text
stringlengths
56
1.16k
[2023-10-25 14:25:34,158::train::INFO] [train] Iter 596766 | loss 0.3452 | loss(rot) 0.0628 | loss(pos) 0.0513 | loss(seq) 0.2311 | grad 3.4934 | lr 0.0000 | time_forward 3.3160 | time_backward 4.6760
[2023-10-25 14:25:43,263::train::INFO] [train] Iter 596767 | loss 0.6085 | loss(rot) 0.3931 | loss(pos) 0.1975 | loss(seq) 0.0179 | grad 5.1093 | lr 0.0000 | time_forward 3.9200 | time_backward 5.1820
[2023-10-25 14:25:55,042::train::INFO] [train] Iter 596768 | loss 0.9650 | loss(rot) 0.7771 | loss(pos) 0.0347 | loss(seq) 0.1532 | grad 3.1659 | lr 0.0000 | time_forward 5.7760 | time_backward 6.0010
[2023-10-25 14:26:06,325::train::INFO] [train] Iter 596769 | loss 0.9045 | loss(rot) 0.8290 | loss(pos) 0.0157 | loss(seq) 0.0598 | grad 4.0013 | lr 0.0000 | time_forward 5.0380 | time_backward 6.2410
[2023-10-25 14:26:15,200::train::INFO] [train] Iter 596770 | loss 0.2590 | loss(rot) 0.2198 | loss(pos) 0.0387 | loss(seq) 0.0006 | grad 2.9859 | lr 0.0000 | time_forward 3.8240 | time_backward 5.0490
[2023-10-25 14:26:24,299::train::INFO] [train] Iter 596771 | loss 0.6216 | loss(rot) 0.5137 | loss(pos) 0.0273 | loss(seq) 0.0807 | grad 4.4948 | lr 0.0000 | time_forward 3.7630 | time_backward 5.3320
[2023-10-25 14:26:27,035::train::INFO] [train] Iter 596772 | loss 1.2918 | loss(rot) 0.0298 | loss(pos) 1.2617 | loss(seq) 0.0003 | grad 18.2009 | lr 0.0000 | time_forward 1.3020 | time_backward 1.4310
[2023-10-25 14:26:34,718::train::INFO] [train] Iter 596773 | loss 0.5056 | loss(rot) 0.1519 | loss(pos) 0.0353 | loss(seq) 0.3185 | grad 2.3944 | lr 0.0000 | time_forward 3.0930 | time_backward 4.5860
[2023-10-25 14:26:45,231::train::INFO] [train] Iter 596774 | loss 0.5637 | loss(rot) 0.1210 | loss(pos) 0.2475 | loss(seq) 0.1953 | grad 3.2327 | lr 0.0000 | time_forward 4.5690 | time_backward 5.9410
[2023-10-25 14:26:47,837::train::INFO] [train] Iter 596775 | loss 0.3014 | loss(rot) 0.1233 | loss(pos) 0.0367 | loss(seq) 0.1414 | grad 3.4644 | lr 0.0000 | time_forward 1.2660 | time_backward 1.3360
[2023-10-25 14:26:50,645::train::INFO] [train] Iter 596776 | loss 0.9421 | loss(rot) 0.7526 | loss(pos) 0.0320 | loss(seq) 0.1575 | grad 3.9485 | lr 0.0000 | time_forward 1.2930 | time_backward 1.4990
[2023-10-25 14:26:53,589::train::INFO] [train] Iter 596777 | loss 0.1316 | loss(rot) 0.0164 | loss(pos) 0.0315 | loss(seq) 0.0837 | grad 2.0198 | lr 0.0000 | time_forward 1.3970 | time_backward 1.5440
[2023-10-25 14:27:01,827::train::INFO] [train] Iter 596778 | loss 0.5381 | loss(rot) 0.3897 | loss(pos) 0.0268 | loss(seq) 0.1215 | grad 4.9907 | lr 0.0000 | time_forward 3.4670 | time_backward 4.7680
[2023-10-25 14:27:09,799::train::INFO] [train] Iter 596779 | loss 0.7010 | loss(rot) 0.2660 | loss(pos) 0.1602 | loss(seq) 0.2748 | grad 3.5077 | lr 0.0000 | time_forward 3.2940 | time_backward 4.6740
