loss 0.6108 | loss(rot) 0.1491 | loss(pos) 0.1287 | loss(seq) 0.3330 | grad 3.8269 | lr 0.0000 | time_forward 1.1460 | time_backward 1.4680
[2023-10-25 14:05:28,987::train::INFO] [train] Iter 596596 | loss 1.6477 | loss(rot) 1.2293 | loss(pos) 0.0507 | loss(seq) 0.3677 | grad 3.7081 | lr 0.0000 | time_forward 4.6920 | time_backward 6.4560
[2023-10-25 14:05:37,098::train::INFO] [train] Iter 596597 | loss 1.7696 | loss(rot) 0.0933 | loss(pos) 1.6763 | loss(seq) 0.0001 | grad 11.3912 | lr 0.0000 | time_forward 3.5530 | time_backward 4.5550
[2023-10-25 14:05:45,622::train::INFO] [train] Iter 596598 | loss 2.1006 | loss(rot) 1.4846 | loss(pos) 0.1831 | loss(seq) 0.4329 | grad 10.7638 | lr 0.0000 | time_forward 3.5850 | time_backward 4.9370
[2023-10-25 14:05:53,167::train::INFO] [train] Iter 596599 | loss 1.5518 | loss(rot) 0.2515 | loss(pos) 1.2989 | loss(seq) 0.0013 | grad 11.2211 | lr 0.0000 | time_forward 3.1120 | time_backward 4.4300
[2023-10-25 14:06:01,137::train::INFO] [train] Iter 596600 | loss 0.8338 | loss(rot) 0.5317 | loss(pos) 0.0380 | loss(seq) 0.2642 | grad 2.3377 | lr 0.0000 | time_forward 3.3400 | time_backward 4.6260
[2023-10-25 14:06:07,870::train::INFO] [train] Iter 596601 | loss 1.5265 | loss(rot) 0.5588 | loss(pos) 0.6158 | loss(seq) 0.3520 | grad 10.1669 | lr 0.0000 | time_forward 2.8400 | time_backward 3.8900
[2023-10-25 14:06:17,477::train::INFO] [train] Iter 596602 | loss 0.6992 | loss(rot) 0.4343 | loss(pos) 0.1012 | loss(seq) 0.1637 | grad 3.3998 | lr 0.0000 | time_forward 4.2080 | time_backward 5.3960
[2023-10-25 14:06:20,239::train::INFO] [train] Iter 596603 | loss 0.4300 | loss(rot) 0.1941 | loss(pos) 0.0265 | loss(seq) 0.2094 | grad 2.9341 | lr 0.0000 | time_forward 1.3030 | time_backward 1.4560
[2023-10-25 14:06:23,065::train::INFO] [train] Iter 596604 | loss 0.5103 | loss(rot) 0.0998 | loss(pos) 0.4062 | loss(seq) 0.0043 | grad 5.9802 | lr 0.0000 | time_forward 1.3630 | time_backward 1.4600
[2023-10-25 14:06:31,107::train::INFO] [train] Iter 596605 | loss 0.2900 | loss(rot) 0.2271 | loss(pos) 0.0211 | loss(seq) 0.0418 | grad 3.0185 | lr 0.0000 | time_forward 3.5020 | time_backward 4.5370
[2023-10-25 14:06:40,170::train::INFO] [train] Iter 596606 | loss 0.9058 | loss(rot) 0.1600 | loss(pos) 0.6232 | loss(seq) 0.1226 | grad 8.6600 | lr 0.0000 | time_forward 3.7230 | time_backward 5.3370
[2023-10-25 14:06:48,678::train::INFO] [train] Iter 596607 | loss 0.3864 | loss(rot) 0.3282 | loss(pos) 0.0205 | loss(seq) 0.0378 | grad 3.6587 | lr 0.0000 | time_forward 3.6910 | time_backward 4.8140
[2023-10-25 14:06:51,456::train::INFO] [train] Iter 596608 | loss 1.9829 | loss(rot) 0.0091 | loss(pos) 1.9647 | loss(seq) 0.0091 | grad 15.1382 | lr 0.0000 | time_forward 1.3230 | time_backward 1.4510
