text
stringlengths 56
1.16k
|
---|
[2023-10-25 14:37:41,212::train::INFO] [train] Iter 596866 | loss 1.5296 | loss(rot) 0.8612 | loss(pos) 0.1799 | loss(seq) 0.4884 | grad 3.0918 | lr 0.0000 | time_forward 3.8340 | time_backward 5.6020 |
[2023-10-25 14:37:49,332::train::INFO] [train] Iter 596867 | loss 0.2681 | loss(rot) 0.2438 | loss(pos) 0.0133 | loss(seq) 0.0110 | grad 3.1510 | lr 0.0000 | time_forward 3.3950 | time_backward 4.7230 |
[2023-10-25 14:37:52,088::train::INFO] [train] Iter 596868 | loss 0.7311 | loss(rot) 0.5128 | loss(pos) 0.0246 | loss(seq) 0.1937 | grad 3.1018 | lr 0.0000 | time_forward 1.3080 | time_backward 1.4440 |
[2023-10-25 14:38:00,951::train::INFO] [train] Iter 596869 | loss 0.6203 | loss(rot) 0.2171 | loss(pos) 0.2270 | loss(seq) 0.1762 | grad 2.5459 | lr 0.0000 | time_forward 3.7460 | time_backward 5.1130 |
[2023-10-25 14:38:03,746::train::INFO] [train] Iter 596870 | loss 1.0611 | loss(rot) 0.6533 | loss(pos) 0.0363 | loss(seq) 0.3715 | grad 10.0868 | lr 0.0000 | time_forward 1.2330 | time_backward 1.5580 |
[2023-10-25 14:38:11,910::train::INFO] [train] Iter 596871 | loss 0.1079 | loss(rot) 0.0695 | loss(pos) 0.0321 | loss(seq) 0.0062 | grad 1.3795 | lr 0.0000 | time_forward 3.4400 | time_backward 4.7210 |
[2023-10-25 14:38:19,694::train::INFO] [train] Iter 596872 | loss 0.3213 | loss(rot) 0.0568 | loss(pos) 0.1259 | loss(seq) 0.1386 | grad 3.3670 | lr 0.0000 | time_forward 3.3410 | time_backward 4.4400 |
[2023-10-25 14:38:21,982::train::INFO] [train] Iter 596873 | loss 0.5741 | loss(rot) 0.3356 | loss(pos) 0.0239 | loss(seq) 0.2146 | grad 2.7257 | lr 0.0000 | time_forward 1.0470 | time_backward 1.2380 |
[2023-10-25 14:38:29,547::train::INFO] [train] Iter 596874 | loss 0.4204 | loss(rot) 0.1543 | loss(pos) 0.0800 | loss(seq) 0.1862 | grad 3.2621 | lr 0.0000 | time_forward 3.1690 | time_backward 4.3930 |
[2023-10-25 14:38:38,168::train::INFO] [train] Iter 596875 | loss 0.6963 | loss(rot) 0.3026 | loss(pos) 0.0808 | loss(seq) 0.3128 | grad 3.1479 | lr 0.0000 | time_forward 3.6580 | time_backward 4.9600 |
[2023-10-25 14:38:47,543::train::INFO] [train] Iter 596876 | loss 0.5010 | loss(rot) 0.1993 | loss(pos) 0.1438 | loss(seq) 0.1579 | grad 4.0192 | lr 0.0000 | time_forward 3.8120 | time_backward 5.5600 |
[2023-10-25 14:38:56,210::train::INFO] [train] Iter 596877 | loss 0.3736 | loss(rot) 0.2018 | loss(pos) 0.0256 | loss(seq) 0.1462 | grad 3.1836 | lr 0.0000 | time_forward 3.6860 | time_backward 4.9780 |
[2023-10-25 14:39:04,132::train::INFO] [train] Iter 596878 | loss 0.8379 | loss(rot) 0.1015 | loss(pos) 0.6983 | loss(seq) 0.0381 | grad 6.6304 | lr 0.0000 | time_forward 3.2450 | time_backward 4.6740 |
[2023-10-25 14:39:13,587::train::INFO] [train] Iter 596879 | loss 0.6523 | loss(rot) 0.5013 | loss(pos) 0.0299 | loss(seq) 0.1211 | grad 2.4216 | lr 0.0000 | time_forward 3.8690 | time_backward 5.5840 |