[2023-10-25 14:27:19,642::train::INFO] [train] Iter 596780 | loss 0.9570 | loss(rot) 0.6326 | loss(pos) 0.0653 | loss(seq) 0.2591 | grad 4.3759 | lr 0.0000 | time_forward 3.9140 | time_backward 5.9270
[2023-10-25 14:27:28,220::train::INFO] [train] Iter 596781 | loss 2.0786 | loss(rot) 2.0358 | loss(pos) 0.0394 | loss(seq) 0.0033 | grad 4.7113 | lr 0.0000 | time_forward 3.9890 | time_backward 4.5860
[2023-10-25 14:27:36,728::train::INFO] [train] Iter 596782 | loss 0.9071 | loss(rot) 0.4942 | loss(pos) 0.0352 | loss(seq) 0.3777 | grad 20.0985 | lr 0.0000 | time_forward 3.4280 | time_backward 5.0760
[2023-10-25 14:27:45,342::train::INFO] [train] Iter 596783 | loss 3.3483 | loss(rot) 0.1343 | loss(pos) 3.2139 | loss(seq) 0.0001 | grad 22.2915 | lr 0.0000 | time_forward 3.5230 | time_backward 5.0890
[2023-10-25 14:27:52,733::train::INFO] [train] Iter 596784 | loss 0.6558 | loss(rot) 0.5541 | loss(pos) 0.0143 | loss(seq) 0.0873 | grad 26.4546 | lr 0.0000 | time_forward 3.1880 | time_backward 4.1990
[2023-10-25 14:28:06,242::train::INFO] [train] Iter 596785 | loss 0.6772 | loss(rot) 0.2348 | loss(pos) 0.1971 | loss(seq) 0.2453 | grad 2.8914 | lr 0.0000 | time_forward 4.9630 | time_backward 8.5430
[2023-10-25 14:28:15,487::train::INFO] [train] Iter 596786 | loss 0.7657 | loss(rot) 0.7316 | loss(pos) 0.0340 | loss(seq) 0.0001 | grad 4.1282 | lr 0.0000 | time_forward 4.1940 | time_backward 5.0470
[2023-10-25 14:28:23,337::train::INFO] [train] Iter 596787 | loss 1.4143 | loss(rot) 1.1145 | loss(pos) 0.0400 | loss(seq) 0.2597 | grad 4.0383 | lr 0.0000 | time_forward 3.3210 | time_backward 4.5260
[2023-10-25 14:28:34,533::train::INFO] [train] Iter 596788 | loss 0.4039 | loss(rot) 0.3810 | loss(pos) 0.0203 | loss(seq) 0.0026 | grad 3.6382 | lr 0.0000 | time_forward 4.9830 | time_backward 6.2100
[2023-10-25 14:28:46,324::train::INFO] [train] Iter 596789 | loss 0.2733 | loss(rot) 0.1031 | loss(pos) 0.1120 | loss(seq) 0.0583 | grad 2.7769 | lr 0.0000 | time_forward 5.6310 | time_backward 6.1560
[2023-10-25 14:28:55,488::train::INFO] [train] Iter 596790 | loss 1.4546 | loss(rot) 1.3746 | loss(pos) 0.0216 | loss(seq) 0.0584 | grad 4.5247 | lr 0.0000 | time_forward 3.8160 | time_backward 5.3450
[2023-10-25 14:28:57,743::train::INFO] [train] Iter 596791 | loss 0.3013 | loss(rot) 0.2393 | loss(pos) 0.0453 | loss(seq) 0.0167 | grad 2.6828 | lr 0.0000 | time_forward 1.0450 | time_backward 1.2070
[2023-10-25 14:29:07,568::train::INFO] [train] Iter 596792 | loss 1.1920 | loss(rot) 1.0937 | loss(pos) 0.0560 | loss(seq) 0.0423 | grad 3.8622 | lr 0.0000 | time_forward 4.3640 | time_backward 5.4580
[2023-10-25 14:29:10,140::train::INFO] [train] Iter 596793 | loss 0.4200 | loss(rot) 0.1125 | loss(pos) 0.1407 | loss(seq) 0.1668 | grad 2.0174 | lr 0.0000 | time_forward 1.1670 | time_backward 1.4030