[2023-10-25 14:07:00,475::train::INFO] [train] Iter 596609 | loss 1.1708 | loss(rot) 0.8425 | loss(pos) 0.0627 | loss(seq) 0.2656 | grad 3.3884 | lr 0.0000 | time_forward 3.7830 | time_backward 5.2340
[2023-10-25 14:07:03,192::train::INFO] [train] Iter 596610 | loss 0.8155 | loss(rot) 0.7453 | loss(pos) 0.0699 | loss(seq) 0.0003 | grad 37.2922 | lr 0.0000 | time_forward 1.3000 | time_backward 1.4140
[2023-10-25 14:07:12,515::train::INFO] [train] Iter 596611 | loss 0.6969 | loss(rot) 0.6367 | loss(pos) 0.0447 | loss(seq) 0.0155 | grad 3.3737 | lr 0.0000 | time_forward 3.8050 | time_backward 5.5140
[2023-10-25 14:07:15,332::train::INFO] [train] Iter 596612 | loss 0.3980 | loss(rot) 0.2627 | loss(pos) 0.0148 | loss(seq) 0.1205 | grad 1.7372 | lr 0.0000 | time_forward 1.4020 | time_backward 1.4110
[2023-10-25 14:07:22,938::train::INFO] [train] Iter 596613 | loss 0.9022 | loss(rot) 0.2125 | loss(pos) 0.5009 | loss(seq) 0.1888 | grad 3.9194 | lr 0.0000 | time_forward 3.3150 | time_backward 4.2880
[2023-10-25 14:07:25,877::train::INFO] [train] Iter 596614 | loss 0.3992 | loss(rot) 0.0935 | loss(pos) 0.0728 | loss(seq) 0.2329 | grad 3.6334 | lr 0.0000 | time_forward 1.4350 | time_backward 1.5010
[2023-10-25 14:07:33,828::train::INFO] [train] Iter 596615 | loss 1.1241 | loss(rot) 0.0845 | loss(pos) 0.4559 | loss(seq) 0.5837 | grad 7.4803 | lr 0.0000 | time_forward 3.4510 | time_backward 4.4680
[2023-10-25 14:07:36,750::train::INFO] [train] Iter 596616 | loss 0.9073 | loss(rot) 0.7907 | loss(pos) 0.0384 | loss(seq) 0.0782 | grad 21.6375 | lr 0.0000 | time_forward 1.3880 | time_backward 1.5310
[2023-10-25 14:07:39,446::train::INFO] [train] Iter 596617 | loss 0.5479 | loss(rot) 0.4493 | loss(pos) 0.0627 | loss(seq) 0.0359 | grad 2.7977 | lr 0.0000 | time_forward 1.2940 | time_backward 1.3990
[2023-10-25 14:07:47,300::train::INFO] [train] Iter 596618 | loss 0.6017 | loss(rot) 0.1550 | loss(pos) 0.0989 | loss(seq) 0.3478 | grad 5.6824 | lr 0.0000 | time_forward 3.3890 | time_backward 4.4610
[2023-10-25 14:07:56,340::train::INFO] [train] Iter 596619 | loss 1.6229 | loss(rot) 1.5599 | loss(pos) 0.0620 | loss(seq) 0.0010 | grad 3.3552 | lr 0.0000 | time_forward 3.9120 | time_backward 5.1250
[2023-10-25 14:08:04,093::train::INFO] [train] Iter 596620 | loss 0.3468 | loss(rot) 0.3107 | loss(pos) 0.0243 | loss(seq) 0.0118 | grad 2.8587 | lr 0.0000 | time_forward 3.3870 | time_backward 4.3620
[2023-10-25 14:08:12,590::train::INFO] [train] Iter 596621 | loss 1.9965 | loss(rot) 1.2539 | loss(pos) 0.3366 | loss(seq) 0.4060 | grad 8.9798 | lr 0.0000 | time_forward 3.9000 | time_backward 4.5950
[2023-10-25 14:08:21,973::train::INFO] [train] Iter 596622 | loss 0.8849 | loss(rot) 0.6618 | loss(pos) 0.0211 | loss(seq) 0.2020 | grad 3.5522 | lr 0.0000 | time_forward 4.0220 | time_backward 5.3570
[2023-10-25 14:08:24,750::train::INFO] [train] Iter 596623 | loss 0.1496 | loss(rot) 0.1214 | loss(pos) 0.0273 | loss(seq) 0.0010 | grad 1.6416 | lr 0.0000 | time_forward 1.3650 | time_backward 1.4090