[2023-10-25 14:39:21,228::train::INFO] [train] Iter 596880 | loss 1.1519 | loss(rot) 0.0816 | loss(pos) 1.0609 | loss(seq) 0.0094 | grad 12.7760 | lr 0.0000 | time_forward 3.2170 | time_backward 4.4210 |
[2023-10-25 14:39:23,589::train::INFO] [train] Iter 596881 | loss 0.2650 | loss(rot) 0.2115 | loss(pos) 0.0308 | loss(seq) 0.0227 | grad 2.7255 | lr 0.0000 | time_forward 1.0360 | time_backward 1.3210 |
[2023-10-25 14:39:33,277::train::INFO] [train] Iter 596882 | loss 0.7858 | loss(rot) 0.2548 | loss(pos) 0.1055 | loss(seq) 0.4255 | grad 3.2229 | lr 0.0000 | time_forward 4.1990 | time_backward 5.4850 |
[2023-10-25 14:39:42,058::train::INFO] [train] Iter 596883 | loss 0.7503 | loss(rot) 0.1861 | loss(pos) 0.0825 | loss(seq) 0.4817 | grad 2.5519 | lr 0.0000 | time_forward 3.7500 | time_backward 5.0280 |
[2023-10-25 14:39:51,694::train::INFO] [train] Iter 596884 | loss 1.7813 | loss(rot) 1.5201 | loss(pos) 0.0755 | loss(seq) 0.1856 | grad 3.3420 | lr 0.0000 | time_forward 3.9590 | time_backward 5.6740 |
[2023-10-25 14:39:59,836::train::INFO] [train] Iter 596885 | loss 1.0838 | loss(rot) 0.8474 | loss(pos) 0.0414 | loss(seq) 0.1951 | grad 115.7425 | lr 0.0000 | time_forward 3.4580 | time_backward 4.6800 |
[2023-10-25 14:40:09,351::train::INFO] [train] Iter 596886 | loss 1.3250 | loss(rot) 1.2660 | loss(pos) 0.0274 | loss(seq) 0.0316 | grad 38.8641 | lr 0.0000 | time_forward 3.9110 | time_backward 5.6010 |
[2023-10-25 14:40:17,766::train::INFO] [train] Iter 596887 | loss 0.2796 | loss(rot) 0.2404 | loss(pos) 0.0374 | loss(seq) 0.0018 | grad 2.2381 | lr 0.0000 | time_forward 3.5870 | time_backward 4.8240 |
[2023-10-25 14:40:20,434::train::INFO] [train] Iter 596888 | loss 0.4721 | loss(rot) 0.1885 | loss(pos) 0.2442 | loss(seq) 0.0395 | grad 4.2533 | lr 0.0000 | time_forward 1.2500 | time_backward 1.4160 |
[2023-10-25 14:40:22,728::train::INFO] [train] Iter 596889 | loss 0.1713 | loss(rot) 0.1199 | loss(pos) 0.0514 | loss(seq) 0.0000 | grad 3.1142 | lr 0.0000 | time_forward 1.0540 | time_backward 1.2100 |
[2023-10-25 14:40:25,187::train::INFO] [train] Iter 596890 | loss 0.8133 | loss(rot) 0.0156 | loss(pos) 0.7963 | loss(seq) 0.0014 | grad 13.7865 | lr 0.0000 | time_forward 1.1860 | time_backward 1.2700 |
[2023-10-25 14:40:32,487::train::INFO] [train] Iter 596891 | loss 2.3562 | loss(rot) 2.1294 | loss(pos) 0.0325 | loss(seq) 0.1944 | grad 11.1447 | lr 0.0000 | time_forward 3.1450 | time_backward 4.1530 |
[2023-10-25 14:40:40,362::train::INFO] [train] Iter 596892 | loss 3.3252 | loss(rot) 0.3201 | loss(pos) 3.0037 | loss(seq) 0.0014 | grad 21.2192 | lr 0.0000 | time_forward 3.2940 | time_backward 4.5780 |
[2023-10-25 14:40:46,726::train::INFO] [train] Iter 596893 | loss 0.2978 | loss(rot) 0.0238 | loss(pos) 0.2705 | loss(seq) 0.0035 | grad 7.2698 | lr 0.0000 | time_forward 2.6760 | time_backward 3.6840 |
[2023-10-25 14:40:49,495::train::INFO] [train] Iter 596894 | loss 0.2916 | loss(rot) 0.1397 | loss(pos) 0.0219 | loss(seq) 0.1301 | grad 2.4883 | lr 0.0000 | time_forward 1.3310 | time_backward 1.4230 |