[2023-10-25 14:29:19,502::train::INFO] [train] Iter 596794 | loss 0.6178 | loss(rot) 0.2339 | loss(pos) 0.0694 | loss(seq) 0.3145 | grad 3.3433 | lr 0.0000 | time_forward 3.8290 | time_backward 5.5120
[2023-10-25 14:29:29,079::train::INFO] [train] Iter 596795 | loss 0.9683 | loss(rot) 0.6466 | loss(pos) 0.0721 | loss(seq) 0.2496 | grad 2.7211 | lr 0.0000 | time_forward 3.7690 | time_backward 5.8060
[2023-10-25 14:29:31,870::train::INFO] [train] Iter 596796 | loss 1.4409 | loss(rot) 0.8648 | loss(pos) 0.1463 | loss(seq) 0.4298 | grad 3.1156 | lr 0.0000 | time_forward 1.3120 | time_backward 1.4760
[2023-10-25 14:29:34,672::train::INFO] [train] Iter 596797 | loss 0.4094 | loss(rot) 0.0841 | loss(pos) 0.2428 | loss(seq) 0.0826 | grad 3.6475 | lr 0.0000 | time_forward 1.3650 | time_backward 1.4320
[2023-10-25 14:29:37,457::train::INFO] [train] Iter 596798 | loss 0.5331 | loss(rot) 0.5172 | loss(pos) 0.0100 | loss(seq) 0.0059 | grad 103.9312 | lr 0.0000 | time_forward 1.3750 | time_backward 1.4080
[2023-10-25 14:29:46,590::train::INFO] [train] Iter 596799 | loss 0.4753 | loss(rot) 0.4035 | loss(pos) 0.0711 | loss(seq) 0.0007 | grad 3.9290 | lr 0.0000 | time_forward 3.8450 | time_backward 5.2850
[2023-10-25 14:29:55,068::train::INFO] [train] Iter 596800 | loss 0.9463 | loss(rot) 0.8624 | loss(pos) 0.0425 | loss(seq) 0.0414 | grad 10.5811 | lr 0.0000 | time_forward 3.5350 | time_backward 4.9390
[2023-10-25 14:30:07,420::train::INFO] [train] Iter 596801 | loss 0.5968 | loss(rot) 0.1695 | loss(pos) 0.0462 | loss(seq) 0.3810 | grad 3.7800 | lr 0.0000 | time_forward 7.0910 | time_backward 5.2590
[2023-10-25 14:30:16,738::train::INFO] [train] Iter 596802 | loss 0.6690 | loss(rot) 0.4245 | loss(pos) 0.0417 | loss(seq) 0.2027 | grad 3.1812 | lr 0.0000 | time_forward 3.8780 | time_backward 5.4360
[2023-10-25 14:30:26,883::train::INFO] [train] Iter 596803 | loss 0.6191 | loss(rot) 0.4726 | loss(pos) 0.0465 | loss(seq) 0.1000 | grad 3.2081 | lr 0.0000 | time_forward 5.6500 | time_backward 4.4910
[2023-10-25 14:30:33,908::train::INFO] [train] Iter 596804 | loss 1.6838 | loss(rot) 0.9888 | loss(pos) 0.2383 | loss(seq) 0.4567 | grad 3.8063 | lr 0.0000 | time_forward 2.3150 | time_backward 4.7060
[2023-10-25 14:30:41,518::train::INFO] [train] Iter 596805 | loss 1.4912 | loss(rot) 1.2364 | loss(pos) 0.0664 | loss(seq) 0.1884 | grad 18.5397 | lr 0.0000 | time_forward 3.2770 | time_backward 4.3180
[2023-10-25 14:30:53,405::train::INFO] [train] Iter 596806 | loss 0.4273 | loss(rot) 0.0740 | loss(pos) 0.1476 | loss(seq) 0.2058 | grad 2.2003 | lr 0.0000 | time_forward 4.2230 | time_backward 7.6610
[2023-10-25 14:30:56,961::train::INFO] [train] Iter 596807 | loss 0.7699 | loss(rot) 0.5732 | loss(pos) 0.1383 | loss(seq) 0.0584 | grad 4.0944 | lr 0.0000 | time_forward 2.0840 | time_backward 1.4690
[2023-10-25 14:31:02,331::train::INFO] [train] Iter 596808 | loss 0.8892 | loss(rot) 0.2672 | loss(pos) 0.2417 | loss(seq) 0.3802 | grad 4.9996 | lr 0.0000 | time_forward 2.6210 | time_backward 2.7450