[2023-10-25 14:08:32,408::train::INFO] [train] Iter 596624 | loss 0.6785 | loss(rot) 0.0358 | loss(pos) 0.6405 | loss(seq) 0.0022 | grad 9.3477 | lr 0.0000 | time_forward 3.3200 | time_backward 4.3350
[2023-10-25 14:08:41,550::train::INFO] [train] Iter 596625 | loss 1.7586 | loss(rot) 1.2176 | loss(pos) 0.1704 | loss(seq) 0.3706 | grad 3.2776 | lr 0.0000 | time_forward 3.7680 | time_backward 5.3710
[2023-10-25 14:08:50,702::train::INFO] [train] Iter 596626 | loss 0.3067 | loss(rot) 0.0705 | loss(pos) 0.0375 | loss(seq) 0.1986 | grad 2.3783 | lr 0.0000 | time_forward 3.7220 | time_backward 5.4260
[2023-10-25 14:09:00,063::train::INFO] [train] Iter 596627 | loss 0.4067 | loss(rot) 0.3280 | loss(pos) 0.0749 | loss(seq) 0.0038 | grad 6.1536 | lr 0.0000 | time_forward 3.8460 | time_backward 5.5110
[2023-10-25 14:09:03,382::train::INFO] [train] Iter 596628 | loss 1.6856 | loss(rot) 1.2240 | loss(pos) 0.1180 | loss(seq) 0.3436 | grad 4.7387 | lr 0.0000 | time_forward 1.4970 | time_backward 1.8190
[2023-10-25 14:09:11,022::train::INFO] [train] Iter 596629 | loss 1.8724 | loss(rot) 1.1856 | loss(pos) 0.2073 | loss(seq) 0.4795 | grad 3.9036 | lr 0.0000 | time_forward 3.1690 | time_backward 4.4550
[2023-10-25 14:09:19,239::train::INFO] [train] Iter 596630 | loss 0.4092 | loss(rot) 0.0978 | loss(pos) 0.2970 | loss(seq) 0.0144 | grad 4.3237 | lr 0.0000 | time_forward 3.4370 | time_backward 4.7770
[2023-10-25 14:09:26,902::train::INFO] [train] Iter 596631 | loss 0.3940 | loss(rot) 0.1924 | loss(pos) 0.0219 | loss(seq) 0.1797 | grad 3.3496 | lr 0.0000 | time_forward 3.3070 | time_backward 4.3540
[2023-10-25 14:09:36,323::train::INFO] [train] Iter 596632 | loss 0.2800 | loss(rot) 0.0406 | loss(pos) 0.2304 | loss(seq) 0.0089 | grad 3.5327 | lr 0.0000 | time_forward 3.9850 | time_backward 5.4320
[2023-10-25 14:09:39,316::train::INFO] [train] Iter 596633 | loss 1.8727 | loss(rot) 1.2225 | loss(pos) 0.0620 | loss(seq) 0.5882 | grad 5.0401 | lr 0.0000 | time_forward 1.4840 | time_backward 1.5050
[2023-10-25 14:09:47,084::train::INFO] [train] Iter 596634 | loss 0.5053 | loss(rot) 0.2411 | loss(pos) 0.0194 | loss(seq) 0.2447 | grad 3.2577 | lr 0.0000 | time_forward 3.3520 | time_backward 4.4130
[2023-10-25 14:09:54,688::train::INFO] [train] Iter 596635 | loss 0.3196 | loss(rot) 0.2258 | loss(pos) 0.0782 | loss(seq) 0.0157 | grad 2.7227 | lr 0.0000 | time_forward 3.3490 | time_backward 4.2520
[2023-10-25 14:10:01,758::train::INFO] [train] Iter 596636 | loss 0.3546 | loss(rot) 0.2000 | loss(pos) 0.0166 | loss(seq) 0.1380 | grad 2.8722 | lr 0.0000 | time_forward 3.0150 | time_backward 4.0510
[2023-10-25 14:10:04,676::train::INFO] [train] Iter 596637 | loss 0.4247 | loss(rot) 0.0718 | loss(pos) 0.3255 | loss(seq) 0.0274 | grad 6.0002 | lr 0.0000 | time_forward 1.3890 | time_backward 1.5250