[2023-10-25 14:40:59,263::train::INFO] [train] Iter 596895 | loss 0.8299 | loss(rot) 0.5354 | loss(pos) 0.2024 | loss(seq) 0.0921 | grad 11.8980 | lr 0.0000 | time_forward 3.9530 | time_backward 5.7730 |
[2023-10-25 14:41:07,590::train::INFO] [train] Iter 596896 | loss 0.4397 | loss(rot) 0.3962 | loss(pos) 0.0189 | loss(seq) 0.0246 | grad 3.2005 | lr 0.0000 | time_forward 3.5380 | time_backward 4.7860 |
[2023-10-25 14:41:17,340::train::INFO] [train] Iter 596897 | loss 0.7725 | loss(rot) 0.3583 | loss(pos) 0.0575 | loss(seq) 0.3567 | grad 19.5625 | lr 0.0000 | time_forward 3.9710 | time_backward 5.7770 |
[2023-10-25 14:41:19,631::train::INFO] [train] Iter 596898 | loss 0.3928 | loss(rot) 0.0853 | loss(pos) 0.2529 | loss(seq) 0.0546 | grad 5.2353 | lr 0.0000 | time_forward 1.0610 | time_backward 1.2260 |
[2023-10-25 14:41:22,399::train::INFO] [train] Iter 596899 | loss 1.2353 | loss(rot) 0.7903 | loss(pos) 0.0758 | loss(seq) 0.3693 | grad 9.2641 | lr 0.0000 | time_forward 1.3000 | time_backward 1.4650 |
[2023-10-25 14:41:31,520::train::INFO] [train] Iter 596900 | loss 0.5180 | loss(rot) 0.3890 | loss(pos) 0.0117 | loss(seq) 0.1172 | grad 2.8685 | lr 0.0000 | time_forward 3.8590 | time_backward 5.2590 |
[2023-10-25 14:41:33,762::train::INFO] [train] Iter 596901 | loss 0.5105 | loss(rot) 0.4664 | loss(pos) 0.0438 | loss(seq) 0.0003 | grad 3.4962 | lr 0.0000 | time_forward 1.0460 | time_backward 1.1940 |
[2023-10-25 14:41:43,672::train::INFO] [train] Iter 596902 | loss 0.2483 | loss(rot) 0.0791 | loss(pos) 0.0174 | loss(seq) 0.1518 | grad 2.2750 | lr 0.0000 | time_forward 3.9730 | time_backward 5.9340 |
[2023-10-25 14:41:52,627::train::INFO] [train] Iter 596903 | loss 0.4849 | loss(rot) 0.1688 | loss(pos) 0.0420 | loss(seq) 0.2741 | grad 3.2314 | lr 0.0000 | time_forward 3.7610 | time_backward 5.1910 |
[2023-10-25 14:41:55,877::train::INFO] [train] Iter 596904 | loss 0.2558 | loss(rot) 0.1028 | loss(pos) 0.0955 | loss(seq) 0.0575 | grad 2.3045 | lr 0.0000 | time_forward 1.4790 | time_backward 1.7680 |
[2023-10-25 14:42:04,063::train::INFO] [train] Iter 596905 | loss 0.5861 | loss(rot) 0.2015 | loss(pos) 0.1037 | loss(seq) 0.2809 | grad 3.9708 | lr 0.0000 | time_forward 3.4570 | time_backward 4.7130 |
[2023-10-25 14:42:11,428::train::INFO] [train] Iter 596906 | loss 0.9125 | loss(rot) 0.8883 | loss(pos) 0.0174 | loss(seq) 0.0068 | grad 7.9696 | lr 0.0000 | time_forward 3.1190 | time_backward 4.2420 |
[2023-10-25 14:42:19,670::train::INFO] [train] Iter 596907 | loss 0.9946 | loss(rot) 0.8665 | loss(pos) 0.0215 | loss(seq) 0.1065 | grad 25.8070 | lr 0.0000 | time_forward 3.4580 | time_backward 4.7810 |
[2023-10-25 14:42:28,575::train::INFO] [train] Iter 596908 | loss 0.6457 | loss(rot) 0.6073 | loss(pos) 0.0240 | loss(seq) 0.0144 | grad 2.0884 | lr 0.0000 | time_forward 3.8230 | time_backward 5.0790 |