[2023-10-25 14:31:05,232::train::INFO] [train] Iter 596809 | loss 0.5477 | loss(rot) 0.0727 | loss(pos) 0.0706 | loss(seq) 0.4045 | grad 4.0414 | lr 0.0000 | time_forward 1.3750 | time_backward 1.4970
[2023-10-25 14:31:16,155::train::INFO] [train] Iter 596810 | loss 0.2666 | loss(rot) 0.1639 | loss(pos) 0.0217 | loss(seq) 0.0809 | grad 2.3312 | lr 0.0000 | time_forward 5.6190 | time_backward 5.3010
[2023-10-25 14:31:24,215::train::INFO] [train] Iter 596811 | loss 1.9172 | loss(rot) 1.6314 | loss(pos) 0.0609 | loss(seq) 0.2248 | grad 6.9483 | lr 0.0000 | time_forward 3.4330 | time_backward 4.6240
[2023-10-25 14:31:31,010::train::INFO] [train] Iter 596812 | loss 1.5366 | loss(rot) 1.5140 | loss(pos) 0.0211 | loss(seq) 0.0015 | grad 4.3006 | lr 0.0000 | time_forward 2.9410 | time_backward 3.8510
[2023-10-25 14:31:40,027::train::INFO] [train] Iter 596813 | loss 0.4778 | loss(rot) 0.4351 | loss(pos) 0.0426 | loss(seq) 0.0002 | grad 6.2135 | lr 0.0000 | time_forward 3.8780 | time_backward 5.1370
[2023-10-25 14:31:46,468::train::INFO] [train] Iter 596814 | loss 0.5264 | loss(rot) 0.1561 | loss(pos) 0.0489 | loss(seq) 0.3214 | grad 3.2200 | lr 0.0000 | time_forward 2.7910 | time_backward 3.6460
[2023-10-25 14:31:54,973::train::INFO] [train] Iter 596815 | loss 0.3068 | loss(rot) 0.2671 | loss(pos) 0.0396 | loss(seq) 0.0001 | grad 3.3249 | lr 0.0000 | time_forward 3.6900 | time_backward 4.8120
[2023-10-25 14:32:04,067::train::INFO] [train] Iter 596816 | loss 0.1858 | loss(rot) 0.0912 | loss(pos) 0.0107 | loss(seq) 0.0839 | grad 7.5650 | lr 0.0000 | time_forward 3.7970 | time_backward 5.2940
[2023-10-25 14:32:11,548::train::INFO] [train] Iter 596817 | loss 0.3210 | loss(rot) 0.0812 | loss(pos) 0.0291 | loss(seq) 0.2107 | grad 2.3212 | lr 0.0000 | time_forward 3.1610 | time_backward 4.3170
[2023-10-25 14:32:19,080::train::INFO] [train] Iter 596818 | loss 1.2108 | loss(rot) 0.6712 | loss(pos) 0.2182 | loss(seq) 0.3214 | grad 3.0209 | lr 0.0000 | time_forward 3.1710 | time_backward 4.3590
[2023-10-25 14:32:28,209::train::INFO] [train] Iter 596819 | loss 0.2259 | loss(rot) 0.1890 | loss(pos) 0.0369 | loss(seq) 0.0000 | grad 2.2352 | lr 0.0000 | time_forward 3.7380 | time_backward 5.3880
[2023-10-25 14:32:36,091::train::INFO] [train] Iter 596820 | loss 1.2765 | loss(rot) 0.6434 | loss(pos) 0.0966 | loss(seq) 0.5365 | grad 4.0470 | lr 0.0000 | time_forward 3.3450 | time_backward 4.5330
[2023-10-25 14:32:38,938::train::INFO] [train] Iter 596821 | loss 0.3387 | loss(rot) 0.0373 | loss(pos) 0.2979 | loss(seq) 0.0036 | grad 6.6052 | lr 0.0000 | time_forward 1.3480 | time_backward 1.4960
[2023-10-25 14:32:41,794::train::INFO] [train] Iter 596822 | loss 0.4767 | loss(rot) 0.3809 | loss(pos) 0.0147 | loss(seq) 0.0812 | grad 2.6320 | lr 0.0000 | time_forward 1.2980 | time_backward 1.5550