[2023-10-25 14:10:12,795::train::INFO] [train] Iter 596638 | loss 0.9326 | loss(rot) 0.3415 | loss(pos) 0.2765 | loss(seq) 0.3145 | grad 5.0984 | lr 0.0000 | time_forward 3.4830 | time_backward 4.6320
[2023-10-25 14:10:16,074::train::INFO] [train] Iter 596639 | loss 2.6002 | loss(rot) 0.1509 | loss(pos) 2.4486 | loss(seq) 0.0007 | grad 9.0997 | lr 0.0000 | time_forward 1.5510 | time_backward 1.7210
[2023-10-25 14:10:19,188::train::INFO] [train] Iter 596640 | loss 0.7164 | loss(rot) 0.6574 | loss(pos) 0.0329 | loss(seq) 0.0261 | grad 51.6164 | lr 0.0000 | time_forward 1.4510 | time_backward 1.6600
[2023-10-25 14:10:30,249::train::INFO] [train] Iter 596641 | loss 0.3351 | loss(rot) 0.1832 | loss(pos) 0.0518 | loss(seq) 0.1001 | grad 1.9968 | lr 0.0000 | time_forward 5.3040 | time_backward 5.7540
[2023-10-25 14:10:40,490::train::INFO] [train] Iter 596642 | loss 0.4246 | loss(rot) 0.1942 | loss(pos) 0.0617 | loss(seq) 0.1687 | grad 3.4223 | lr 0.0000 | time_forward 4.3720 | time_backward 5.8660
[2023-10-25 14:10:47,322::train::INFO] [train] Iter 596643 | loss 0.9749 | loss(rot) 0.0116 | loss(pos) 0.9623 | loss(seq) 0.0010 | grad 9.8642 | lr 0.0000 | time_forward 3.0150 | time_backward 3.8140
[2023-10-25 14:10:55,431::train::INFO] [train] Iter 596644 | loss 0.2770 | loss(rot) 0.0660 | loss(pos) 0.1991 | loss(seq) 0.0119 | grad 5.5466 | lr 0.0000 | time_forward 3.5140 | time_backward 4.5830
[2023-10-25 14:10:58,384::train::INFO] [train] Iter 596645 | loss 0.4165 | loss(rot) 0.0796 | loss(pos) 0.3154 | loss(seq) 0.0215 | grad 6.9569 | lr 0.0000 | time_forward 1.4590 | time_backward 1.4900
[2023-10-25 14:11:01,018::train::INFO] [train] Iter 596646 | loss 0.5207 | loss(rot) 0.1710 | loss(pos) 0.0310 | loss(seq) 0.3187 | grad 4.3241 | lr 0.0000 | time_forward 1.2840 | time_backward 1.3470
[2023-10-25 14:11:09,752::train::INFO] [train] Iter 596647 | loss 0.8050 | loss(rot) 0.4475 | loss(pos) 0.2009 | loss(seq) 0.1565 | grad 4.8851 | lr 0.0000 | time_forward 3.8310 | time_backward 4.9010
[2023-10-25 14:11:18,550::train::INFO] [train] Iter 596648 | loss 1.1942 | loss(rot) 0.8814 | loss(pos) 0.0520 | loss(seq) 0.2608 | grad 3.0739 | lr 0.0000 | time_forward 3.7960 | time_backward 4.9980
[2023-10-25 14:11:27,813::train::INFO] [train] Iter 596649 | loss 2.6364 | loss(rot) 2.1441 | loss(pos) 0.1629 | loss(seq) 0.3294 | grad 8.8046 | lr 0.0000 | time_forward 3.9980 | time_backward 5.2610
[2023-10-25 14:11:37,492::train::INFO] [train] Iter 596650 | loss 0.4886 | loss(rot) 0.4381 | loss(pos) 0.0505 | loss(seq) 0.0000 | grad 4.1394 | lr 0.0000 | time_forward 4.4240 | time_backward 5.2520
[2023-10-25 14:11:40,417::train::INFO] [train] Iter 596651 | loss 0.6502 | loss(rot) 0.0429 | loss(pos) 0.5942 | loss(seq) 0.0131 | grad 6.7845 | lr 0.0000 | time_forward 1.4760 | time_backward 1.4450