[2023-10-25 14:42:36,732::train::INFO] [train] Iter 596909 | loss 1.6186 | loss(rot) 0.7685 | loss(pos) 0.4080 | loss(seq) 0.4421 | grad 12.4499 | lr 0.0000 | time_forward 3.4140 | time_backward 4.7400 |
[2023-10-25 14:42:39,503::train::INFO] [train] Iter 596910 | loss 1.0322 | loss(rot) 0.0052 | loss(pos) 1.0266 | loss(seq) 0.0004 | grad 19.9339 | lr 0.0000 | time_forward 1.3190 | time_backward 1.4490 |
[2023-10-25 14:42:48,439::train::INFO] [train] Iter 596911 | loss 0.7605 | loss(rot) 0.7068 | loss(pos) 0.0136 | loss(seq) 0.0401 | grad 4.4477 | lr 0.0000 | time_forward 3.7960 | time_backward 5.1360 |
[2023-10-25 14:42:51,194::train::INFO] [train] Iter 596912 | loss 0.7246 | loss(rot) 0.1657 | loss(pos) 0.2577 | loss(seq) 0.3013 | grad 8.1915 | lr 0.0000 | time_forward 1.3060 | time_backward 1.4470 |
[2023-10-25 14:42:59,199::train::INFO] [train] Iter 596913 | loss 1.2623 | loss(rot) 0.5261 | loss(pos) 0.2602 | loss(seq) 0.4760 | grad 7.1069 | lr 0.0000 | time_forward 3.3080 | time_backward 4.6720 |
[2023-10-25 14:43:07,500::train::INFO] [train] Iter 596914 | loss 1.0241 | loss(rot) 0.6687 | loss(pos) 0.0300 | loss(seq) 0.3254 | grad 4.3869 | lr 0.0000 | time_forward 3.6220 | time_backward 4.6750 |
[2023-10-25 14:43:17,008::train::INFO] [train] Iter 596915 | loss 0.9545 | loss(rot) 0.8009 | loss(pos) 0.0511 | loss(seq) 0.1025 | grad 4.2471 | lr 0.0000 | time_forward 3.8750 | time_backward 5.6300 |
[2023-10-25 14:43:26,508::train::INFO] [train] Iter 596916 | loss 0.4580 | loss(rot) 0.3564 | loss(pos) 0.0320 | loss(seq) 0.0695 | grad 3.2079 | lr 0.0000 | time_forward 3.9300 | time_backward 5.5670 |
[2023-10-25 14:43:29,760::train::INFO] [train] Iter 596917 | loss 1.8012 | loss(rot) 1.7831 | loss(pos) 0.0157 | loss(seq) 0.0024 | grad 15.6786 | lr 0.0000 | time_forward 1.4650 | time_backward 1.7840 |
[2023-10-25 14:43:32,068::train::INFO] [train] Iter 596918 | loss 0.5274 | loss(rot) 0.2595 | loss(pos) 0.1461 | loss(seq) 0.1219 | grad 3.2927 | lr 0.0000 | time_forward 1.0350 | time_backward 1.2580 |
[2023-10-25 14:43:41,662::train::INFO] [train] Iter 596919 | loss 2.6787 | loss(rot) 2.0091 | loss(pos) 0.2287 | loss(seq) 0.4408 | grad 4.1281 | lr 0.0000 | time_forward 3.8920 | time_backward 5.6680 |
[2023-10-25 14:43:49,943::train::INFO] [train] Iter 596920 | loss 1.4620 | loss(rot) 1.4212 | loss(pos) 0.0160 | loss(seq) 0.0247 | grad 27.0507 | lr 0.0000 | time_forward 3.4900 | time_backward 4.7880 |
[2023-10-25 14:43:59,601::train::INFO] [train] Iter 596921 | loss 0.3671 | loss(rot) 0.1136 | loss(pos) 0.1501 | loss(seq) 0.1034 | grad 2.6233 | lr 0.0000 | time_forward 3.9690 | time_backward 5.6860 |
[2023-10-25 14:44:09,061::train::INFO] [train] Iter 596922 | loss 0.6167 | loss(rot) 0.5578 | loss(pos) 0.0558 | loss(seq) 0.0030 | grad 2.5953 | lr 0.0000 | time_forward 4.0680 | time_backward 5.3890 |