[2023-10-25 14:32:44,306::train::INFO] [train] Iter 596823 | loss 0.4610 | loss(rot) 0.1157 | loss(pos) 0.3065 | loss(seq) 0.0388 | grad 3.8430 | lr 0.0000 | time_forward 1.1330 | time_backward 1.3770
[2023-10-25 14:32:47,061::train::INFO] [train] Iter 596824 | loss 0.3820 | loss(rot) 0.0530 | loss(pos) 0.0158 | loss(seq) 0.3131 | grad 2.4577 | lr 0.0000 | time_forward 1.2680 | time_backward 1.4830
[2023-10-25 14:32:49,870::train::INFO] [train] Iter 596825 | loss 0.5505 | loss(rot) 0.4264 | loss(pos) 0.0351 | loss(seq) 0.0890 | grad 2.1872 | lr 0.0000 | time_forward 1.3500 | time_backward 1.4560
[2023-10-25 14:32:56,825::train::INFO] [train] Iter 596826 | loss 0.3621 | loss(rot) 0.1968 | loss(pos) 0.0234 | loss(seq) 0.1419 | grad 1.4557 | lr 0.0000 | time_forward 3.0150 | time_backward 3.9360
[2023-10-25 14:33:05,939::train::INFO] [train] Iter 596827 | loss 1.0043 | loss(rot) 0.4022 | loss(pos) 0.5576 | loss(seq) 0.0444 | grad 5.1717 | lr 0.0000 | time_forward 3.8950 | time_backward 5.2170
[2023-10-25 14:33:08,665::train::INFO] [train] Iter 596828 | loss 0.2035 | loss(rot) 0.1587 | loss(pos) 0.0448 | loss(seq) 0.0000 | grad 2.8513 | lr 0.0000 | time_forward 1.3090 | time_backward 1.4120
[2023-10-25 14:33:11,462::train::INFO] [train] Iter 596829 | loss 1.2604 | loss(rot) 0.5701 | loss(pos) 0.2553 | loss(seq) 0.4350 | grad 6.0531 | lr 0.0000 | time_forward 1.3610 | time_backward 1.4330
[2023-10-25 14:33:20,027::train::INFO] [train] Iter 596830 | loss 0.2907 | loss(rot) 0.2427 | loss(pos) 0.0267 | loss(seq) 0.0214 | grad 5.6773 | lr 0.0000 | time_forward 3.6810 | time_backward 4.8800
[2023-10-25 14:33:22,804::train::INFO] [train] Iter 596831 | loss 0.5388 | loss(rot) 0.3425 | loss(pos) 0.0414 | loss(seq) 0.1549 | grad 4.2405 | lr 0.0000 | time_forward 1.3260 | time_backward 1.4490
[2023-10-25 14:33:30,885::train::INFO] [train] Iter 596832 | loss 0.6382 | loss(rot) 0.0264 | loss(pos) 0.6078 | loss(seq) 0.0041 | grad 5.8711 | lr 0.0000 | time_forward 3.4580 | time_backward 4.5920
[2023-10-25 14:33:39,177::train::INFO] [train] Iter 596833 | loss 0.3708 | loss(rot) 0.0699 | loss(pos) 0.0532 | loss(seq) 0.2477 | grad 2.7198 | lr 0.0000 | time_forward 3.5770 | time_backward 4.7120
[2023-10-25 14:33:47,366::train::INFO] [train] Iter 596834 | loss 0.4699 | loss(rot) 0.1095 | loss(pos) 0.2010 | loss(seq) 0.1594 | grad 6.1247 | lr 0.0000 | time_forward 3.5130 | time_backward 4.6720
[2023-10-25 14:33:56,585::train::INFO] [train] Iter 596835 | loss 0.3590 | loss(rot) 0.3211 | loss(pos) 0.0378 | loss(seq) 0.0000 | grad 2.2579 | lr 0.0000 | time_forward 3.7810 | time_backward 5.4350
[2023-10-25 14:34:04,773::train::INFO] [train] Iter 596836 | loss 0.2897 | loss(rot) 0.1006 | loss(pos) 0.0325 | loss(seq) 0.1567 | grad 3.0417 | lr 0.0000 | time_forward 3.5310 | time_backward 4.6540