[2023-10-25 14:11:50,008::train::INFO] [train] Iter 596652 | loss 2.0114 | loss(rot) 1.4189 | loss(pos) 0.1159 | loss(seq) 0.4766 | grad 5.8515 | lr 0.0000 | time_forward 4.1460 | time_backward 5.4430
[2023-10-25 14:12:00,208::train::INFO] [train] Iter 596653 | loss 0.3280 | loss(rot) 0.1372 | loss(pos) 0.1688 | loss(seq) 0.0221 | grad 4.3613 | lr 0.0000 | time_forward 4.2930 | time_backward 5.9040
[2023-10-25 14:12:03,371::train::INFO] [train] Iter 596654 | loss 0.3540 | loss(rot) 0.3372 | loss(pos) 0.0142 | loss(seq) 0.0027 | grad 2.9944 | lr 0.0000 | time_forward 1.5700 | time_backward 1.5890
[2023-10-25 14:12:13,233::train::INFO] [train] Iter 596655 | loss 0.3799 | loss(rot) 0.0797 | loss(pos) 0.2598 | loss(seq) 0.0404 | grad 3.9164 | lr 0.0000 | time_forward 4.0490 | time_backward 5.8100
[2023-10-25 14:12:15,055::train::INFO] [train] Iter 596656 | loss 2.4804 | loss(rot) 2.1105 | loss(pos) 0.1938 | loss(seq) 0.1761 | grad 7.2864 | lr 0.0000 | time_forward 0.9650 | time_backward 0.8540
[2023-10-25 14:12:25,094::train::INFO] [train] Iter 596657 | loss 1.4171 | loss(rot) 1.2595 | loss(pos) 0.0418 | loss(seq) 0.1159 | grad 4.3366 | lr 0.0000 | time_forward 4.2370 | time_backward 5.7980
[2023-10-25 14:12:33,675::train::INFO] [train] Iter 596658 | loss 0.8081 | loss(rot) 0.7581 | loss(pos) 0.0500 | loss(seq) 0.0000 | grad 3.4502 | lr 0.0000 | time_forward 3.5080 | time_backward 5.0700
[2023-10-25 14:12:42,459::train::INFO] [train] Iter 596659 | loss 0.9961 | loss(rot) 0.6873 | loss(pos) 0.0580 | loss(seq) 0.2508 | grad 7.4230 | lr 0.0000 | time_forward 3.7800 | time_backward 5.0020
[2023-10-25 14:12:47,062::train::INFO] [train] Iter 596660 | loss 0.5834 | loss(rot) 0.1120 | loss(pos) 0.0420 | loss(seq) 0.4294 | grad 6.6405 | lr 0.0000 | time_forward 2.1360 | time_backward 2.4630
[2023-10-25 14:12:56,182::train::INFO] [train] Iter 596661 | loss 0.7889 | loss(rot) 0.5405 | loss(pos) 0.0269 | loss(seq) 0.2214 | grad 3.3354 | lr 0.0000 | time_forward 3.6710 | time_backward 5.4450
[2023-10-25 14:12:58,578::train::INFO] [train] Iter 596662 | loss 0.6912 | loss(rot) 0.0549 | loss(pos) 0.5260 | loss(seq) 0.1103 | grad 4.3785 | lr 0.0000 | time_forward 1.1400 | time_backward 1.2540
[2023-10-25 14:13:08,571::train::INFO] [train] Iter 596663 | loss 0.7019 | loss(rot) 0.6043 | loss(pos) 0.0280 | loss(seq) 0.0697 | grad 3.0628 | lr 0.0000 | time_forward 4.0550 | time_backward 5.9340
[2023-10-25 14:13:15,289::train::INFO] [train] Iter 596664 | loss 0.5045 | loss(rot) 0.1471 | loss(pos) 0.3015 | loss(seq) 0.0559 | grad 4.4337 | lr 0.0000 | time_forward 2.9490 | time_backward 3.7660
[2023-10-25 14:13:25,411::train::INFO] [train] Iter 596665 | loss 2.0000 | loss(rot) 1.3150 | loss(pos) 0.1468 | loss(seq) 0.5383 | grad 3.6803 | lr 0.0000 | time_forward 4.1880 | time_backward 5.9320