[2023-10-25 14:44:18,724::train::INFO] [train] Iter 596923 | loss 0.4305 | loss(rot) 0.0987 | loss(pos) 0.2500 | loss(seq) 0.0818 | grad 4.2667 | lr 0.0000 | time_forward 3.8590 | time_backward 5.8000 |
[2023-10-25 14:44:27,628::train::INFO] [train] Iter 596924 | loss 0.3241 | loss(rot) 0.0894 | loss(pos) 0.1015 | loss(seq) 0.1332 | grad 2.2801 | lr 0.0000 | time_forward 3.7770 | time_backward 5.1250 |
[2023-10-25 14:44:36,270::train::INFO] [train] Iter 596925 | loss 1.1527 | loss(rot) 0.8624 | loss(pos) 0.0665 | loss(seq) 0.2238 | grad 6.7882 | lr 0.0000 | time_forward 3.6050 | time_backward 5.0340 |
[2023-10-25 14:44:39,014::train::INFO] [train] Iter 596926 | loss 0.2390 | loss(rot) 0.0287 | loss(pos) 0.0263 | loss(seq) 0.1839 | grad 2.1308 | lr 0.0000 | time_forward 1.3090 | time_backward 1.4320 |
[2023-10-25 14:44:48,467::train::INFO] [train] Iter 596927 | loss 0.1507 | loss(rot) 0.0927 | loss(pos) 0.0287 | loss(seq) 0.0293 | grad 2.0004 | lr 0.0000 | time_forward 3.8670 | time_backward 5.5820 |
[2023-10-25 14:44:51,190::train::INFO] [train] Iter 596928 | loss 1.4117 | loss(rot) 1.2003 | loss(pos) 0.0601 | loss(seq) 0.1513 | grad 19.4764 | lr 0.0000 | time_forward 1.3060 | time_backward 1.4130 |
[2023-10-25 14:44:58,999::train::INFO] [train] Iter 596929 | loss 0.1160 | loss(rot) 0.1070 | loss(pos) 0.0084 | loss(seq) 0.0006 | grad 1.6246 | lr 0.0000 | time_forward 3.3100 | time_backward 4.4970 |
[2023-10-25 14:45:01,673::train::INFO] [train] Iter 596930 | loss 0.9301 | loss(rot) 0.3590 | loss(pos) 0.1754 | loss(seq) 0.3957 | grad 4.4054 | lr 0.0000 | time_forward 1.2330 | time_backward 1.4370 |
[2023-10-25 14:45:04,470::train::INFO] [train] Iter 596931 | loss 1.4528 | loss(rot) 0.9421 | loss(pos) 0.1565 | loss(seq) 0.3542 | grad 5.9658 | lr 0.0000 | time_forward 1.3000 | time_backward 1.4560 |
[2023-10-25 14:45:07,259::train::INFO] [train] Iter 596932 | loss 0.4188 | loss(rot) 0.0975 | loss(pos) 0.3165 | loss(seq) 0.0047 | grad 5.4580 | lr 0.0000 | time_forward 1.3250 | time_backward 1.4360 |
[2023-10-25 14:45:10,100::train::INFO] [train] Iter 596933 | loss 0.5515 | loss(rot) 0.3566 | loss(pos) 0.0166 | loss(seq) 0.1783 | grad 2.4850 | lr 0.0000 | time_forward 1.3740 | time_backward 1.4640 |
[2023-10-25 14:45:19,842::train::INFO] [train] Iter 596934 | loss 0.4412 | loss(rot) 0.1048 | loss(pos) 0.0242 | loss(seq) 0.3121 | grad 1.8782 | lr 0.0000 | time_forward 3.9330 | time_backward 5.8060 |
[2023-10-25 14:45:29,381::train::INFO] [train] Iter 596935 | loss 1.6828 | loss(rot) 1.4594 | loss(pos) 0.0791 | loss(seq) 0.1443 | grad 5.2187 | lr 0.0000 | time_forward 3.9040 | time_backward 5.6020 |
[2023-10-25 14:45:37,076::train::INFO] [train] Iter 596936 | loss 1.4328 | loss(rot) 1.3442 | loss(pos) 0.0313 | loss(seq) 0.0573 | grad 63.6729 | lr 0.0000 | time_forward 3.2210 | time_backward 4.4700 |
[2023-10-25 14:45:45,108::train::INFO] [train] Iter 596937 | loss 0.2564 | loss(rot) 0.1985 | loss(pos) 0.0277 | loss(seq) 0.0302 | grad 2.8550 | lr 0.0000 | time_forward 3.5470 | time_backward 4.4810 |