[2023-10-25 14:34:12,761::train::INFO] [train] Iter 596837 | loss 0.3308 | loss(rot) 0.3016 | loss(pos) 0.0288 | loss(seq) 0.0004 | grad 26.3936 | lr 0.0000 | time_forward 3.3060 | time_backward 4.6790
[2023-10-25 14:34:21,450::train::INFO] [train] Iter 596838 | loss 0.4113 | loss(rot) 0.1328 | loss(pos) 0.0596 | loss(seq) 0.2189 | grad 3.1736 | lr 0.0000 | time_forward 3.6300 | time_backward 5.0570
[2023-10-25 14:34:29,642::train::INFO] [train] Iter 596839 | loss 0.3015 | loss(rot) 0.0607 | loss(pos) 0.0861 | loss(seq) 0.1547 | grad 2.5188 | lr 0.0000 | time_forward 3.4400 | time_backward 4.7490
[2023-10-25 14:34:39,735::train::INFO] [train] Iter 596840 | loss 0.6701 | loss(rot) 0.3015 | loss(pos) 0.0773 | loss(seq) 0.2913 | grad 3.9897 | lr 0.0000 | time_forward 4.1010 | time_backward 5.9880
[2023-10-25 14:34:46,708::train::INFO] [train] Iter 596841 | loss 0.3287 | loss(rot) 0.0997 | loss(pos) 0.2249 | loss(seq) 0.0041 | grad 5.4677 | lr 0.0000 | time_forward 3.0210 | time_backward 3.9490
[2023-10-25 14:34:55,168::train::INFO] [train] Iter 596842 | loss 2.1668 | loss(rot) 0.1145 | loss(pos) 2.0519 | loss(seq) 0.0003 | grad 11.7802 | lr 0.0000 | time_forward 3.7080 | time_backward 4.7480
[2023-10-25 14:35:02,670::train::INFO] [train] Iter 596843 | loss 0.6492 | loss(rot) 0.1662 | loss(pos) 0.0535 | loss(seq) 0.4295 | grad 2.7217 | lr 0.0000 | time_forward 3.2340 | time_backward 4.2660
[2023-10-25 14:35:05,370::train::INFO] [train] Iter 596844 | loss 0.7224 | loss(rot) 0.3925 | loss(pos) 0.0477 | loss(seq) 0.2822 | grad 5.1985 | lr 0.0000 | time_forward 1.2930 | time_backward 1.4030
[2023-10-25 14:35:08,031::train::INFO] [train] Iter 596845 | loss 0.6635 | loss(rot) 0.0747 | loss(pos) 0.1873 | loss(seq) 0.4015 | grad 4.7763 | lr 0.0000 | time_forward 1.2820 | time_backward 1.3770
[2023-10-25 14:35:15,092::train::INFO] [train] Iter 596846 | loss 0.6553 | loss(rot) 0.0867 | loss(pos) 0.1209 | loss(seq) 0.4478 | grad 2.9900 | lr 0.0000 | time_forward 3.0380 | time_backward 4.0040
[2023-10-25 14:35:22,684::train::INFO] [train] Iter 596847 | loss 1.1853 | loss(rot) 0.8591 | loss(pos) 0.0620 | loss(seq) 0.2641 | grad 4.2519 | lr 0.0000 | time_forward 3.2860 | time_backward 4.3030
[2023-10-25 14:35:31,117::train::INFO] [train] Iter 596848 | loss 0.3416 | loss(rot) 0.1972 | loss(pos) 0.0208 | loss(seq) 0.1236 | grad 2.9868 | lr 0.0000 | time_forward 3.4850 | time_backward 4.9450
[2023-10-25 14:35:39,535::train::INFO] [train] Iter 596849 | loss 0.6234 | loss(rot) 0.2642 | loss(pos) 0.0458 | loss(seq) 0.3134 | grad 4.8067 | lr 0.0000 | time_forward 3.5080 | time_backward 4.9080
[2023-10-25 14:35:47,905::train::INFO] [train] Iter 596850 | loss 0.2968 | loss(rot) 0.0737 | loss(pos) 0.1722 | loss(seq) 0.0509 | grad 3.0371 | lr 0.0000 | time_forward 3.3920 | time_backward 4.9740
[2023-10-25 14:35:51,162::train::INFO] [train] Iter 596851 | loss 0.2665 | loss(rot) 0.1674 | loss(pos) 0.0156 | loss(seq) 0.0835 | grad 2.7532 | lr 0.0000 | time_forward 1.5230 | time_backward 1.7310