[2023-10-25 14:45:52,286::train::INFO] [train] Iter 596938 | loss 0.2384 | loss(rot) 0.0364 | loss(pos) 0.0236 | loss(seq) 0.1784 | grad 2.0988 | lr 0.0000 | time_forward 3.0690 | time_backward 4.1060 |
[2023-10-25 14:45:54,921::train::INFO] [train] Iter 596939 | loss 1.3547 | loss(rot) 1.3275 | loss(pos) 0.0271 | loss(seq) 0.0001 | grad 6.0029 | lr 0.0000 | time_forward 1.2340 | time_backward 1.3980 |
[2023-10-25 14:46:04,756::train::INFO] [train] Iter 596940 | loss 0.9324 | loss(rot) 0.8840 | loss(pos) 0.0477 | loss(seq) 0.0007 | grad 45.9671 | lr 0.0000 | time_forward 4.2380 | time_backward 5.5940 |
[2023-10-25 14:46:14,313::train::INFO] [train] Iter 596941 | loss 0.7690 | loss(rot) 0.6914 | loss(pos) 0.0344 | loss(seq) 0.0433 | grad 2.4483 | lr 0.0000 | time_forward 3.9490 | time_backward 5.5940 |
[2023-10-25 14:46:17,601::train::INFO] [train] Iter 596942 | loss 0.7258 | loss(rot) 0.3619 | loss(pos) 0.2195 | loss(seq) 0.1444 | grad 3.7295 | lr 0.0000 | time_forward 1.4790 | time_backward 1.8050 |
[2023-10-25 14:46:20,188::train::INFO] [train] Iter 596943 | loss 0.2557 | loss(rot) 0.0276 | loss(pos) 0.2003 | loss(seq) 0.0279 | grad 4.9046 | lr 0.0000 | time_forward 1.1980 | time_backward 1.3860 |
[2023-10-25 14:46:29,298::train::INFO] [train] Iter 596944 | loss 0.5402 | loss(rot) 0.1667 | loss(pos) 0.0387 | loss(seq) 0.3348 | grad 2.4025 | lr 0.0000 | time_forward 3.7480 | time_backward 5.3570 |
[2023-10-25 14:46:36,771::train::INFO] [train] Iter 596945 | loss 0.3328 | loss(rot) 0.1660 | loss(pos) 0.1398 | loss(seq) 0.0270 | grad 4.1600 | lr 0.0000 | time_forward 3.1680 | time_backward 4.3030 |
[2023-10-25 14:46:45,110::train::INFO] [train] Iter 596946 | loss 0.4115 | loss(rot) 0.0969 | loss(pos) 0.0886 | loss(seq) 0.2260 | grad 2.3648 | lr 0.0000 | time_forward 3.5690 | time_backward 4.7660 |
[2023-10-25 14:46:54,193::train::INFO] [train] Iter 596947 | loss 0.5216 | loss(rot) 0.1882 | loss(pos) 0.2046 | loss(seq) 0.1287 | grad 4.6824 | lr 0.0000 | time_forward 3.7150 | time_backward 5.3640 |
[2023-10-25 14:47:01,847::train::INFO] [train] Iter 596948 | loss 0.4296 | loss(rot) 0.1881 | loss(pos) 0.1197 | loss(seq) 0.1218 | grad 2.9328 | lr 0.0000 | time_forward 3.2410 | time_backward 4.4090 |
[2023-10-25 14:47:08,835::train::INFO] [train] Iter 596949 | loss 0.4729 | loss(rot) 0.1072 | loss(pos) 0.2349 | loss(seq) 0.1308 | grad 4.5756 | lr 0.0000 | time_forward 3.0210 | time_backward 3.9640 |
[2023-10-25 14:47:11,539::train::INFO] [train] Iter 596950 | loss 1.0342 | loss(rot) 0.8994 | loss(pos) 0.0237 | loss(seq) 0.1111 | grad 7.5860 | lr 0.0000 | time_forward 1.3040 | time_backward 1.3970 |
[2023-10-25 14:47:20,681::train::INFO] [train] Iter 596951 | loss 0.9708 | loss(rot) 0.5456 | loss(pos) 0.0964 | loss(seq) 0.3288 | grad 3.0617 | lr 0.0000 | time_forward 3.7690 | time_backward 5.3360 |
[2023-10-25 14:47:28,229::train::INFO] [train] Iter 596952 | loss 2.5103 | loss(rot) 2.3297 | loss(pos) 0.0796 | loss(seq) 0.1010 | grad 6.1369 | lr 0.0000 | time_forward 3.1870 | time_backward 4.3580 |
[2023-10-25 14:47:36,026::train::INFO] [train] Iter 596953 | loss 2.6599 | loss(rot) 0.0057 | loss(pos) 2.6542 | loss(seq) 0.0000 | grad 34.9553 | lr 0.0000 | time_forward 3.3140 | time_backward 4.4810 |
[2023-10-25 14:47:45,118::train::INFO] [train] Iter 596954 | loss 1.3923 | loss(rot) 0.4710 | loss(pos) 0.3071 | loss(seq) 0.6142 | grad 5.0277 | lr 0.0000 | time_forward 3.7200 | time_backward 5.3690 |
[2023-10-25 14:47:53,359::train::INFO] [train] Iter 596955 | loss 0.9278 | loss(rot) 0.4647 | loss(pos) 0.1504 | loss(seq) 0.3127 | grad 5.0496 | lr 0.0000 | time_forward 3.4600 | time_backward 4.7770 |
[2023-10-25 14:47:56,069::train::INFO] [train] Iter 596956 | loss 0.9834 | loss(rot) 0.1072 | loss(pos) 0.7004 | loss(seq) 0.1757 | grad 6.2569 | lr 0.0000 | time_forward 1.3070 | time_backward 1.4010 |
[2023-10-25 14:47:58,798::train::INFO] [train] Iter 596957 | loss 0.2240 | loss(rot) 0.1886 | loss(pos) 0.0165 | loss(seq) 0.0189 | grad 5.6941 | lr 0.0000 | time_forward 1.3350 | time_backward 1.3910 |
[2023-10-25 14:48:08,397::train::INFO] [train] Iter 596958 | loss 1.5780 | loss(rot) 0.9329 | loss(pos) 0.2055 | loss(seq) 0.4396 | grad 9.6156 | lr 0.0000 | time_forward 4.0820 | time_backward 5.4890 |
[2023-10-25 14:48:15,539::train::INFO] [train] Iter 596959 | loss 0.7278 | loss(rot) 0.5740 | loss(pos) 0.0162 | loss(seq) 0.1376 | grad 2.3620 | lr 0.0000 | time_forward 3.0640 | time_backward 4.0740 |
[2023-10-25 14:48:20,984::train::INFO] [train] Iter 596960 | loss 0.9922 | loss(rot) 0.4560 | loss(pos) 0.1956 | loss(seq) 0.3405 | grad 2.9091 | lr 0.0000 | time_forward 2.3420 | time_backward 3.1000 |
[2023-10-25 14:48:23,708::train::INFO] [train] Iter 596961 | loss 0.7575 | loss(rot) 0.6708 | loss(pos) 0.0228 | loss(seq) 0.0639 | grad 3.5011 | lr 0.0000 | time_forward 1.3150 | time_backward 1.4060 |
[2023-10-25 14:48:32,842::train::INFO] [train] Iter 596962 | loss 0.1500 | loss(rot) 0.1361 | loss(pos) 0.0125 | loss(seq) 0.0015 | grad 2.2567 | lr 0.0000 | time_forward 3.7810 | time_backward 5.3500 |
[2023-10-25 14:48:41,274::train::INFO] [train] Iter 596963 | loss 1.4599 | loss(rot) 1.3161 | loss(pos) 0.0245 | loss(seq) 0.1192 | grad 2.6647 | lr 0.0000 | time_forward 3.5950 | time_backward 4.8330 |
[2023-10-25 14:48:46,798::train::INFO] [train] Iter 596964 | loss 0.8515 | loss(rot) 0.2095 | loss(pos) 0.6265 | loss(seq) 0.0154 | grad 6.8952 | lr 0.0000 | time_forward 2.3730 | time_backward 3.1480 |
[2023-10-25 14:48:49,515::train::INFO] [train] Iter 596965 | loss 0.2029 | loss(rot) 0.1329 | loss(pos) 0.0275 | loss(seq) 0.0425 | grad 1.8539 | lr 0.0000 | time_forward 1.3090 | time_backward 1.4050 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.