[2023-10-25 14:36:01,558::train::INFO] [train] Iter 596852 | loss 1.8263 | loss(rot) 1.7694 | loss(pos) 0.0569 | loss(seq) 0.0000 | grad 22.1541 | lr 0.0000 | time_forward 4.5330 | time_backward 5.8600
[2023-10-25 14:36:10,261::train::INFO] [train] Iter 596853 | loss 0.2260 | loss(rot) 0.1096 | loss(pos) 0.0214 | loss(seq) 0.0951 | grad 1.9601 | lr 0.0000 | time_forward 3.7630 | time_backward 4.9370
[2023-10-25 14:36:19,222::train::INFO] [train] Iter 596854 | loss 1.4980 | loss(rot) 0.9989 | loss(pos) 0.1986 | loss(seq) 0.3004 | grad 7.3754 | lr 0.0000 | time_forward 3.6610 | time_backward 5.2970
[2023-10-25 14:36:29,213::train::INFO] [train] Iter 596855 | loss 0.6347 | loss(rot) 0.2797 | loss(pos) 0.0553 | loss(seq) 0.2997 | grad 2.9293 | lr 0.0000 | time_forward 3.8910 | time_backward 6.0960
[2023-10-25 14:36:35,931::train::INFO] [train] Iter 596856 | loss 0.4138 | loss(rot) 0.0603 | loss(pos) 0.1092 | loss(seq) 0.2443 | grad 3.1870 | lr 0.0000 | time_forward 2.9450 | time_backward 3.7700
[2023-10-25 14:36:38,228::train::INFO] [train] Iter 596857 | loss 1.1133 | loss(rot) 0.4985 | loss(pos) 0.2282 | loss(seq) 0.3866 | grad 4.4046 | lr 0.0000 | time_forward 1.0430 | time_backward 1.2510
[2023-10-25 14:36:47,776::train::INFO] [train] Iter 596858 | loss 0.2082 | loss(rot) 0.1859 | loss(pos) 0.0222 | loss(seq) 0.0000 | grad 2.6265 | lr 0.0000 | time_forward 3.8290 | time_backward 5.7160
[2023-10-25 14:36:56,770::train::INFO] [train] Iter 596859 | loss 0.9794 | loss(rot) 0.6521 | loss(pos) 0.1761 | loss(seq) 0.1512 | grad 4.5489 | lr 0.0000 | time_forward 3.8550 | time_backward 5.1360
[2023-10-25 14:36:59,693::train::INFO] [train] Iter 596860 | loss 0.7129 | loss(rot) 0.4672 | loss(pos) 0.1681 | loss(seq) 0.0777 | grad 4.1849 | lr 0.0000 | time_forward 1.4560 | time_backward 1.4640
[2023-10-25 14:37:02,662::train::INFO] [train] Iter 596861 | loss 0.7540 | loss(rot) 0.3329 | loss(pos) 0.1214 | loss(seq) 0.2997 | grad 3.3622 | lr 0.0000 | time_forward 1.4850 | time_backward 1.4810
[2023-10-25 14:37:12,736::train::INFO] [train] Iter 596862 | loss 1.1640 | loss(rot) 1.1254 | loss(pos) 0.0171 | loss(seq) 0.0215 | grad 5.5895 | lr 0.0000 | time_forward 4.3880 | time_backward 5.6820
[2023-10-25 14:37:20,928::train::INFO] [train] Iter 596863 | loss 1.2347 | loss(rot) 0.9753 | loss(pos) 0.0268 | loss(seq) 0.2325 | grad 5.3363 | lr 0.0000 | time_forward 3.4910 | time_backward 4.6990
[2023-10-25 14:37:29,098::train::INFO] [train] Iter 596864 | loss 0.8524 | loss(rot) 0.2172 | loss(pos) 0.6287 | loss(seq) 0.0065 | grad 6.1839 | lr 0.0000 | time_forward 3.4590 | time_backward 4.7070
[2023-10-25 14:37:31,772::train::INFO] [train] Iter 596865 | loss 0.6599 | loss(rot) 0.2329 | loss(pos) 0.0800 | loss(seq) 0.3470 | grad 3.3848 | lr 0.0000 | time_forward 1.2220 | time_backward 1.4500